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Abstract—A method to detect boundaries in in natural color
images is here proposed, combining edge information and region
information. This unsupervised fully automatic process uses edge
map information to eliminate false boundaries in the image
region map, and region map information to remove noise in
the image edge map. Thus, it integrates these two maps into a
single one to get the final result. This proposal is extensively
compared to the multi-label graph cut approach, since both
approaches are unsupervised and fully automatic, as well as
receive the same two inputs, although performing different
processing. Experiments performed on a large set of natural
color images were the base for such comparison. The results show
that the approach here proposed is promising, besides allowing
interesting interpretations about boundary detection.

Keywords-boundary detection, multilabel graph cut, region
growing, edge detection.

I. INTRODUCTION

Boundary detection is a crucial task in computer vision sys-
tems. Actually, high level procedures, like object recognition,
strongly rely on the quality of boundary information. A fully
automated contour detection is a complex issue, since no prior
knowledge about what types of regions (uniform, with smooth
gradation of color and texture variations) are present in an
image, or how many they are. Examples of the variety and
complexity of images can be found in Figure 1. Figure 1(a) is
the image of a snake in the desert, where the central element
and the background have almost the same color, causing an
ill-defined border. Figure 1(b) shows an image with a mixture
of artificial and natural textures (the bridge has geometric
patterns, quite unlike the natural texture of the hill and the
trail of smoke from the locomotive). In Figure 1(c) we have
a koala in a tree, where, despite the complexity of the texture
of its fur, human perception recognizes it as a single element.

(a) (b) (c)

Figure 1. Image examples (extracted from [1]).

Traditionally, boundary-detection techniques are classified
as region or edge approaches. Region-based techniques rely
on common patterns in intensity values within a cluster of
neighboring pixels. The cluster is referred to as the region,
and the goal of the segmentation algorithm is to group regions
according to their anatomical or functional roles. Edge-based
techniques rely on discontinuities in image values between
distinct regions, and the goal of the segmentation algorithm is
to accurately demarcate the boundary separating these regions.
However, there may exist gaps and noisy edges in edge-
approach results, whereas region-approach results tend to be
over-segmented with inaccurate boundaries.

There are many proposals combining the outputs of region-
growing and edge detection methods to improve the quality
of their results. Muñoz, Freixenet, Cufí and Martí [2] show
seven different strategies for combining similarity (region) and
discontinuity (edge) information. They were grouped in two
classes: embedded integration and post-processing integration.
Embedded integration produces, in general, a single complex
algorithm to avoid errors in the results. The post-processing
strategy works with a set of many algorithms. This approach
accepts faults in the elementary algorithms, and the posteriori
integration module tries to correct these errors.

In this paper, we propose a non-supervised and fully au-
tomated post-processing integration scheme to combine edge
information extracted by a classical method with region in-
formation. This structure, called KoSS (for Komati, Salles
and Sarcinelli-Filho), eliminates false boundaries in the region
map, guided by the edge map, and the noise in edge map as
well, now guided by the region map, thus taking the advantage
of their complementary nature. The results obtained with our
approach are closer to the human perception than any of the
two images used as inputs for the post-processing integration.
This proposal is extensively compared to the multi-label graph-
cut approach. Both approaches are fully automatic and receive
the same input, knowing the region and edge maps, although
adopting quite different processing techniques.

However, quantitative performance comparison requires
ground truth and well defined metrics. Both requirements
can be found in "The Berkeley Segmentation Dataset and
Benchmark" (BSDS) [1]. For each image in BSDS, there are at
least five hand-labeled segmentations made by human beings,
which constitute the ground truth. BSDS operates on a non-



thresholded boundary map. Nevertheless, it does the binariza-
tion at many levels. At each level, it computes precision, recall,
and F-measure, and thus produces a precision-recall curve for
each image, over which it applies the algorithm in [3]. The
overall F-measure obtained is the maximum F-measure value
along the precision-recall curve, and summarizes the image
statistics. Thus, the standard metric of BSDS is F-measure,
which determines how well the boundary map obtained ap-
proximates the human ground truth boundaries.

Therefore, as the test images are got from the BSDS,
the algorithm here proposed is evaluated considering the F-
measure metrics, as well as the comparison of its performance
with the one of the multi-label graph-cut.

II. THE INFORMATION FLOW

In this proposal, the region-growing result and edge infor-
mation are independently extracted from the same original
image (Figure 2). The integration process is here performed
through using the KoSS or the multilabel graph cut. Both
approaches use the complementary information of edge based
and region based information, to reduce the problems that arise
in each individual methods.

We are considering that the region-map presents standard
characteristics: the image is binary and all regions are bounded
by closed contours. For the region growing method, we choose
the MM-Frac approach proposed in [4], which is based on
the fully-automatic JSEG method [5]. Essentially, the JSEG’s
homogeneity criterion is mixed with the Multifractal Measure-
ment [6] controlled by an image global statistical property: the
shape of the power spectrum of the image being analyzed [7].

It is necessary that the edge-map be a soft map, with
each pixel valued from zero to one, where higher values
mean greater confidence in the existence of a boundary.
As for the edge map, some classical edge detectors (Sobel,
Prewitt, Laplacian and morphological gradient) [8] generating
an output known as a soft boundary map were tested, and the
result is that the morphological gradient presents the overall F-

Figure 2. Data flow for the image segmentation process. The integration
step receives the edge and region maps as inputs.

measure slightly better than the other detectors. Therefore, it
was chosen as the edge detection method for this work. As for
the usual image smoothing to eliminate noise before the edge
detection, a classical non-linear edge-preserving smoothing
filter, the Kuwahara filter [9], was selected, with 5x5 mask
size.

Finally, as RGB color images are considered, the three
color channels are independently processed, and the results
are added into one image.

III. THE MULTILABEL GRAPH-CUT

The boundary detection problem can be understood as the
image segmentation considering multiple labels. Some tech-
niques to address this problem are available in the literature
[10]. Some of them that naturally combine edge information
and region information are based on Markov Random Fields
(MRF) models [11]. They assume that the segmentation S
is guided by two kinds of constraints: boundary and region,
in our case represented by the information provided by the
edge detection and region growing technique, respectively.
Such constraints can be integrated considering the image
segmentation as an optimization problem, whose solution via
multiway graph cut is the optimum labeling S.

Let I(x) = z denote an image that maps each pixel x ∈ X
to its color value z. Let S(x) = fx denote the segmentation,
where fx = 0, 1, · · · , l − 1 represents the labeling. Our goal
is to solve the segmentation problem that assigns to each
pixel x a label fx, where fx is locally smooth and consistent
with the observed data. Boykov et al. [12] address the image
segmentation problem as an energy minimization problem,
with the energy function to be minimized has the form

E(S) = Esmooth(S) + λEdata(S), (1)

where E(S) measures the goodness of the segmentation S.
Edata(S), called the data term, measures how many pixels in
X "looks like" the labels that S assigns to them. Esmooth(S),
called the smoothness term, measures the extent to which S is
not smooth. The parameter λ controls the influence of neighbor
pixels and, therefore, the smoothness of the segmentation
result. Edata(S) is often formulated as

Edata(S) =
∑
x∈X

D(x, fx), (2)

where D(·) is the penalty for assigning to the pixel x the label
fx. Esmooth(S) is often formulated as

Esmooth(S) =
∑

x,y∈N
V (x, y)δ(fx 6= fy), (3)

where V (x, y) is a penalty imposed by a segmentation bound-
ary between x and y (also called smoothness cost), and
δ(S(x) 6= S(y)) = 1 if x and y have different labels, otherwise
it is 0. The neighborhood system N is given by the set of all
neighbor pairs {x, y} present in the standard 4-connected grid
correspondent to the pixels of the image in the 2D plane.



The energy function defined in (1), considering the terms
(2) and (3), is known as the Generalized Potts Model [13].
Boykov et al. [12] have shown how to solve the minimization
of the generalized Potts Model by constructing a graph such
that the minimum cut is the optimal solution. In addition, the
minimum cut can be computed efficiently with an iterative
procedure called alpha-expansion [12].

In this work D(x, fx) is defined as D(x, fx) ∝
− log |p(I(x)|fx)|, where p(I(x)|fx) is the probability that
a certain pixel x belongs to the label fx. The probability
distribution is modeled using a multivariate normal distribution
N
(
I(x)|µfx

,Σfx

)
and their parameters are fitted using the

information provided by region growing technique. That is,
for each region, a multivariate normal distribution is defined
and tuned with the pixels belonging to that region. Finally
D(x, fx) is equal to

D(x, fx) =
1

2
(I(x)− µfx

)TΣ−1fx
(I(x)− µfx

).

In (3), the smoothness cost V (x, y) is defined considering
the information produced by the edge detection technique, that
is

V (x, y) =

{
v(x), if x = [i, j]T and y = [i+ 1, j]T

h(y), if x = [i, j]T and y = [i, j + 1]T
,

where v(x) = e−βIv(x) and h(x) = e−βIh(x) when

∇I(x) = [Iv(x), Ih(x)]T

= [ max
c={R,G,B}

Ivc(x), max
c={R,G,B}

Ihc
(x)]T

The Sobel masks were used to calculate the gradient vector
for each color channel (where the vertical and horizontal
components of each color channel of the gradient vector is
denoted by IvR , IvG , IvB and IhR

, IhG
, IhB

respectively) and
also was considered a β = 5.

IV. THE PROPOSED METHOD

The fully automated integration process KoSS is an ex-
tension of the KSS one [14]. In general, the conception of
the algorithm has not changed, the logic is to eliminate or
reduce false information and to emphasize strong edges. The
key difference is: KSS performs a pixel-by-pixel analysis of
the region-map, while KoSS analyzes each edge-line from the
region-map (they deal with the same input images).

The improvement of KoSS over KSS is the elimination
of some artifacts generated by the edge-map input. Figure 3
presents results of the segmentation of an Image got from the
BSDS, for which the difference in the results of KSS and KoSS
can be perceived. Such figure shows the original image (a), the
human benchmark (b), the MM-Frac result (c), the KSS result
(f) and the KoSS result (i). The false boundaries elimination
can be observed in the edge-line in the sky over the smoke
of Figure 3(d), the MM-Frac result over the original image,
which is fully erased in the KoSS result shown in Figure 3(j),

(a) Image 182053 of BSDS (b) Human benchmark (0.74)

(c) MM-Frac result (0.69) (d) MM-Frac result over original image

(e) Zoomed part of MM-Frac result

(f) KSS result (0.70) (g) KSS result over original image

(h) Zoomed part of KSS result

(i) KoSS result (0.71) (j) KoSS result over original image

(k) Zoomed part of KoSS result

Figure 3. KSS versus KoSS: artifacts arise in KSS result, and not in KoSS.

the KoSS result over the original image. This result is more
compatible with the human perception, shown in Figure 3(b)
(in the KSS result, Figures 3(f) and 3(g), it is still possible to
see some lost pixels in the sky zone). Figure 3(e) presents a
zoomed part of the image in Figure 3(c), thus making easier
to see this particular area. Figure 3(h) is a zoomed part of the
image in Figure 3(f), showing exactly the same area shown in



Figure 3(e), whereas Figure 3(k) is a zoomed part of the image
in Figure 3(i). Figure 3(h) shows the artifacts due to pixel-by-
pixel processing, while Figure 3(k) does not present any pixel
associated to the false edge. The number in parentheses is the
F-measure value for the segmented image.

In the sequel, the KoSS algorithm is presented as a pseudo-
code (see Algorithm 1), and after it is detailed. The post-
processing integration method, the KoSS system, is inde-
pendent of how the edge-map and the region-map are got.
However, it is necessary that the region-map be a binary image
and the edge-map be a soft map.

Algorithm 1 KoSS
1: Inputs: edge-map and region-map
2: Build a weak-edge-map from edge-map
3: Build a list-of-edge-lines from region-map

{Part I}
4: for each edge-line in the list-of-edge-lines do
5: set count-weak-edge = 0
6: for each edge-unit in the edge-line do
7: if (majority of neighborhood of edge-unit position in

weak-edge-map) is marked then
8: increment count-weak-edge
9: end if

10: end for
11: if (count-weak-edge > length(edge-line)/3) then
12: erase edge-line from region-map
13: end if
14: end for

{Part II}
15: for each weak-edge-unit on weak-edge-map do
16: if (weak-edge-unit position is not marked on region-

map) then
17: erase weak-edge-unit from edge-map
18: end if
19: end for
20: Set image-result = adjustLimit(edge-map + region-map)

In step 2, we should detect the weak edges from the edge
map. This step is basically a binarization process in the edge
map, where each pixel with a low gray level value corresponds
to a weak edge pixel. To automate the threshold value, we use
the results of [15], where the threshold value is based on the
histogram h of the edge-map, given by

thresholdweak =

∑50
i=0 hi∑200
i=50 hi

, (4)

where i = [0, 255] is the value of a pixel in a gray-scale image.
A noisy edge map will result in low thresholdweak val-

ues, while a strongly defined edge map will result in high
thresholdweak values. Figure 4 presents two examples with
images got from BSDS: the first line shows the original
image, the second line shows the associated edge-maps and
the third line shows the histogram associated to the edge-
maps. Using equation (4), thresholdweak for the edge-map

(a) Image 196073 (b) Image 42049

(c) Edge-map of image
196073

(d) Edge-map of image 42049

(e) Edge-map histogram of image
196073 (thresholdweak=3.7)

(f) Edge-map histogram of image
42049 (thresholdweak=24.2)

(g) Weak-edge-map of image
196073

(h) Weak-edge-map of image
42049

Figure 4. Examples of low thresholdweak and high thresholdweak .

of image 196073 is 3.7 and thresholdweak for the edge map
of image 42049 is 24.2. The weak edge maps are presented
in the fourth line in Figure 4.

As Figure 4(h) shows, for higher thresholdweak values
there are more weak edges (white pixels in an image), and
thus more information from region map will be eliminated in
Step 1 of KoSS. For images with a low thresholdweak, there
are a few weak edge pixels, resulting in images with many
black pixels, as in Figure 4(g). So, when the image is noisy,
most information from the region map is preserved. Therefore,
equation (4) represents the degree of confidence of the edge
detection result, pointing when edge map information is more
reliable than region map information.

In Step 3 of Algorithm 1, the region map is divided in a
list of edge lines. Actually, the region map can be viewed as
an skeleton, whose elements can be classified as end points,
normal points and branch points [16]. In a 3x3 neighborhood,
end points have only one neighbor element, normal points have
exactly two and branch points have more than two. An edge-
line (or skeleton branch) is a subset of the skeleton entirely



consisting of normal points except for the extremes, that are
end points or branch points.

Algorithm 2 shows the code correspondent to such step, in
Matlab®. In line 1, the goal is to find all branch points in
an image, and erase all of them (see step 2 of Algorithm 2),
thus resulting an image having a set of edge-lines with only
end points as extremes. The result of line 3 is the variable
lineStats, containing the list of edge-lines.

Algorithm 2 Step 3 of Algorithm 1 in Matlab®

1: Ipoints = bwmorph(MMFracImage, ’branchpoints’, 1);
2: MMFracImage(Ipoints) = 0;
3: lineStats = regionprops(MMFracImage, ’PixelList’, ’Pix-

elIdxList’);

In the rest of Algorithm 1, the logic is to eliminate or to
reduce false information. Part I (lines 4-14) eliminates edge-
lines which are considered weak by the edge detection. The
condition of line 11 was empirically defined after analyzing
the results of several experiments. In Part II (lines 15-19), the
weak information of the edge map is eliminated. All pixels
not belonging to an edge line on region-map and considered
weak edge on weak-edge-map are erased. In step 20, the sum
operation will enhance all boundary pixels that match in the
two different processed maps.

Thus, KoSS erases some edge information of the region map
and does not preserve weak information for the edge map. The
result seems cleaner, preserving and enhancing only the strong
edges of both maps.

V. EXPERIMENTAL RESULTS

We tested both methods, KoSS and multilabel graph cut,
with natural colored images provided by the BSDS image data
set, applying it to all one hundred (100) images of the test
data set of BSDS. As discussed so far, our experiments do not
include any parameter-tuning for individual images.

Quantitatively speaking, the metrics recall, precision and F-
measure of each method computed by the BSDS method are
shown in Table I. KoSS and multilabel graph cut improves the
recall metric when comparing with input metrics (MM-Frac
and edge detection metrics). Moreover, KoSS performs better
then multilabel graph cut. On the other hand, multilabel graph
cut is better in terms of precision. Edge detection presents the
lowest value, because of the noisy pixels. KoSS and multilabel
graph cut present the same F-measure values. In addition,
Table II shows the average value of the same three metrics,
considering all the one hundred (100) images available in the
test dataset of BSDS. From such average values, the advantage
of the KoSS method becomes clearer: its average F-measure
value is 0.63, which is the closest value, considering the
average F-measure correspondent to the human perception.

In terms of qualitative comparison, Figure 5 shows some
images for which the multilabel graph cut method outperforms
the KoSS method (its results are closer to the human percep-
tion), while Figure 6 shows examples in which the results

for the KoSS method are closer to the human perception. The
column order in both figures is maintained: (a) shows the input
image, (b) the human benchmark and the segmentation result
for (c) JSEG, (d) MM-Frac, (e) edge detection, (f) multilabel
graph cut and (g) KoSS approach, already binarized using
the best threshold computed by BSDS. Each result has its
computed F-measure metric.

An important characteristic of multilabel graph cut is its
capacity to change the initial labeling considering the edge
detection information. That is, the labeling generated by the
region growing technique is the initial state of solution in a
discrete optimization process, in special in the images 304034,
160068 and 101085 of Figure 5. Additionally, KoSS method
eliminates false information and enhances edge matching in
both maps, but it does not change the boundaries positions, as
multilabel graph cut does.

In all the images of Figure 5, KoSS flaws were over-
segmentation. In the fifth column, the results of edge detection
are presented. The results are very noisy and this is mainly
due to the fact that edge detection techniques rely entirely on
the local information available in the image. So, KoSS does
not erase false edge lines from region map, as the grass in the
first line, for instance, or the lines caused by wall texture in
the background in the third line.

At the same time, the method of edge detection is respon-
sible for highlighting details such as the stick in the left, in
the snow area of the fourth line of Figure 6 (image 167062),
the insect near to the snake in the second image of Figure 6
(image 196073) and the lines on the ground of image 37073
(first line of Figure 6). Details detected using edge detection
method are kept, but the noise was attenuated and disappears
after the binarization computed by BSDS. The noise caused
by sand in image 196073, the koala’s fur (image 69015) and

Table I
PRECISION, RECALL AND F-MEASURE METRICS CALCULATED BY BSDS.

Recall Precision F-measure
JSEG 0.61 0.56 0.59
MM-Frac 0.63 0.56 0.59
Edge Detection 0.65 0.49 0.56
KoSS 0.69 0.54 0.61
Multilabel GraphCut 0.66 0.58 0.61
Human 0.70 0.89 0.79

Table II
PRECISION, RECALL AND F-MEASURE METRICS CALCULATED BY SIMPLE

AVERAGE.

Recall Precision F-measure
JSEG 0.61 0.57 0.57
MM-Frac 0.63 0.57 0.59
Edge Detection 0.69 0.55 0.59
KoSS 0.73 0.57 0.63
Multilabel GraphCut 0.65 0.57 0.60
Human 0.70 0.89 0.78
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the trees in the background of image 167062 are erased in the
final KoSS result. Thus, the boundaries are more accurate and
are closer to the human perception.

In all images, a detail that is more noticeable in Figure 6, the
multilabel graph cut results present blocking artifacts, because
each image is represented by a 4-connected lattice [17]. On the
other hand, the image 37073 show over-segmentation prob-
lems, because the edge information (the boundary between
airplane and its shadow, for instance) is not sufficiently defined
for that algorithm, which is not well-suited to segment thin
objects (see image 196073).

Deng and Manjunath [5] pointed out that the major problem
they observed in JSEG result is caused by the varying shades
due to the illumination. Even integrating with multifractal
measurement, this problem still remains [18]. For instance,
the color of the sky can vary in a very smooth transition, as in
the image 42049, the third line of Figure 6, where there is no
clear boundary in the sky. Indeed, the human perception does
not consider this smooth color variation as a different region.
The result of KoSS also does not present this false boundary.
The smooth variation is not perceived by the edge detection,
and then the boundary is erased by the KoSS method. On
the other hand, the result of the Multilabel Graph-cut method
shows the circular boundary.

VI. CONCLUSION AND FUTURE WORK

This work proposes a post-processing integration method,
for which the main goal is to integrate the region-growing
result and edge information, in an image segmentation pro-
cedure. Our strategy, called KoSS, is to put together the two
maps, eliminating the false boundaries in region-map, based on
edge information, and eliminating the noisy edges in the edge-
map, based on region information. The KoSS algorithm works
well and solves the problem of false boundaries pointed out in
other works. Furthermore, all strong edges of both input maps
are held, improving the boundary detection. Unfortunately,
the KoSS results still present broken edges, not keeping the
contour closed.

As our results show, the KoSS approach improves the sensi-
tivity to boundary regions, thus providing boundary detection
results that match human perception better than the results
associated with the methods used to generate its two input
images.

A second goal of the paper is to compare our results with
the results of other method with different philosophy, dealing
with the same information input. Even when the human beings
who generated the ground truth for the database used agree
in terms of edges, they often disagree when precisely defining
which pixels in an image correspond to such edges. Boundary
detection is a hard problem and the comparison with other
methods is even harder. Although BSDS metrics assist you
when comparing the approaches, sometimes a single number
is not enough to give all information about the performance
of a method. For instance, despite the overall F-measure of
multilabel graph cut and KoSS were equal, in some cases, the

multilabel graph cut showed some outliers, which is not good
in terms of segmentation.

Although the goal is not computational performance, it is
worth noting that when we implemented KoSS in Matlab it
was fast, requiring approximately 0.5 seconds for each BSDS
image. Moreover, KoSS is easy to reproduce, fully automated,
and does not require a training stage (is an unsupervised
method).
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