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Abstract—Proportional symbol maps are an often used tool o ZO o N e e [ETET
to aid cartographers and geo-science professionals to visualize <L.J >) A B ,w»'?a'!"?',‘m,,,a
data associated with events (e.g., earthquakes) or geo-positexd o e g ’ [}
statistical data (e.g., population). At specific locations, symbols @ﬁ“‘f",“f 5 @ P © OO0 anone:
are placed and scaled so that their areas become proportional to A ¥ Amazonas s 1.0 O D) /
the magnitudes of the events or data. Recent work approaches s I : o @ o
the problem of drawing these symbols algorithmically and defines S pery Acre g o Drasi
metrics to be optimized to attain different kinds of drawings. We m Borels 8
focus specifically on optimizing the visualization of physically { Sy oo

realizable drawings of opaque disks by maximizing the sum
of the visible borders of such disks. As this problem has been

proven to be NP-hard, we provide an integer programming model -T ;s
for its solution along with decomposition techniques designed to : A 7
decrease the size of input instances. We present computational J &Y e &
experiments to assess the performance of our model as well as o 3 o
the effectiveness of our decomposition techniques. - A
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Fig. 1. A screen shot from an interface that generates ptiopat symbol
|. INTRODUCTION maps from a data set.

Proportional symbol maps are a cartographic tool employed
in the visualization of geo-positioned data or events dased  The first paper to address this problem algorithmically was
with locations. In these maps, symbols are placed over thg Cabello et al.[[2]. They introduced two metrics to quantif
points that correspond to the positions where data were gaifie quality of a drawing and also two possible drawings of
ered or events occurred, and the area of these symbols ditks, leading to four very interesting and related prolslem
made proportional to the magnitude of the phenomenon th@ge will now briefly describe them.
represent. Commonly represented data include earthquakes ] o
(with location and intensity), and demographic statistic§- Notation and definitions
While symbol shapes may vary according to applications, Employing the same definitions and notations as In [2], let
disks are often a very intuitive form of conveying infornuati S be a set ofr disks in the plane. An arrangeme#t of the
on the magnitude of events, so, in this paper we restrisbundaries of these disks partitions the plane into coedect
ourselves to the placement of opaque circles. Obviously, diggions. A vertex ofA is the intersection point of two or more
to the proximity of the disks and their sizes, overlappingyméeboundaries. An arc of4 is a maximal connected portion of
occur, as depicted in Figl 1. the boundary that connects two vertices and contains newert

Depending on the scaling factor applied to the symbols, tire its interior. A face of A is a maximal connected region
amount of overlapping can differ greatly. Although the gahe bounded by arcs that does not contain any vertices or arcs in
rule for choosing the representation scale, as stated lu®lo its interior. Adrawing D of S is a subset of arcs and vertices
et al. [1]: “neither too full nor too empty,” is rather subjee, of A, denoted byA(D), drawn on top of the filled interiors
it is expected that any visually pleasing map will contain aif disks in.S. Fig.[2 shows an arrangement and a drawing.
least some overlap of symbols. Depending on the (partial) . i i
order in which the disks are organized, different portiois &: Physically Realizable Drawing
the symbols will be visible. The question we address here isA physically realizable drawing can be thought of as a
how should a given set of disks be arranged so that the fimkihwing constructed from whole symbols cut out from sheets
map contains the best visual information possible. of paper. Seen in this fashion, we can interleave them as in
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Fig. 2. Anarrangement with vertex arcr, and facef (left), and a physically (i) (ii) (iii)
realizable drawing with interleaving disks (right).
Fig. 4. A physically realizable drawing of fours disks. Thegjion of facef

from the arrangement that is initially seen in (i) belongg$o After removing
@ ‘ ds, it belongs tody in (i), and after removingiy, it belongs tody in (iii).

Fig. 3. A drawing that is not physically realizable and thedertying
arrangement. If we remove the topmost disk, how can the remairies
be arranged?

; ; ; ; [ Fig. 5. An example of a disk whose border is completely coveisd:enter
Fig.[2 (right), provided that physical restrictions are etved. and radius cannot be determined.

For example, the drawing in Fifgl 3 cannot be created without
cutting the disks.

Consider the arrangement of four disks in Fify. 4(j). If thé€0 gauge their sizes as correctly as possible. As supporting
disks are of different colors, it is pretty clear that in angvidence for this argument, consider Hi§. 5, in which we can
physically realizable drawing each face of the arrangemedfttermine neither the center coordinates nor the radiukeof t
contained in at least one disk will have a unique color. gyidden disk. This led to the definition of two metrics used to
not allowing the disks to be cut or folded, we have that give@itantify the quality of a drawing@ of a setS of disks. Let
two intersecting diske; andd;, eitherd; is overd; (denoted bi be the total length of the visible boundary of disk .S in
“d; > d;"), or vice-versa. Thus, the color that is seen on &. The Max-Min(D) metric is defined asin{b;|i € S}. The
face f corresponds to that of the disk that is placed over @pcond metricMax-Tota(D), provides the sum of the lengths
other disks that contaifi. The iterated removal of the topmostof all visible boundaries over all disks ifi.
disk, and the corresponding change in the coloff pinduces  Based on these metrics, four problems can be stated: maxi-
a total ordering of the disks containing mizing the Max-Min (or the Max-Total) metric on a physically

However, this ordering alone is not enough to define a phy®alizable (or a stacking drawing), depending on what tyfpe o
ically realizable drawing since, for instance, in the dragvin drawings are accepted as solutions.

Fig. [3 there exists an order inducing sequence of colors for
each face, but such drawing cannot be physically constiucte
To see where the difficulty lies, notice that fage induces D. Related work

a total order betweed,, ds,ds and dy, but any such order ‘ )

induced by faces, f; and f,, respectively. In other words, Total problems for physically realizable c_irawings are N#reh
even though physically realizable drawings do not require@ the other hand, a®(n?logn) algorithm for the Max-
total order, multiple partial orderings of the disks engened Min problem _restrlcted to stacking drayvmgs was presented.
by the faces must not contradict each other. The (_:ompIeX|ty of the Max-Total stacking drawing problem
On the other hand, when the requirement of total ordéfMains open.
between the disks of is added, that is, all cyclic orders In [3], the authors present an integer linear programming
become forbidden, we have a special case of a physicallitP) formulation for the Max-Total stacking drawing preih
realizable drawing calledtacking drawing together with a theoretical study of that formulation. ®inc
As far as arcs are concerned, an afcom the arrangement the difficulty of finding optimal solutions grows with the
will belong to a drawing (i.e., it will be visible) whenevdrare cardinality of the set of disks, the importance of techngue
is no disk covering it. In other words, the disk of whiehis for decomposing a given instance into smaller independent
border must be above all disks that contain it in their imteri ones is easily perceived. IInl[3], two effective methods for
i ) breaking large input sets into more manageable ones were als
C. Visual quality of a Drawing introduced. Furthermore, ifn1[4] a tighter ILP formulatioor f
According to Cabello et al.[[2], a good drawing shouldhe same problem was presented which turned out to be much
enable the viewer to see at least some part of every disk andre effective in solving the same set of instances.



E. Our Contributions G. Organization

In Section[l, we provide a brief background on ILP. In

We present the first exact algorithm for the Max-Tot . . T
physically realizable drawing problem. Since [4] dealshNi%;itlLior?gD];’n dWSh;j/giizrlllt;/erggﬁz;ti))lgmc;f:\t:/?r?gsm?r?gljdifr(ljg;ra:e?gth

a resFrlcted version .Of this problem, namely, the MaX.'TOI?nequalities that can be added to strengthen these models.
stacking drawing, it is natural that some results thereith wi

) o : . etails of our implementation and experiments appear in
be helpful in establishing the effectiveness of our aldponit SectionsV and VI, respectively. SectiGi VIl contains an

We provide an ILP formulation as well as a theoretical study, ysis of our results, followed by our final conclusions in
of the resulting model. We then describe successful meth‘@éctioriﬂl.

to break input instances into smaller components that can
be solved separately and how to combine optimal solutions Il. INTEGERLINEAR PROGRAMMING BACKGROUND

for these components to construct the optimal solution € th |n this section, we briefly revise basic polyhedral combina-
original instance. torics concepts necessary to understand our results. y\olse
With this approach, we were able to find the optimahteger Programming book][5] is an excellent reference for
solutions for several data sets for which only approximaieso further reading on this subject.
were known and also for a number of very hard instances ofGiven an ILP model, to relax the variables in a given
statistical population-based data. constraint means to allow for real values that satisfy itisTh
To the best of our knowledge, this is the first time that provelaxation amounts to regarding that constraint as a rd&l ha
ably optimal solutions to the Max-Total physically realita Space. Therefore, in the relaxed model, a set of constraints
drawing problem are attained. represents the intersection of half-spaces; hence, a gaigh.
A linear objective function represents a family of parallel
hyperplanes, and maximizing this function, subject to the
F. Methodology constraints, is the same as finding a member of this family
. ) _that intercepts the polyhedron and maximizes the valueef th
We design an ILP formulation for the Max-Total physicallynction. If the polyhedron is not degenerated, it can bevsho
realizable problem, which consists in defining a set of ieteginat at least one of its vertices represents an optimalisaltd
variables and an objective function to be optimized (MmaXjne corresponding problem. Moreover, there exist polymbmi
mized, in our case). These variables must satisfy a setpfie algorithms to find such a vertei [5].
constraints, more specifically, a set of linear inequalitign However, if we restrict the domain of the variables to the
general, we seek solutions to the problem among points t@t of integers, this problem, in general, becomes NP-hard.
satisfy all the constraints. However, in some cases we dar re | ot p pe the set of integer points satisfying the constraints
the model to accept solutions that are not necessarilytfi@asi ¢ the 1LP model and consider the convex hull, cary( of
if we can prove the feasibility of the optimal solution. Thés p Note that an optimal solution to the ILP is to be found on
the case for the formulation presented here. Our model MaY,ertex of convp).
then be solved by a branch-and-bound method. Therefore, if we could find a polynomial description of
In many cases, to try to obtain a solution restricted to th®ynv(P), we might ignore the integrality constraint of the
inequalities given in the description of the model leadsro &ariables and solve the model in time polynomial on the size
algorithm of poor performance. One useful technique is #F the constraints sufficient to describe caRy(
complement the model with additional constraints in theehop The difficulty here lies in that, in general, the number of
that they reduce the search space. In general, the numbefnefualities to define this convex hull is exponential in $ize
such constraints can be too big, so only a well chosen subseppthe input. To circumvent this obstacle, in practice, whrae
them is added. Also, this is done on demand throughout thges is to use &alid formulationwhich is a formulation that
execution of the algorithm. However, for our problem theigontains all points irP and no other integer points. The model
number is small enough, so that we can incorporate thefdrresponding to these formulations with variables retstd
in our model before the algorithm starts. Finding additlongo integers is then solved with a branch-and-bound algorith
inequalities that effectively improve the performance et These algorithms have theoretical exponential runningsim
branch-and-bound algorithm is a key step in an integer prgut tend to behave well in practice. Clearly, there are iteipi
gramming approach. As we will see in the next section, fhany valid formulations for a given sét, and those that are
we can prove that a constraint satisfies certain propeites, closer to the convex hull lead to better running times.
chances of being effective in practice are much higher. With this in mind, one seeks concise families of valid
Another very useful technique is to preprocess the inpimtequalities for the problem. Since there may exist an egpen
data of the problem in order to improve the running time dfal, or even an infinite number of them, some selection @sce
the algorithm. In sectiofi 1V, we describe the decompositiameeds to come into play. For this, we usgting plane algo-
techniques presented inl [4] and applicable here, as welhasrithms which consist of solving in polynomial time a linear
extra one developed specifically for the Max-Total physycal relaxation of the model (that is, a model without the intéigra
realizable drawing problem, all of which are quite effeetm constraint on the variables) to find an optimal solutign If
speeding up the algorithm. this solution is solely comprised of integer values, theopem



is solved. Otherwise, we solve tiseparation problemwhich, For each pair of disks j € S, we define the binary variable
given a family of valid inequalities, consists of (i) findimge w;; which is equal to 1 if disk is above diskj, and equal to
that cuts off the optimal solutios*, and (ii) adding it to the 0 otherwise. The constraints are given by:

formulation. This procedure is repeated a specified number o

times or until no such inequalities can be found. This preces wij +wji <1, Vijes, i<j (2

produces to a much stronger formulation, which should be Tr < Wa, 4, VreR,jeSl (3

solvable much _faster by a bran_ch—and—b_ound algorithm. Wi+ wik — wip < 1, Vi, j,kesS, (4)
When removing a solution with a cutting plane, we would . .

like to cut out as large a slice as possible from the current iFjFRFEL

polyhedron in order to come closer to the convex hull. The z, € {0,1}, VreR (5)

best possible cutting planes are those that define the fatets w;; € {0,1}, Vi, jeS, i#j (6)

the polyhedron, that is, those which have dimension one less

than the convex hull. Therefore, when finding a new family of Constraint[(R) states that eitheis abovej, or vice-versa.

inequalities for a problem it is important to prove whettreeyt  Constraint[(8) states that if ards visible, its diskd, has to be

are facet-defining for the convex hull of the feasible integ@bove all other disks that containin their interior. Finally,

solutions. If the polyhedron has full dimension, that ishats (4) makes sure that the (partial) order imposed by dhg

the same dimension as the space defined by the variabkaiables is transitive.

proving whether inequalities are facet-defining is mucliezas In [4], the authors study the convex hull of the feasible

Thus, we always seek to work with full dimensional polyhedréiteger solutions to[{2)E(6), which we will denote W p,

in the theoretical study of these problems. from the point of view of polyhedral combinatorics. Theyrsta

by proving thatPsp is fully dimensional, and tha{l2)H(4)

A. Usual approa(_:h define facets folPs . Note that for each € R, (§) represents
When addressing a problem through an ILP approach, of@ constraints) < z, < 1, as well as, for two distinct disks

ggnerally describes a valid ILP mo_dgl and, in the theorbtlcp}j € S, (@) spand) < w;; < 1. Next, it is proven that: > 0

side of the study, starts by detem_umng the dimension of thgfines a facet ofPsp, while 2, < 1 does so only when

polyhedron defined by the constraints of the model. Next, 0Rg — ¢ Finally, it is also shown thai;; > 0 defines a facet

verifies whether the constraints of the model define facets.tor pg;, only if SI = ¢ for all r in the border of diski,
Afterward, we sggk additional fam|I!es of 'nequa."t'eswherea&u,;j < 1 does not define a facet dsp.

preferably facet-defining, to use as cutting planes. It & al Additional Inequalities:In [3], [4], additional inequalities

necessary to develop algorithms to solve the separatid: prg e introduced to strengthen the models, improving theingnn

lem, but since it may be NP-hard, heuristics are often use‘gre of the algorithm. One of those inequalities is based on

Lastly, _or|1e TUSt opt for a_r; Itl)_IP SOIV?’ arlnon_g tf:je SEVETRHe fact that some arcs may not be simultaneously visible.
commercial or free ones available, as this election det@si |\ yofine a graplt; = (V, E), with a vertexv(r) € V

the format for the provision of the constraints to the sobuedl, corresponding to are € R and an edgéu(r1), v(rs)) if d.,

pcrx]ssmly, a ch0|ct:_e o1|‘ callltggck;s t{;]at I\'NI” nee:j totpe g;tgat ontainsry andd,, containsr;. Two arcs whose vertices are
\_/I_vheneverllsn cl)(p Imal so ul_log ? N '.rtfaj re f’:ﬁa 'OP stbi u adjacent inG; cannot both be visible. We can extend this
ese callbacks are supplied along with algorthms to Shiee OEservation to cliques. Given a maximal cligkein Gy, we

separation problem and to add. new constraints to.the m°d8 note byR(K) the set of arcs with corresponding vertices
In the next section, we describe our ILP formulation for theh

Max-Total physically realizable drawing problem. ih K. We then have the following valid constraint:

[1l. INTEGERLINEAR PROGRAMMING FORMULATIONS Z T <1 VK € G (@)
We begin by describing the model for the Max-Total stack- reR(K)

ing drawing problem presented in! [4] because our model is\ye define a vertex of the arrangement to be non-degenerated
related to it. if it is formed by the intersection of exactly two circumfer-

A. Max-Total Stacking Drawing ences. Given one such vertexits neighborhood consists of
four incident arcs as in Fi@l 6(i). It is easy to verify thadrfr

all 16 possible configurations of visible arcs, there arg €iaé

that are actually feasible. These cases are shown i JFij}- 6(i
(vi). Together with[(¥), a set of valid constraints introdddn

[3] avoids all infeasible cases. Referringitg, ro, 3 andry

as in Fig.[6(i), those constraints are written as follows:

We need the following data, which can be calculated
polynomial time given the input set of disks

o R = set of all arcs of the arrangement;

e /. =length of arcr € R ;

o d, = disk that contains are in its border;

« S! = set of disks that contain arcin their interior.

The model uses two set of variables. For eachragcR, let Try > Ty, (8)
the binary variable:,. be equal to 1 if are is visible, and equal

to 0 otherwise. The Max-Total problem targets maximizing e = s =
.Tr3 + w’r4 Z x’l“l (10)
S b, 1) Tyy + Tpy > T, (11)

reR
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g We now define an alternative formulatidfi, ; that is equiv-
m rd'/' " ?\, m m//r ?/r alent toFpr with (@) replaced by an equality. Propositibh 2
Q) (i) () (i) ) (vi) shows that we can solve the Max-Total physically realizable

drawing problem by solving the ILP model consisting of

Fig. 6. Arcs incident to a non-degenerated ventexepresented by the black maximizing [1) subject toF 5.
dot) in (i), and feasible configurations in (ii)—(vi). . . L .
Proposition 2. The solution that maximiz&g) subject taF .

is an optimal solution for the Max-Total physically realita

In [3], it is shown that constraintg](7)-(lL1) are facet-digfin drawing problem

for Psp.
. . . Proof: It suffices to show that a solution that satisfies
B. Max-Total Physically Realizable Drawing Fpr and maximizes[{1) corresponds to a physically realiz-
In this section, we will show that an ILP formulation cor-able drawing and that, conversely, any physically realezab
responding to a given subset of constraints from the previograwing corresponds to a solution that satisfiés;.
model is valid for the Max-Total physically realizable diag Let (z*,w*) be a solution satisfyingFpr that maximizes
problem. LetF” be the set of faces from the arrangement. Givel). We first note that for eachi € F, there exists a total order

f € F, let S be the set of disks that contain fage between disks irt; induced byw* because this relationship
Our model is similar to the previous one except thajetween disks it$ is anti-symmetric and total, due {d (2), and
constraint[(%) is replaced by the following: transitive, due to[(12). Also, no two disksj can have their

relative order differ across distinct faces because, wiiser
we would havew;; = w3, = 1, contradicting the fact that

Intuitively, physically realizable drawings cannot cdntall w* is anti-symmetric. Hence, the orders induced by faces do
transitivity constraints in{4) because that would preelvdlid not conflict, and it is physically possible to draw the disks
drawings such as the one depicted on the right side ofFig.fellowing those orders. Moreover, because we are maximizin
However, the definition of a physically realizable drawindl), any visible arc in such a drawing hasitsset to 1. If an
implies that transitivity needs to be enforced on disks thafC r is not visible in the drawing, there exists a digkhat
intersect to form a face, which gives rise [0](12). contains it and is abové,, sow;,; =0 andz; = 0.

Let Fpp be the formulation with constraints](2[] (3L112), Conversely, given a physically realizable drawing, we con-
() and [6). Given a solution satisfying»z we can build sider the total order induced by each fagefrom the ar-
a solution satisfying[{2) as equality, as stated in Projusit fangement. Given two disksj € Sy, we assume, w.l.o.g.,
. Note that if we think of thew variables as relations be-thati is abovej. We then setw;; = 1 andw;; = 0 which
tween disks, solutions satisfyingpr represent partial orders clearly satisfied (2) as equality. For any three dislisk € Sy,
between the disks of; for eachf € F. Propositior]L shows assuming is above;j and; is abover;, it is true thati is above

that we can transform them into total orders without dedngas ¥ and thus such construction satisfies] (12) forFor pairs of
the objective value of the solution. disksi, j that do not both belong to any,, we arbitrarily set

. . _ o . w;; = 1 andwj; = 0. Since in this casev;; does not appear
Proposition 1. Given a solution satisfying»r, we can build 7)) it is enough to observe that it satisfigs (2) as etuali
a solution also satisfying?) as equality with greater or equal Gjyen any visible arer from this drawing, its diskd, must

objective value. be above all disks containing so settingz, = 1 will satisfy

Proof: First, let us restrict ourselves &y for eachf € F. @. u
Define a digraph’s, = (V, A), with vertex set correspondingC. Additional Inequalities
to the disks inS¢, wherev(d) is the vertex correlated to disk
d. There is an arqu(i),v(j)) in A iff w;; = 1. Clearly,
this graph is acyclic. Leb(v) be the position of vertex in
some topological order oks,. Then, for each pair of disks
i,j € Sy such thatw;; = 0 and h(v(i)) > h(v(j)), we set ; ; ; ;
w,; — 1 and add(v(i), v(j)) to A. One can see thaks, ?)Lzarczr;%edlrg\s/w\?vglfroblem, and thus constrdiit (7) is vadid f
remains acyclic and thug satisfies[(I2). We also now have G oing hack to Figl6, we observe that for a non-degenerated
that eitherw;; =1 or w;; = 1 for all pair of disksi, j € S¢. yertexs, there is a face that is contained in the same disks as
It is clear that for each paif, j € 5, everyw;; or wj; Will  “This means that there is a total order among such disks
be set. t,o,l’ except for those' p.alrs such that bay andwj; and therefore, locally around, the behavior of the disks
were initially set to0 and {i,j} ¢ Sy for any f € F. But g 5 giacking. Because the possible configurations areund
for these pairs, we may arbitrarily set any of themleince ;0 the same for stacking and physically realizable drasying

this vy|II not y|qlate any tranS|t|\{|ty constraint. Hen'cejs new constraints[{B) through{11) are also valid for our model.
solution satisfies[{2) as equality. Becausewnwariable was

set to0 during this process, na variable has decreased inD- Polyhedral Properties
value (see[(_3)). Therefore, the objective function valuenca Propositiond 1L anf@l2 allow us to maximiZd (1) subject to
go down. B Fpp, instead of F,, to obtain the optimal solution to the

In a physically realizable drawing, it is also the case that,
for two given arcsr; and ry, if d,., containsre and d,.,
containsry, then at most one of these arcs is visible. This
allows us to build the grapldiz;, defined for the Max-Total



(i) (iv)

Fig. 7. An instance that allows for decomposition.

Max-Total physically realiz_able dr_aWing problem. We denotrg g (i) An instance with its corresponding disk graphsbed edges may
the convex hull of the points satisfyingpr by Ppr, and be ignored in the ILP model. (ii) An instance where diswould be replicated

establish some theoretical properties of polyhedRer;. nine times when applying the decomposition that removes #tion points.
BecauseFpi contains a subset of the constraints that define

polyhedron Psp, the dimension ofPpr must be greater disk graph. The dashed edges can be removed figmOn

than or equal to the dimension d¥sp. Since the latter has the other hand, because fageis contained ind;, d» and

full dimension [4], Ppr must have full dimension as well. d3, no edges between vertices corresponding to those disks

Therefore, any inequality that is facet-defining fBgp and may be removed. The resulting connected components are

is valid for Ppp is also facet-defining fotPpr. Thus, we {di,ds,ds}, {ds} and{ds}.

conclude that(2)[{3 2), an 11) define facet®pf;.
@)L3)I2), and (M={11) ok V. IMPLEMENTATION DETAILS

IV. DECOMPOSITIONTECHNIQUES A. Solver

In addition to the trivial decomDOSition that considers Our imp|ementati0n was done in C++ (gCC 443) and em-
disjoint sets of disks independently, we argue that the tWfloyed CGAL [6] (v3.5.1) to assemble the necessary input dat
decomposition techniques presented!(in [3] are also valid #®&r our model. We also made use of the commercial ILP solver
physically realizable drawings. Observe that if a dibkis XPRESS [7] (v20.00.05) to solve the optimization models.
contained inside another disk,, there exists an optimal The experiments were run on an Intel Core 2 Quad 2.83GHz

solution in whichd, is drawn abovels. In general, if two sets machine with 8GB of RAM, running Linux (v2.6.32).
of disks do not intersect at their boundaries, such as{gets

and{c,d, e, g} in Fig.[4(i), the drawing problem can be solved. ILP Model
independently for each set. To combine those solutions, setoyy original optimization model includeSl(2) as an equality
of disks contained inside other disks (e{g, b} are insideg) @), @), [6), and[(IR).
can be drawn above the disks containing them, while keepindynhen it comes to[{7), because the number of maximal
the orders resulting from the independent solutions. cliques in a graph may be an exponential, we decided to select

Given a set of disks, we can define a disk grapliis =  only some of them using the following heuristic. For each
(V, E), with a vertexv(d) € V corresponding to a disk € S face f, let B} initially be the set of arcs that belong to the
and an edgéu(di), v(d)) belonging toF if disks dy anddz o nary off and whose diskd, containf. Let C'* initially
overlap. If this graph is not biconnected, then there muist ex be the set of all disks that contain an arc]jijr flt is easy
articulation point(d*) in it. The removal of the corresponding . . g
disk d* from S will spawn new connected components(i. to see that the vertices corresponding to dlskﬁyﬁ form

a clique inG;. Since this clique is not necessarily maximal,

It is a simple exercise to verify that if we replicaié in each iaht try t rendot q it di i
set of disks corresponding to these components, then thi& Might try to extendC’y (and its corresponding clique).
L’ be an arc contained in all disks 651;{ and whose disk

augmented sets may be solved separately and their solutibR | i )
easily assembled. In our example, this corresponds to the contains all arcs inB;". The vertex set corresponding to

instances in Figs 7(ii)—(iv). C} u{d,/} forms a clique inG';. We thus addi,» to C} and

We now introduce a new decomposition technique that take'sto B}, and repeat this procedure until the resulting clique
advantage of the specific structure of physically realigabis maximal inG;.
drawings. If a pair of diskg and j have the property that Surprisingly, our experiments showed that extending the
any face of the arrangement contained in both of them dsiginal set C;r decreases the performance of the branch-
not contained in any other disk, then all induced orders thamd-bound algorithm. One possible explanation is that this
include¢ and j are restricted to these two disks. Hence, argxtension increases the density of the model (in terms of its
order we choose betweeanand j will not conflict with any coefficient matrix), making it harder to solve at each search
other induced order. This establishes that we may remowvede. Therefore, we opted for simply using the ini@ in
the corresponding edg@(:),v(j)) from Gg, solve for the the experiments reported in SectfonlVIl. As a consequehee, t
connected components 6fs independently, and later decidetotal number of constraintg](7) ard (8§)=(11) is relativetyad
the relative order between diskandj, in a greedy way. For when compared to the number of constraints in the original
example, Fig[18(i) depicts a set of disks with the underlyingiodel (16.3% on average). Hence, we decided to include all



TABLE |

of .those constra_ints at the beginning of the search, instéad DECOMPOSITION RESULTS
using a separation procedure to add them gradually as they N N
became violated (a practice known asnch-and-cut _ DecompositionACB | DecompositionA 5
Instance Disks | Max # Avg Max  # Avg
_ XPRESS Param City 156 | 156 | 26 66 239 | 29 53 3.09
c SS Pa ? . .eters _ City 538 | 538 | 53 258 210 | 53 240  2.35
For reproducibility purposes, we provide here theDeath 573 | 70 355 1.62 | 70 333 177
XPRESS parameters that had their default values changdgnitude | 491 | 50 116 992 | 45 116 11.22

in our experiments: XPRS_M PRELSTOP set to 0.0,

XPRS_M PABSSTOP set to 107, XPRS_M PRELCUTOFF o ) N
set to 0.0, XPRS M PADDCUTOFF set to 10~7, and produce the number of original disks because decomposition
XPRS_NMAXTI ME set to —18000. For more information on B replicates disks. _

these parameters and their default values, please reféeto t The reductions in problem size are remarkable. For example,

XPRESS-Optimizer Manual [7]. inst.an_cgs City 538 and _Magnitude can now be solved by
optimizing over sets of disks no larger than about a tenth of
VI. PROBLEM INSTANCES their original sizes. Even after introducing decompositig,

We assess the effectiveness of our solution approach throtige largest component of most instances remained unbroken,
a series of experiments with various data sets. The follgwitut this decomposition did split other smaller components,
data sets first appeared [ [2]: decreasing the average number of disks to be solved at a time.

« City 156 and City 538— Populations of the 156 and
538 largest cities in the United States; ] ) .
. Earthquake-Death- Death counts due to earthquakes N the following discussion, we focus on the chal-

B. Experimental Results

around the world: lenging components from City 538, Earthquake-Death
« Earthquake-Magnitude- Magnitudes of earthquakes and Earthquake-Magnitude because the remaining in-
around the world. stances/components could be solved very easily. In general

In addition to the data sets above, we created additioﬁait?gsfcﬁgﬁsr%?ng%ehsufg?;i':i'trl]?r:ge cliques tend to be

instances consisting of the populations of the largest<iin t .

the following countries: Belgium, China, Denmark, Indaags Table[ll summarizes our results.

Israel, Netherlands, Norway, Spain, United Kingdom; and in TABLE Il

eastern United States. RESULTS ON THE LARGEST COMPONENTS THAT WERE SOLVED FROM
In Section[ﬂ]] we scrutinize the outcome of our ComputaEACH ORIGINAL PROBLEM INSTANCE TIMES ARE REPORTED IN SECONDS

; ; Base Optimal Nodes Time
tional experiments. Component Value | Value PR SD[4] | PR SD [4]
538-1-6 (29) | 21.98 | 4432 | 1 1 3 5
VIl. RESULTS ANDDISCUSSION 538-1-0 (51) | 77.37 | 9008 | 1 1 1 19
A. Decomposition Results 538-24-0 (53) | 18.98 | 65.08 177 453 14554 84308
. . . .. death-2-0 (70)| 725.28 | 1152.13| 1 1 6 61
We begin by discussing the effects of the decompositiomage0 (26) | 217.21 | 57958 | 1 1 Z 13
techniques on the instances used.in [2], which are sumntarizenag-1-1 (39) | 417.32 | 1128.52| 1 1 13 48
in Table[]. For simplicity, we name the decompositions agnadg-5-0 (81) | 601791 191427/ 1 1 14 2312
o . ) . mag-1-0 (113)| 581.41 | 3158.82| 3 1 107 34306
follows. DecompositionA is that which regards sets of disks mag-7-0 (116)| 700.37 | 2916.17 | 1 1 42 25256

with no boundary intersection independently; decompmsiti
B is the one that keeps removing articulation points until the
resulting components are biconnected; and decompoditionThe first column contains the component name in the form
is the new one introduced in Sectibnl V. We reproduced thes-y (6), where o relates to the original instance (“538”
results in [8] by decomposing the original instance with for City 538, “death” for Earthquake-Death and “mag” for
and further decomposing each resulting component \iith Earthquake-Magnitude); identifies the component id from
We denote this chain decomposition d$3. Using similar decompositior4, and~y indicates they-th component obtained
notation, we denote byAC B the decomposition sequence offter performing decompositio on components. Finally,
A, followed byC, and thenB. The reason to perforfy before § denotes the number of remaining disks in this component.
B is that some cases are decomposable by efther C, as in Column Base Valueshows the total length of the arcs that
Fig. [8(ii), but sinceB replicates vertices, increasing the totaare always visible in any solution, that is, those that are no
number of disks to be solved, it is best to applyfirst. contained in any disk. Th®ptimal Valuecolumn shows the
The first two columns of Tabl€l | indicate the names ofalue of the optimal solution minus the base value. The last
the instances and their original number of disks. For eatbur columns show the number of search nodes and time (in
decomposition, we show the size of the largest componeasgconds) required by our branch-and-bound algorithm (PR)
(Max), the total number of resulting components (#), anahd by the algorithm (SD) iri_[4].
the average component size (Avg) obtained after performingFor all tested instances, PR requires less time to obtain
the decomposition. Note that multiplying the average numbprovably optimal solutions than SD does, sometimes by more
(of disks) by the number of instances will not necessariljhan one order of magnitude.



TABLE Il

OPTIMAL SOLUTIONS FOR POPULATION INSTANCESPRVS. SD As before, improvements can range from one to more than
Base Optimal Optimal two orders of magnitude.

Country Value Solution (PR) | Solution (SD)
Belgium (312) 5354.299813| 3127.987567 | 3127.787579 VIIl. CONCLUSION
China (141) 1988.466543| 2409.172764 | 2409.150757 . .
Denmark (310) 4640.934381| 2301315222 | 2301.088704 e propose and implement an exact algorithm to solve the
Indonesia (150) 2062.608287| 1275.764650 | 1275.749352 NP-hard problem of generating physically realizable dresi
Israel (150) 1772.046049| 1892.880942 | 1892.823147 i i i i .
Netherlands (367) 6459.025937| 4720.454497 | 4720.453335 .Of p_ropor'uonal symbol maps, which are an important visual
Norway (150) 2108.152483| 1230.658095 | 1230.632434 ization tool for geo-positioned data. Furthermore, we dbsc
Spain (300) 4469.564331| 3861.170977 | 3861.156866 in detail the results of an extensive experimental studyhen t
United Kingdom (186) | 2530.147579| 1999.491671 | 1999.490668 pehavior of our method
United States (East) (87) 1810.833802| 2462.579637 | 2462.556433 '

The symbols under consideration are opaque disks whose

areas are proportional to the magnitude of the events or data
The results for population-based instances are split lE#twehey represent.

Tables[Il] and[1V. We selected ten instances for which an Qur optimization approach is based on an integer linear
optimal physically realizable drawing has an objectiveueal programming formulation that maximizes the total length of
strictly greater than the value of an optimal stacking drai the visible borders of the disks on the map (an established
thus resulting in visually better solutions. See HKip. 9 far aneasure of quality). The importance of physically realieab
example. drawings stems from the fact that they improve on the previ-
ously studied stacking drawings by exposing greater pustio
of the disk borders.

We enhance the performance of our optimization model by
using known and novel decomposition techniques, as well as
several families of facet-defining inequalities.

Our computational results, which involve real life datasset
related to natural events and population statistics, atdic
that, in addition to being visually superior, optimal prozly
realizable drawings can be obtained at a fraction of the com-
Fig. 9. A close up of the Denmark instance, showing a diffezelnetween putational effort required to obtain optimal StaCk'”g dirzys. .
the SD and PR optimal solutions. To the best of our knowledge, we are the first to find

provably optimal physically realizable drawings of the alat

Table [ shows the base values as well as the optimséts proposed in [2], as well as of the population-based data
solution values obtained by the physically realizable (BR) sets described in Sectign]VI of this paper.
the stacking drawing (SD) algorithms, respectively. Tdble

complements Table]ll with the number of nodes explored by ACKNOWLEDGMENT
each algorithm and their execution times. Guilherme Kunigami is supported by CNPq (Conselho
TABLE IV Nacional de Desenvolvimento Ciéiito e Tecnabgico) grant
SEARCH NODES ANDCPU TIME FOR POPULATION INSTANCES PRVS. SD 830510/1999-0. Pedro J. de Rezende is partlally suppogﬁed b
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ina . ; .
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