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Abstract—Video encoding techniques play an important role
in data reduction. Fractal compression has received considerable
attention in the past decades. While early methods presented
prohibitively large encoding times, recent searchless fractal
encoders reduced this problem. A fast 3D purely fractal video
encoder based on a flexible adaptive spatial subdivision data
structure is proposed in this work. The method completely avoids
any kind of search for a matching domain block and is capable
of performing fast compression and decompression with high
visual fidelity. Experimental results show that the developed
approach outperforms the state-of-the-art x264 video encoder
at very low bit rates in high motion video sequences in both
structural dissimilarity measure and encoding time.
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I. INTRODUCTION

Earlier compression methods based on fractal coding [1]
suffered from extremely slow encoding times to find an appro-
priate representation of the image content. Their performance
was inferior than more conventional approaches based on
invertible transforms, such as the discrete cosine transform
(DCT). The main problem is that fractal encoders must find
a transform that constructs an approximation of the original
image, given the image itself, by looking for similar blocks
between different regions using either brute force or a heuristic
to reduce the number of elements considered in the search.

Ten years after the introduction of the original fractal
encoding method, other methods were proposed by Furao and
Hasegawa [2] and Wu et al. [3] aiming to completely avoid
any kind of search by imposing a fixed relationship between
a block of the original image (called a range block) and its
correspondent similar block (called a domain block). This
solution produced results comparable to the original JPEG
standard and even surpassed it in higher compression ratios
while being faster than most of the state-of-the-art encoders.

This paper proposes a fast low bit-rate 3D searchless fractal
video compression method for encoding chunks of consecutive
frames based on [2], [3]. According to the experimental results,
it is perceptually superior to the state-of-the-art x264 [4] at
high compression ratios in video sequences with large amount
of motion. Additionally, it also presents an encoding time
lower than that of x264.

An encoder that can operate at extreme compression ratios
is needed by applications that require either low bandwidth
communication channels, such as sensor networks and mobile

devices, or that must transmit multiple video streams simulta-
neously, such as surveillance equipments.

The text is organized as follows. Section II presents a brief
review of fractal encoding and related work available in the
literature. The proposed method is described in Section III.
Experimental results and a comparison between the proposed
method and another fractal encoder are presented in Sec-
tion IV. Finally, the conclusions of the work are given in
Section V.

II. BACKGROUND

This section initially reviews fractal image and video encod-
ing, including searchless techniques, then describes heuristics
for fast rate-distortion and structural dissimilarity measure.

A. Fractal Image Coding

Unlike other compression algorithms, fractal encoders [1]
do not explicitly store an approximation of the image, but they
create and transmit a collage, which is a series of instructions
that indicate how to partition the image and, for each resulting
partitioned region (called a range block), how to generate its
content given another block with larger dimensions (called
domain block) of the same image. To generate the range
blocks, the collage resizes the domain block, applies an affine
transform (such as rotation or mirroring), and modifies the
gray level values using an equation such as the one proposed
by Øien and Lepsøy [5]

G(D) = α(D − D̄I) + r̄I (1)

where G is the gray level transform, D is the downsampled
domain block, D̄ is the mean value for the domain block, r̄ is
the mean value for the block in the original scale (the range
block), I denotes a matrix filled with ones, and α is the scaling
parameter.

The collage is capable of transforming the image into itself
given its definition, but it is also capable of transforming any
arbitrary signal into an approximation of the original image.
In order to decode the image, it is only necessary to apply
the collage to any initial image several times until it reaches
a fixed point.

The most remarkable characteristics of these methods are
the fast image decompression and the extremely slow and
complex encoding process, since most approaches construct
the collage exhaustively matching each range block with a



large number of domain blocks and selecting the best match
by certain criteria.

B. Searchless Fractal Image Coding

(x',y')

(x,y)

a

b

2a

2b

D

R

Fig. 1. Relationship between range (R) and domain (D) blocks in a searchless
fractal encoder.

The searchless fractal image coding was first proposed by
Furao and Hasegawa [2] to completely avoid searching for
the best fit between range and domain blocks. Within this
approach for a range block with dimensions a and b located at
the coordinate (x, y), there is only one possible domain block
with dimensions 2a and 2b that must be located at (x′, y′), as
shown in Equation 2 and illustrated in Figure 1. Each region
of the image is encoded only by the α and r̄ coefficients of
the gray level transform.

x′ = x− a/2
y′ = y − b/2

(2)

The image is initially partitioned into a uniform grid and
the collage error (difference between the range block and the
transformed domain block) is measured for each region of
this partition. If this error is above a certain threshold Terror,
such region is recursively divided into four subregions and
the process continues recursively with the subregions until
the block size reaches a minimum size or the collage error
drops below Terror. Since each block of the image is always
recursively divided into another four subregions with equal
area, the resulting positions and sizes of each range region
can be encoded in a quadtree and α and r̄ are transmitted for
each region.

A superior method was proposed by Wu et al. [3], which
does not impose any limit on the size of the range blocks. To
achieve a better compression ratio, there are no scaling param-
eters for the regions covering one or two pixels and the r̄ value
is more coarsely quantized in smaller regions. Instead of using
a quadtree, this encoder uses a more flexible structure, called
binary-tree partition (an example image subdivided by this
structure is shown in Figure 2), which only divides a region
into two sub-blocks with the same size by selecting between
splitting it in half in the vertical or horizontal direction. The
method presented here uses a volumetric generalization of this
data structure.

Fig. 2. An example image subdivided by a recursive binary tree partition.

C. Fractal Video Coding

The first fractal video encoder was proposed by Hurd et
al. [6], which encodes each frame by using blocks from the
previous frame as a domain pool either at the same scale as the
range blocks or at higher scales, making it a generalization of
the usual motion compensation techniques. This approach was
later refined by Fisher et al. [7] through the use of quadtrees.
More advanced variations of these algorithms were designed
later [8], [9].

Another extension of the fractal coding for video sequences
was proposed by Lazar and Bruton [10] and Li et al. [11].
In these methods, a chunk of consecutive frames is grouped
into a single volumetric image where the x and y axes
are the spatial position and the z axis is the time when
that pixel value occurred. The collage consists of a spatial
subdivision of that volume and, for each resulting range block,
the position and the parameters necessary to transform the
volumetric domain block. The proposed method is based on
this specific generalization of the fractal methods to encode
video sequences.

A fast volumetric encoder was later proposed by Chabar-
chine and Creutzburg [12] for real-time video encoding by
simplifying the gray scale transform to use a constant α
parameter, resampling every frame to 64 × 64 pixels, group-
ing 16 consecutive frames and dividing them into blocks
of 16 × 16 × 16 voxels. Each block is represented by an
octree and the only possible domain block for each range
block is its parent block on the spatial subdivision. The
volume is subdivided until a target error threshold is reached.
This method is simple and fast, however, its rate-distortion
performance is extremely poor.

The volumetric video compression approach [12] was re-
fined by Yao and Wilson [13] through a hybrid method that
employs both vector quantization and collages to approximate
the original signal. Such hybrid method can encode videos at
low bit rates achieving a fair visual quality while being as fast
as some MPEG-2 encoders. Unfortunately, this implementa-



tion suffers from convergence problems during the decoding
stage.

D. Fast Rate-Distortion Heuristic

Every fractal encoding method must decide how to partition
the image into regions that have a similar domain block and
the total number of regions must satisfy the restriction on the
number of bits set by the user. Most encoders (such as the one
described in Section II-B) subdivide each region recursively
until a certain threshold for the collage error is reached. This
heuristic tries to guarantee a minimum reconstruction quality
for the resulting decoded image, but it is difficult to efficiently
satisfy any restriction on the total size of the collage.

A solution to this problem was proposed by Saupe et al. [14]
after investigating optimal partitions in fractal encoding. In
this method, the image is divided into a uniform grid, where
each region has its collage error calculated and inserted into a
priority queue. At each iteration, the region with the highest
error is removed from the queue and subdivided, then its
subregions are inserted into the queue.

The size of the collage increases slightly at each iteration,
so it is possible to achieve a certain size by stopping the
heuristic after a certain number of iterations, resulting in
an approximation of the desired size. The heuristic is also
intuitive since the most distorted regions of the image have
priority over the other ones.

E. Structural Dissimilarity

Most comparisons between video and image encoders are
based on metrics derived from the sum of squared differences
(SSD) or the mean squared error (MSE). The SSD and the
MSE between two images A and B with size W ×H is given
by

SSD(A,B) =

W−1∑
x=0

H−1∑
y=0

(Ax,y −Bx,y )
2 (3)

MSE(A,B) =
SSD(A,B)

W ×H
(4)

A critical issue with the MSE is that it does not measure
the resulting image quality directly and it can attribute similar
scores to images with large differences in psychovisual quality.
As illustrated in Figure 3, the psychovisual quality degradation
between the images is measured by the SSIM, while the MSE
does not reflect that fact, as indicated in the figure captions.

The structural similarity index (SSIM) [15] was proposed
as a metric to compare images which correlates more appro-
priately with the human perception. It maps two images into
an index in the interval [−1, 1], where higher values are given
to more similar pairs of images, calculated as

SSIM(A,B) =
(2µAµB + c1)(2σAB + c2)

(µ2
A + µ2

B + c1)(σ2
A + σ2

B + c2)
(5)

where µA, µB , σ2
A and σ2

B are the averages and variances of
A and B, σAB is the covariance between A and B, and both
c1 and c2 are predefined constants. This metric is calculated

as the average of the score between several blocks using a
sliding window of 11× 11 pixels.

The structural similarity scores are also shown in Figure 3.
In this example, it is possible to notice that the image with
the lowest MSE is the least similar to the original. In addition,
all three images have almost the same MSE, but the structural
similarity is more coherent to what one would expect from a
comparison metric.

The structural dissimilarity is a derived metric from the
structural similarity that results in more distinct values, since
a small variation in the original SSIM indicates a large
difference in image quality. It is given by

DSSIM(x, y) =
1

1− SSIM(x, y)
(6)

III. PROPOSED METHOD

The proposed 3D video encoder constructs a volumetric im-
age composed of 32 consecutive frames and transmits a collage
that is used to reconstruct them (using the same definition as
the volumetric encoders described in Section II-C). This image
is divided into a uniform grid of blocks with 16×16×16 voxels
and each one of these blocks has its own spatial subdivision
tree. In this binary tree, each block has two subblocks with
equal volume which are created splitting their parent into half
in the horizontal, vertical or temporal direction. The blocks are
subdivided according to the heuristic presented in Section II-D,
using the SSD of the collage error as the distortion metric.

The SSD was chosen as the distortion metric since the MSE
disregards the size of the block, giving the same score to
equally distorted blocks with large differences in volume. The
SSIM was not created to evaluate volumetric images, it must
be calculated using sliding windows since it cannot properly
compare two isolated subblocks of an image and, contrary to
other usual metrics, it is impossible to estimate the final SSIM
of the image given the SSIM of each range block. In the case
of using SSD, the final score is the sum of the score of all the
encoded blocks. Given these observations, if the SSIM was
employed the heuristic would not estimate which block can
result in the largest reduction of distortion, since the distortion
metric itself cannot be efficiently measured in either the entire
image or the range blocks.

This heuristic requires a given volumetric block to be
encoded and split in case it is chosen during an iteration.
The block encoding method uses a relationship between range
and domain blocks similar to the one used in bidimensional
searchless fractal encoders, but generalized to three dimen-
sions. For each range block with dimensions a, b and c located
at (x, y, z), there is only one possible domain block that can
be used to represent it. The position of the domain block can
be expressed in Equation 7, with dimensions equal to 2a, 2b
and 2c. This block is illustrated in Figure 4.

x′ = x− a/2
y′ = y − b/2
z′ = z − c/2

(7)



(a) Original image (SSIM=1.0,
MSE=0)

(b) Multiplied by 1.072
(SSIM=0.995837, MSE=145.96)

(c) Subtracted by 12 pixels
(SSIM=0.994981, MSE=143.97)

(d) Compressed by JPEG
(SSIM=0.742805, MSE=142.91)

Fig. 3. Several distorted versions of the same image with different perceptual qualities and approximately the same MSE
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Fig. 4. An example of the relationship between range and domain blocks in
the proposed 3D encoder.

Some blocks cannot use this equation since applying it
would result in a domain block that is not completely inside the
volumetric image. In these cases, if a coordinate is negative, it
is set to zero and if any pixel inside the block has a coordinate
larger than the dimensions of the image, the coordinate of the
domain block is set to be the dimension of the image minus
the dimension of the block.

Each range block is matched to its only respective domain
block using Equation 1 by assigning the α parameter as 0.25,
0.5, 0.75 or 1.0, as suggested by Tong and Pi [16].

Decision Table for the Quantization of r̄
Volume Quantization step Number of used bits

1 16 4
2 16 4
4 16 4
8 8 5
16 8 6
32 4 6
64 4 6
128 2 7
256 2 7
≥ 512 1 8

TABLE I
QUANTIZERS APPLIED ACCORDING TO THE VOLUME OF THE RANGE

BLOCK.

The heuristic used to decide how to properly split a block
divides it into all the three possible directions and the direction
resulting in the smallest sum of the SSD for both resulting
subblocks is chosen.

All the required symbols and parameters are encoded using
a context-adaptive arithmetic coder [17]. Each range block
is encoded by its α parameter, which occupies 2 bits in the
worst case, along with r̄, which is quantized according to the
range block volume as shown in Table I. For range blocks
with one or more dimensions smaller than 2 pixels, the only
transmitted parameter is r̄. Along with these parameters, the
spatial subdivision tree for each block in the initial uniform
subdivision is coded by a sequence of symbols pointing to
the decoder, in a depth-first order, whether a certain region
was subdivided or not and in which direction it was split. The
α parameter and the binary decision symbols in the spatial
subdivision tree have their own high order adaptive contexts,
one for each possible value of blog V c, where V is the total
volume of the encoded block. The direction which each block
is split is encoded by another set of 3 high order adaptive
contexts chosen according to the direction used to split its
parent.

The r̄ parameter is encoded as a difference between a
quantized prediction calculated as the average of r̄ of the
neighboring blocks located at the top, to the left and behind the
encoded block and the real quantized value. This difference
is encoded by the Adaptive Goulomb-Rice code described
in [18], using one context for each possible blog V c in the
same manner as the other parameters.

IV. EXPERIMENTAL RESULTS

All experiments were conducted on an Intel Core 2 Duo
E6750 processor, 2.66 GHz with 3GB of RAM running Linux
operating system. The method was implemented using the C++
programming language without any additional optimizations.

The proposed approach is compared to the state-of-the-art
H.264 encoder, called x264 [4], using the standard grayscale
benchmark sequences ’Foreman’, ’Car phone’, ’Bus’, ’Foot-
ball’, ’Akiyo’, ’Miss America’, ’Bowing’, and ’Hall monitor’
in the CIF format [19]. The length of each sequence is shown
in Table II.

The x264 was configured to closely match the behavior of
the proposed encoder by forcing it to insert a keyframe at
every 32 frames and compiling it without any CPU specific
optimizations. The command line used to invoke this encoder
was

x264 --tune ssim --preset medium \



Sequence # Frames

Foreman 300
Carphone 457
Bus 150
Football 260
Akiyo 300
Hall monitor 300
Bowing 300
Miss America 179

TABLE II
NUMBER OF FRAMES FOR THE USED VIDEO SEQUENCES.

--profile baseline --keyint 32 \
--bitrate ’target bitrate’

The video sequences in the following experiments were
encoded at low bit rates, which implies that the results had
high distortions when measured by Equation 3. As shown
in [15], the ambiguity of the metrics derived from the SSD
from a perceptual point of view is high and becomes even
larger as the distortion increases. It is important to observe
that both α and r̄ are quantized (i.e. they must assume one
of a small set of possible values instead of being continuous)
which causes a mean shift and a contrast change in every
range block, even though the effect of these quantizations is
perceptually negligible. In order to ensure a proper comparison
between both methods, the mean structural dissimilarity for
both encoders is used in the experiments. This metric is
widely accepted for its simplicity and reasonably accuracy,
being employed in the design of several image encoders, such
as [20], and has a built-in implementation in the x264.

The bit rate was varied to closely match the same values
in both encoders. As observed in the first and second rows of
Figure 6, the proposed encoder outperforms the x264 codec
at very low bit rates in these high motion sequences. This
is due to the motion compensation algorithm of the H.264
encoder cannot operate properly in these conditions given that
an accurate prediction of each frame would require a large
amount of bits. An example of this case is shown in Figure 5,
where the motion of smooth regions is ignored or poorly
represented by the x264, then generating temporal artifacts.
In this sequence, the proposed method accurately represents
most of the moving regions, causing high distortions only
on instantaneous movements such as eye blinking. The ’Car
phone’ and ’Foreman’ sequences have transitions between
high and low motion scenes giving an advantage to x264 at
bit rates larger than 60 kbps.

The third and fourth rows of Figure 6, which are related
to scenes with a static background and one or two moving
objects, show that in these cases the highly efficient transform
coding of the x264 has a significant advantage over the
proposed fractal encoder and the motion compensation is
achievable due to the localized motion of a few regions in
each frame.

The total encoding time of the proposed method is remark-

(a) A frame from the ’Foreman’ sequence encoded
by x264

(b) The same frame encoded by the proposed method

Fig. 5. Differences in the accuracy of frame prediction in both methods at
50 kbps.

ably low as evidenced in Figure 7. Both methods, the proposed
fractal encoder and the x264 codec, were implemented in high
level languages without excessive optimizations to ensure a
fair comparison between them. The proposed method takes
between one third and one fifth of the total time needed by
the x264 to encode the same content.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a 3D searchless fractal video encoder
that is comparable to the x264 encoder [4] at very low bit
rates. As it has been observed from the experimental results,
while the proposed encoder outperformed the x264 in the high
motion video sequences, for scenes with a static background
and few moving objects, the x264 presented advantage over
the proposed method. Furthermore, contrary to most fractal-
based methods, it presents a very low encoding time even
when compared to x264 for all tested sequences.

Suggestions for future enhancements in the proposed ap-
proach include a better lossless encoding of the gray level
parameters and of the symbols used in the spatial subdivision,
the use of fractal interpolation to encode the content at a
lower frame rate and super-sample it to the original rate, the
implementation of more complex gray level transforms such
as the one used in [21] and, finally, the use of rate-distortion
optimization methods [22] to choose which quantizers to use
and which regions must be split.
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Fig. 6. Mean structural dissimilarity at different rates for the proposed video encoder and the x264 encoder.
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Fig. 7. Encoding time at different rates for the proposed video encoder and the x264 encoder.
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