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Fig. 1. The main steps of the corpus callosum segmentation: (a) the diffusion tensor image, (b) the fractional anisotropy map,
(c) the watershed transform and (d) the final segmentation result

Abstract—The corpus callosum (CC) is one of the most
important white matter structures of the brain, interconnecting
the two cerebral hemispheres. The corpus callosum is related
to several neurodegenerative diseases and, as segmentation is
usually the first step for studies in this structure, it is important
to have a robust method for CC segmentation. We propose here
a new approach for fully automatic segmentation of the CC
in the magnetic resonance diffusion tensor images. The method
uses the watershed transform and is performed on the fractional
anisotropy (FA) map weighted by the projection of the principal
eigenvector in the left-right direction. It first computes the section
of the CC in the midsagittal slice and uses it as a seed for the
3D volume segmentation. Experiments with real diffusion MRI
data showed that the proposed method is able to quickly segment
the CC without any user intervention, with great results when
compared to manual segmentation. Since it is simple, fast and
does not require parameter settings, the proposed method is well
suited for clinical applications.

Keywords-corpus callosum; fractional anisotropy; diffusion
tensor imaging; magnetic resonance image; segmentation; wa-
tershed transform;

I. INTRODUCTION

The corpus callosum (CC) is by far the largest fiber bundle
in the human brain [1] located at the interhemispheric fissure.
The largest numbers of neurons projected into corpus callosum
are those found in the large pyramidal cells of cortical layers
IIIIV of the contralateral hemisphere [2]. Considering its
extensive function, the corpus callosum can be divided into
three main parts; the genu (anterior portion), the body and the
splenium (posterior portion). Thinner axons in the genu con-
nect the prefrontal cortex between the two interhemispheres.
Thicker axons in the midbody of the corpus callosum and in

the splenium interconnect areas of the premotor and supple-
mentary motor regions and motor cortex, with proportionally
more corpus dedicated to supplementary motor regions. The
splenium communicates somatosensory information between
the two halves of the parietal lobe and visual center at the
occipital lobe [1].

As one of the functions of the corpus callosum is to
connect both cerebral hemispheres, and thus to facilitate
interhemispheric communication, the volume of the corpus
callosum can be affected directly by lesions to the corpus
callosum or indirectly by lesion occurring outside the corpus
callosum. In the last case, Wallerian degeneration of projecting
neurons is responsible for the corpus callosum volume loss.
Independently of its etiology, corpus callosum atrophy may
be considered a marker of neuronal loss and may be found in
healthy elderly adults or in diseases affecting the white matter,
that may be ischemic or demyelinating in nature [3] [4] [5].

Due to the advances in imaging techniques, the number of
studies of the corpus callosum using different modalities of
magnetic resonance (MR) scans increased considerable in the
last decade.

The great majority of published studies were conducted
using T1-weighted images. Among them, the majority was
based on white matter segmentation, using active contours.
After the segmentation, the CC could be extracted using con-
nected components analysis with statistical information [4], or
atlas-based segmentation [6]. Although T1-based segmentation
methods for the corpus callosum were far more explored and
well established, segmentation methods based on magnetic
resonance diffusion tensor images (MR-DTI) are becoming
more explored. First, because it constitutes a valuable tool to
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inspect fibrous structures in a non-invasive way [7]. Thanks to
its directional information, it allows not only the segmentation
of the corpus callosum, but also can lead to its parcellation in
some regions [1] [8]. Also, because it is desirable for the CC
segmentation to be performed directly in DTI, since the final
intent is to analyze the diffusion parameters within the corpus
callosum.

Among the DTI-based segmentation methods, only a few
ones were conceived to segment exclusively the corpus callo-
sum. An atlas-based segmentation method was proposed for
white matter fiber bundles in DTI [9], but it requires prior
knowledge, includes registration and results are not focused
on brain structures. There are also surface evolution methods
using active contours applied in DTI [10] [11], based on level
set function or distance of probability density functions, but
they are complex and time consuming. Other method uses
the orientation information of DTI and binary masking to
segment white matter structures including the corpus callosum
[12]. Despite being simpler, it requires user interaction and is
not sufficiently robust to overcome abnormalities inside the
structure. The cell-competition method [5], which uses the
watershed transform, is computationally expensive and the
results presented are insufficient to draw any conclusions about
the generality of the method.

In this paper we propose an automatic approach method
for the segmentation of the midsagittal section of the corpus
callosum. The method is also based on the watershed transform
but explores other concepts of mathematical morphology and
includes the automatic determination of the midsagittal slice
of the brain to be segmented. The method also performs the
3D volumetric segmentation, not only in the midsagittal slice.

The algorithm was developed in Adessowiki [13], a collab-
orative environment for development and documentation of
scientific computing algorithms.

II. METHODS

The proposed approach consists of three major steps: the
automatic determination of the midsagittal slice, the segmen-
tation of the corpus callosum in the midsagittal slice and the
volumetric segmentation of the corpus callosum.

This section contains a description of each one of them.

A. Automatic determination of the midsagittal slice of the
brain

To perform the segmentation of the corpus callosum prop-
erly ensuring its repeatability, it is important to have an
automatic method for the determination of the central slice
of the brain. One of the landmarks of the central portion
of the brain is the interhemispheric fissure, which is mainly
composed of cerebrospinal fluid (CSF), except for some white
matter structures. The objective of the proposed method is
not to identify the interhemispheric fissure, which is a more
complex operation, but to find the slice within a dataset that
is the closest to it, here called the midsagittal slice.

The fractional anisotropy (FA) map derived from the MR-
DTI reflects the scenario in the midsagittal slice: large areas,

corresponding to the CSF, with low FA values and the white
matter structures, including the corpus callosum, with high FA
values.

Consequently, if the average FA is calculated for each slice,
discarding values above a certain limit FAmax, the slice with
lowest average will be the midsagittal slice. That is true if
not taking into account slices from extremities, with small
cross-sectional area of the brain. So, slices with cross-sectional
area below a certain minimum Amin are not considered as
candidates for midsagittal slice.

B. Corpus callosum segmentation in the midsagittal slice

The automatic segmentation of the midsagittal section of the
corpus callosum is performed using the watershed transform
from markers [14]. Since the critical part in the watershed
segmentation is the proper choice of markers, a hierarchical
approach is considered in order to retain the most significant
regions of the image. The extinction values of the local minima
based on the volume dynamics are used to build the hierarchy
[15]. Local minima with highest extinction values are then
used as markers for the watershed segmentation.

Since the watershed transform is usually performed over
a gradient image, the external morphological gradient is cal-
culated. It is chosen over the morphological gradient and
the internal morphological gradient due to its capacity of
extracting external boundaries of objects brighter than the
background [16] and is used to capture the edges of the corpus
callosum. The external gradient Ge is defined as the difference
between the dilated image and the original image f :

Ge(f) = f ⊕ b− f (1)

where ⊕ denotes the dilation operation, using a structuring
element b. In this case we used the elementary cross as the
structuring element.

Diffusion tensor images, as tensorial images, present a vari-
ety of derived scalar maps, each one representing a particular
property. The choice of a scalar map, or a combination of
them, to be used in the segmentation of the corpus callosum
section should consider its capacity to enhance the CC borders
in the external morphological gradient computation.

To emphasize the CC features in the midsagittal slice (high
FA values and preferential diffusion in the left-right direction),
the fractional anisotropy map is weighted by the projection of
the principal eigenvector in the left-right direction – the e1x-
weighted FA map (wmap = e1x ∗ FA). This combination is
essential to differentiate the corpus callosum from other struc-
tures that also present high FA values but different orientation
from the corpus callosum fibers, e.g., cingulum, fornix.

The number n of markers to be assigned in the watershed
segmentation, and consequently the number n of regions to
be segmented, must be greater than the number of labels in
the final result (2 labels, corpus callosum and background) to
guarantee that the external boundaries of the corpus callosum
are detected.

Finally, it is necessary to group the obtained regions to
achieve the final segmentation. The e1x-weighted FA average



of each region is an important parameter for distinguishing
between the corpus callosum and the background: all regions
within the corpus callosum present a high average, in opposi-
tion to the regions outside the CC. Few voxels with high values
outside the CC are not sufficient to significantly increase the
average of these regions. Therefore, a single threshold T is
used to classify the regions that can compose the CC, based
on the e1x-weighted FA average of each region. The choice
of the largest connected component is enough for the corpus
callosum to be correctly extracted.

C. Complete segmentation of the corpus callosum

The corpus callosum segmentation in the midsagittal slice
of the brain can be considered as the final result for some
studies, but it also can be the initial step for the 3D volume
segmentation. The e1x-weighted FA map is used because the
emphasis of the CC features in this step is even more critical
than in the previous one. As the corpus callosum fibers spread,
they still preserve the same preferential diffusion direction, but
the structures with different orientation tend do get closer.

The volumetric segmentation is accomplished using again
the watershed transform from markers [9], this time with a
3D structuring element and a different choice of markers.
The corpus callosum section in the midsagittal slice, after
an erosion operation, is used as the internal marker for the
watershed transform. The external marker is the brain mask,
obtained in the beginning of the process.

The watershed transform is also performed over the external
morphological gradient, as in the 2D case, and is able to
differentiate the corpus callosum from the background without
any further step.

III. EXPERIMENTS

The diffusion data used in our experiments were acquired
on a Siemens 3T Trio MR scanner using an 8-channel phased
array head coil: diffusion images with N = 30 diffusion
encoding directions with b = 1000s/mm2, 2.0mm isotropic
voxel size, 63 slices, TE = 95ms, TR = 8700ms. The
Autoalign sequence guarantees that the brain is almost aligned
to image axes with the desired orientation for all datasets used.
The test set consists of 15 volumes, acquired for 15 different
subjects.

The first experiment was performed to evaluate the determi-
nation of the midsagittal slice of the brain, with the midsagittal
slice being automatically determined by the proposed method
for all images in the test set. The FA limit FAmax chosen was
50% of the highest FA value and the minimum area Amin is
80% of the maximum cross-sectional area. The slice assigned
by the method for each image was compared with the slice
previously assigned by a physician.

Once determined the midsagittal slice, the CC segmentation
was performed in all subjects, following the steps proposed in
section II.B. The chosen number of regions in the watershed
transform was n = 50 while the threshold for region classifi-
cation was set to T = 0.2.

After the qualitative analysis, specific tests were conducted
to measure the sensibility of the proposed method to variation
of the predetermined parameters (the number of regions n
on the watershed transform and the threshold T for region
classification). The first parameter examined was the number
of regions: the threshold for region classification was fixed
in T = 0.2 and the number of regions n ranged from 2 to
100. The second parameter tested was the threshold for region
classification: the number of regions was fixed (n = 50) and
the threshold ranged from 0.05 to 0.3. For both cases the
impact of the parameter variation was observed in the final
result, identifying when the CC boundaries could be extracted
correctly.

The next experiment was conducted to evaluate the quality
of the corpus callosum segmentation in the midsagittal slice.
Because of the lack of an acceptable standard for comparison,
the definition of a segmentation standard was based on manual
segmentations made by specialists. Three specialists delineated
the corpus callosum boundaries in the midsagittal slice and the
standard segmentation for each subject was defined as the set
of voxels marked as corpus callosum at least by two of them.
All other voxels were labeled as background. This procedure
reduces the influence of interobserver variability and human
error.

Two different metrics were used in the comparison with the
standard: kappa and overlap. The kappa coefficient measures
the agreement of the segmentations considering the probability
of the random agreement to happen. Overlap is defined as the
percentage of voxels classified as CC by both the method and
the standard with respect to the number of voxels classified as
CC by at least one of them. They are defined as follows:

Overlap =
NTP

NTP +NFP +NFN
(2)

and

kappa = κ = 2(NTPNTN +NFPNFN )÷
÷[(NTP +NFN )(NFN +NTN )+

+(NTP +NFP )(NFP +NTN )], (3)

where NTP is the number of true positive voxels (labeled as
CC by both the method and the standard), NTN is the number
of true negative voxels (labeled as background by both), NFP

is the number of false positive voxels (labeled as CC by the
method but labeled as background by the standard), and NFN

is the number of false negative voxels (labeled as background
by the method but labeled as CC by the standard).

Other metrics, such as accuracy and specificity, were not
used in the comparison of segmentations because their value
is highly influenced by the voxels labeled as background by
both the method and the standard. As the background area
is significantly larger than the corpus callosum, high values
do not necessarily reflect good performance of the proposed
method.

Finally, experiments were conducted using the midsagittal
slice of the corpus callosum as internal marker in the water-



shed transform to accomplish the volumetric segmentation of
CC. The same 15 datasets were used.

Fig. 2. The average FA for each slice of a given volume: the midsagittal is the
slice with lowest average between the candidates (green ‘X’), the discarded
slices (red ‘+’) are not considered.

IV. RESULTS AND DISCUSSION

As mentioned previously, the midsagittal slice of the brain
had to be determined before the CC segmentation. Fig. 2
presents an example of the midsagittal slice determination. The
average FA was computed for each slice of a given data set.
Once extremity slices were discarded (red ‘+’), the midsagittal
slice could be easily determined by its low average FA. For all
datasets used in the experiment, the correct slice was identified
by the method.

After determining the midsagittal slice, the segmentation of
the corpus callosum was performed. The proposed segmenta-
tion method showed consistent results for all datasets, being
able to identify the desired structure. In order to illustrate the
proposed method, Fig. 3 contains the result of each step of
the method for one subject.

Fig. 3a shows one slice of the original diffusion tensor
image cropped around the corpus callosum. As can be seen, the
DTI data contains complex information and its segmentation
is not a trivial task.

The e1x-weighted FA map (Fig. 3c) allows the corpus cal-
losum to be distinguished from other structures with different
fiber orientation, what cannot be done from the FA map
(Fig. 3b) only. The external morphological gradient (Fig. 3d)
was calculated from the weighted map and captured the edges
of the corpus callosum. The watershed transform (Fig. 3e)
was then computed from the gradient, for n = 50 regions.
The e1x-weighted FA average of each region was calculated
and a threshold was used to identify the regions that could be
part of the corpus callosum (Fig. 3f). The largest connected
component (blue) was extracted to obtain the final result
(Fig. 3g).

Although the watershed segmentation sometimes divided
the CC in a different number of regions depending on the
chosen value of n, the proposed method was always able to

group them correctly in the final result. First, because the
e1x-weighted FA average for each region within the corpus
callosum is always significantly higher than the value for
the majority of regions in the background. Second, because
small regions with some high value voxels outside the CC
can be discarded when considering only the largest connected
component as CC.

It is important to point out that no prior knowledge of the
shape of desired structure is necessary for the method, only
the fact that the corpus callosum presents high FA values
and preferential diffusion in the left-right direction. This is
an indication that the proposed method would work also with
patients, despite any atrophy or abnormality of the corpus
callosum.

In order to confirm that the proposed segmentation method
does not require a fine parameters tuning for each new test
set, the result after region classification for different number of
regions n in the watershed transform and different thresholds
T in region classification is shown (Fig. 4). By observing
Fig. 4 it is possible to note that if the number of regions is

Fig. 3. Stages of the proposed method: (a) detail of the corpus callosum
in a slice of the initial DTI volume, (b) the FA image, (c) the e1x-weighted
FA image, (d) the external gradient, (e) watershed transform, (f) the result of
region classification and (g) the final result.



Fig. 4. Changes in the corpus callosum segmentation when modifying the number of regions of the watershed transform (n) and the threshold of the FA
average (T ).

low or the threshold is high (left), the corpus callosum may
not be extracted correctly. For intermediate values of both, the
CC could be segmented correctly, with some smaller structures
also appearing in the final result. There were subtle changes
in CC boundaries as the number of regions was increased or
the threshold was decreased (center). The boundaries of the
corpus callosum changed considerably if the threshold chosen
was too low (right).

All datasets were first used to assess the sensibility of the
proposed method to the number of regions n. For each number
of regions the segmentation was performed and the result
was classified according to its capacity to capture the CC
boundaries (Fig. 5a). The same process was used to assess
the impact of the threshold T in the final result (Fig. 5b),
complementing the robustness analysis.

The experiments have shown that n = 40 regions were
sufficient for the detection of the CC boundaries for all tested
images, and increasing the number of segmented regions did
not affect significantly the final result. As shown in Fig. 5b,
the safe range for the choice of the threshold value was not
as wide as the range for the previous parameter. Nevertheless,
it was still possible to segment correctly the corpus callosum
in all images.

Since the segmentation result is not affected by the chosen
number of regions n, if it is within the mentioned range of
values (40 to 100), new images could be easily segmented
by the proposed method. Also the same threshold could be
used without any special adjustments, making the method
more reliable and increasing its capacity to adapt to new DTI
datasets.

Comparing the CC segmentation in the midsagittal slice
using the proposed method and the manual segmentations for
different specialists with the manual standard defined it was
possible to evaluate the proposed method: the mean kappa
coefficient for all 15 subjects was 91.51% ± 2.12% (SD) using
the proposed method and 96.60% ± 4.30% with the manual
segmentations, while the mean overlap was 84.64% ± 3.55%

Fig. 5. Analysis of the corpus callosum segmentation obtained for a given
number of regions in the watershed transform (a) and a given threshold in
region classification (b). Light green indicates that the CC segmentation was
successful. Dark green indicates that, besides the correct segmentation, the
corpus callosum is the only connected component after region classification.
Yellow represents that the CC boundaries could not be extracted and Red
represents that background regions were added in the CC for the final result.



Fig. 6. Results of the overlap with the defined standard: comparison of
the different manual segmentations (minimum, maximum and mean overlap
value) with the proposed method.

and 93.86% ± 7.61%, respectively. Fig. 6 presents the overlap
for each image.

The accuracy of the proposed method was very high
(99.71% ± 0.06%), confirming that the this metric is not
recommended for evaluation of the actual performance of
the method in such cases, when the background area is
significantly larger than the desired structure.

The kappa coefficient and the segmentation overlap for the
proposed method were high and within the range of the manual
segmentation variation for most of the images (10 of 15 cases).
The errors with automatic brain segmentation were in part due
to the low resolution of the DT images.

The experiments with the 3D segmentation of the corpus
callosum were successful. The CC volume could be extracted
for all datasets (Fig. 7). The evaluation of obtained boundaries
is not the focus of this work, and future works will assess the
quality of the 3D segmentation, mainly for the most difficult
regions where the CC is merged with fiber bundles.

Fig. 7. Example of the 3D Volume segmentation of the corpus callosum
made using the proposed method for a given dataset.

V. CONCLUSION

In this article we proposed a new approach for segmentation
of the midsagittal section of corpus callosum in magnetic reso-
nance diffusion tensor images, using the watershed transform.
This approach includes the automatic determination of the
midsagittal slice of the brain, which is important to allow the
reproducibility of presented results.

The proposed method has shown important results, not
only for the corpus callosum segmentation but also for the
determination of the midsagittal slice of the brain. Experiments
with real diffusion MRI data showed that the method is able
to quickly segment the CC and to determinate the midsagittal
slice without any user intervention. It is simple and does
not require parameter settings. All parameters are previously
assigned.

A method for 3D volume segmentation of the corpus
callosum was also proposed, with the CC section in the
midsagittal slice being used as seed in this process. The results
are promising and new experiments should be conducted in
order to evaluate the quality of the volume segmentation.

The experiments conducted in this paper accredited the
presented methods to be used for clinical applications. The
safe range for the choice of pre-determined parameters demon-
strates the robustness of the proposed method. It indicates that
the method would work for new DTI datasets, even for patients
with alterations in the corpus callosum.

Our intention is now to use the proposed segmentation
methods to study the diffusion characteristics within the corpus
callosum, trying to relate them to neurodegenerative diseases.
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