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Abstract—Proportional symbol maps are an often used tool
to aid cartographers and geo-science professionals to visualize
data associated with events (e.g., earthquakes) or geo-positioned
statistical data (e.g., population). At specific locations, symbols
are placed and scaled so that their areas become proportional to
the magnitudes of the events or data. Recent work approaches
the problem of drawing these symbols algorithmically and defines
metrics to be optimized to attain different kinds of drawings. We
focus specifically on optimizing the visualization of physically
realizable drawings of opaque disks by maximizing the sum
of the visible borders of such disks. As this problem has been
proven to be NP-hard, we provide an integer programming model
for its solution along with decomposition techniques designed to
decrease the size of input instances. We present computational
experiments to assess the performance of our model as well as
the effectiveness of our decomposition techniques.

Keywords—Visualization; cartography; computational geome-
try; integer linear programming

I. I NTRODUCTION

Proportional symbol maps are a cartographic tool employed
in the visualization of geo-positioned data or events associated
with locations. In these maps, symbols are placed over the
points that correspond to the positions where data were gath-
ered or events occurred, and the area of these symbols are
made proportional to the magnitude of the phenomenon they
represent. Commonly represented data include earthquakes
(with location and intensity), and demographic statistics.
While symbol shapes may vary according to applications,
disks are often a very intuitive form of conveying information
on the magnitude of events, so, in this paper we restrict
ourselves to the placement of opaque circles. Obviously, due
to the proximity of the disks and their sizes, overlapping may
occur, as depicted in Fig. 1.

Depending on the scaling factor applied to the symbols, the
amount of overlapping can differ greatly. Although the general
rule for choosing the representation scale, as stated by Slocum
et al. [1]: “neither too full nor too empty,” is rather subjective,
it is expected that any visually pleasing map will contain at
least some overlap of symbols. Depending on the (partial)
order in which the disks are organized, different portions of
the symbols will be visible. The question we address here is
how should a given set of disks be arranged so that the final
map contains the best visual information possible.

Fig. 1. A screen shot from an interface that generates proportional symbol
maps from a data set.

The first paper to address this problem algorithmically was
by Cabello et al. [2]. They introduced two metrics to quantify
the quality of a drawing and also two possible drawings of
disks, leading to four very interesting and related problems.
We will now briefly describe them.

A. Notation and definitions

Employing the same definitions and notations as in [2], let
S be a set ofn disks in the plane. An arrangementA of the
boundaries of these disks partitions the plane into connected
regions. A vertex ofA is the intersection point of two or more
boundaries. An arc ofA is a maximal connected portion of
the boundary that connects two vertices and contains no vertex
in its interior. A face ofA is a maximal connected region
bounded by arcs that does not contain any vertices or arcs in
its interior. A drawingD of S is a subset of arcs and vertices
of A, denoted byA(D), drawn on top of the filled interiors
of disks inS. Fig. 2 shows an arrangement and a drawing.

B. Physically Realizable Drawing

A physically realizable drawing can be thought of as a
drawing constructed from whole symbols cut out from sheets
of paper. Seen in this fashion, we can interleave them as in
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Fig. 2. An arrangement with vertexv, arcr, and facef (left), and a physically
realizable drawing with interleaving disks (right).
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Fig. 3. A drawing that is not physically realizable and the underlying
arrangement. If we remove the topmost disk, how can the remainingones
be arranged?

Fig. 2 (right), provided that physical restrictions are observed.
For example, the drawing in Fig. 3 cannot be created without
cutting the disks.

Consider the arrangement of four disks in Fig. 4(i). If the
disks are of different colors, it is pretty clear that in any
physically realizable drawing each face of the arrangement
contained in at least one disk will have a unique color. By
not allowing the disks to be cut or folded, we have that given
two intersecting disksdi anddj , eitherdi is overdj (denoted
“di > dj”), or vice-versa. Thus, the color that is seen on a
face f corresponds to that of the disk that is placed over all
other disks that containf . The iterated removal of the topmost
disk, and the corresponding change in the color off , induces
a total ordering of the disks containingf .

However, this ordering alone is not enough to define a phys-
ically realizable drawing since, for instance, in the drawing in
Fig. 3 there exists an order inducing sequence of colors for
each face, but such drawing cannot be physically constructed.
To see where the difficulty lies, notice that facef1 induces
a total order betweend1, d2, d3 and d4, but any such order
will conflict with the ordersd2 > d3, d3 > d4 and d4 > d2
induced by facesf2, f3 andf4, respectively. In other words,
even though physically realizable drawings do not require a
total order, multiple partial orderings of the disks engendered
by the faces must not contradict each other.

On the other hand, when the requirement of total order
between the disks ofS is added, that is, all cyclic orders
become forbidden, we have a special case of a physically
realizable drawing calledstacking drawing.

As far as arcs are concerned, an arcr from the arrangement
will belong to a drawing (i.e., it will be visible) whenever there
is no disk covering it. In other words, the disk of whichr is
border must be above all disks that contain it in their interior.

C. Visual quality of a Drawing

According to Cabello et al. [2], a good drawing should
enable the viewer to see at least some part of every disk and
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Fig. 4. A physically realizable drawing of fours disks. The region of facef
from the arrangement that is initially seen in (i) belongs tod3. After removing
d3, it belongs tod1 in (ii), and after removingd1, it belongs tod4 in (iii).

Fig. 5. An example of a disk whose border is completely covered.Its center
and radius cannot be determined.

to gauge their sizes as correctly as possible. As supporting
evidence for this argument, consider Fig. 5, in which we can
determine neither the center coordinates nor the radius of the
hidden disk. This led to the definition of two metrics used to
quantify the quality of a drawingD of a setS of disks. Let
bi be the total length of the visible boundary of diski ∈ S in
D. TheMax-Min(D) metric is defined asmin{bi|i ∈ S}. The
second metric,Max-Total(D), provides the sum of the lengths
of all visible boundaries over all disks inS.

Based on these metrics, four problems can be stated: maxi-
mizing the Max-Min (or the Max-Total) metric on a physically
realizable (or a stacking drawing), depending on what type of
drawings are accepted as solutions.

D. Related work

Cabello et al. [2] showed that both Max-Min and Max-
Total problems for physically realizable drawings are NP-hard.
On the other hand, anO(n2 log n) algorithm for the Max-
Min problem restricted to stacking drawings was presented.
The complexity of the Max-Total stacking drawing problem
remains open.

In [3], the authors present an integer linear programming
(ILP) formulation for the Max-Total stacking drawing problem
together with a theoretical study of that formulation. Since
the difficulty of finding optimal solutions grows with the
cardinality of the set of disks, the importance of techniques
for decomposing a given instance into smaller independent
ones is easily perceived. In [3], two effective methods for
breaking large input sets into more manageable ones were also
introduced. Furthermore, in [4] a tighter ILP formulation for
the same problem was presented which turned out to be much
more effective in solving the same set of instances.



E. Our Contributions

We present the first exact algorithm for the Max-Total
physically realizable drawing problem. Since [4] deals with
a restricted version of this problem, namely, the Max-Total
stacking drawing, it is natural that some results therein will
be helpful in establishing the effectiveness of our algorithm.

We provide an ILP formulation as well as a theoretical study
of the resulting model. We then describe successful methods
to break input instances into smaller components that can
be solved separately and how to combine optimal solutions
for these components to construct the optimal solution to the
original instance.

With this approach, we were able to find the optimal
solutions for several data sets for which only approximate ones
were known and also for a number of very hard instances of
statistical population-based data.

To the best of our knowledge, this is the first time that prov-
ably optimal solutions to the Max-Total physically realizable
drawing problem are attained.

F. Methodology

We design an ILP formulation for the Max-Total physically
realizable problem, which consists in defining a set of integer
variables and an objective function to be optimized (maxi-
mized, in our case). These variables must satisfy a set of
constraints, more specifically, a set of linear inequalities. In
general, we seek solutions to the problem among points that
satisfy all the constraints. However, in some cases we can relax
the model to accept solutions that are not necessarily feasible,
if we can prove the feasibility of the optimal solution. Thisis
the case for the formulation presented here. Our model may
then be solved by a branch-and-bound method.

In many cases, to try to obtain a solution restricted to the
inequalities given in the description of the model leads to an
algorithm of poor performance. One useful technique is to
complement the model with additional constraints in the hope
that they reduce the search space. In general, the number of
such constraints can be too big, so only a well chosen subset of
them is added. Also, this is done on demand throughout the
execution of the algorithm. However, for our problem their
number is small enough, so that we can incorporate them
in our model before the algorithm starts. Finding additional
inequalities that effectively improve the performance of the
branch-and-bound algorithm is a key step in an integer pro-
gramming approach. As we will see in the next section, if
we can prove that a constraint satisfies certain properties,its
chances of being effective in practice are much higher.

Another very useful technique is to preprocess the input
data of the problem in order to improve the running time of
the algorithm. In section IV, we describe the decomposition
techniques presented in [4] and applicable here, as well as an
extra one developed specifically for the Max-Total physically
realizable drawing problem, all of which are quite effective in
speeding up the algorithm.

G. Organization

In Section II, we provide a brief background on ILP. In
Section III, we describe the optimization models for both
stacking and physically realizable drawings, including extra
inequalities that can be added to strengthen these models.
Details of our implementation and experiments appear in
Sections V and VI, respectively. Section VII contains an
analysis of our results, followed by our final conclusions in
Section VIII.

II. I NTEGERL INEAR PROGRAMMING BACKGROUND

In this section, we briefly revise basic polyhedral combina-
torics concepts necessary to understand our results. Wolsey’s
Integer Programming book [5] is an excellent reference for
further reading on this subject.

Given an ILP model, to relax the variables in a given
constraint means to allow for real values that satisfy it. This
relaxation amounts to regarding that constraint as a real half-
space. Therefore, in the relaxed model, a set of constraints
represents the intersection of half-spaces; hence, a polyhedron.

A linear objective function represents a family of parallel
hyperplanes, and maximizing this function, subject to the
constraints, is the same as finding a member of this family
that intercepts the polyhedron and maximizes the value of the
function. If the polyhedron is not degenerated, it can be shown
that at least one of its vertices represents an optimal solution to
the corresponding problem. Moreover, there exist polynomial
time algorithms to find such a vertex [5].

However, if we restrict the domain of the variables to the
set of integers, this problem, in general, becomes NP-hard.

Let P be the set of integer points satisfying the constraints
of the ILP model and consider the convex hull, conv(P ), of
P . Note that an optimal solution to the ILP is to be found on
a vertex of conv(P ).

Therefore, if we could find a polynomial description of
conv(P ), we might ignore the integrality constraint of the
variables and solve the model in time polynomial on the size
of the constraints sufficient to describe conv(P ).

The difficulty here lies in that, in general, the number of
inequalities to define this convex hull is exponential in thesize
of the input. To circumvent this obstacle, in practice, whatone
does is to use avalid formulationwhich is a formulation that
contains all points inP and no other integer points. The model
corresponding to these formulations with variables restricted
to integers is then solved with a branch-and-bound algorithm.

These algorithms have theoretical exponential running times
but tend to behave well in practice. Clearly, there are infinitely
many valid formulations for a given setP , and those that are
closer to the convex hull lead to better running times.

With this in mind, one seeks concise families of valid
inequalities for the problem. Since there may exist an exponen-
tial, or even an infinite number of them, some selection process
needs to come into play. For this, we usecutting plane algo-
rithms which consist of solving in polynomial time a linear
relaxation of the model (that is, a model without the integrality
constraint on the variables) to find an optimal solutions∗. If
this solution is solely comprised of integer values, the problem



is solved. Otherwise, we solve theseparation problemwhich,
given a family of valid inequalities, consists of (i) findingone
that cuts off the optimal solutions∗, and (ii) adding it to the
formulation. This procedure is repeated a specified number of
times or until no such inequalities can be found. This process
produces to a much stronger formulation, which should be
solvable much faster by a branch-and-bound algorithm.

When removing a solution with a cutting plane, we would
like to cut out as large a slice as possible from the current
polyhedron in order to come closer to the convex hull. The
best possible cutting planes are those that define the facetsof
the polyhedron, that is, those which have dimension one less
than the convex hull. Therefore, when finding a new family of
inequalities for a problem it is important to prove whether they
are facet-defining for the convex hull of the feasible integer
solutions. If the polyhedron has full dimension, that is, ithas
the same dimension as the space defined by the variables,
proving whether inequalities are facet-defining is much easier.
Thus, we always seek to work with full dimensional polyhedra
in the theoretical study of these problems.

A. Usual approach

When addressing a problem through an ILP approach, one
generally describes a valid ILP model and, in the theoretical
side of the study, starts by determining the dimension of the
polyhedron defined by the constraints of the model. Next, one
verifies whether the constraints of the model define facets.

Afterward, we seek additional families of inequalities,
preferably facet-defining, to use as cutting planes. It is also
necessary to develop algorithms to solve the separation prob-
lem, but since it may be NP-hard, heuristics are often used.

Lastly, one must opt for an ILP solver, among the several
commercial or free ones available, as this election determines
the format for the provision of the constraints to the solverand,
possibly, a choice of callbacks that will need to be activated
whenever an optimal solution to the linear relaxation is found.
These callbacks are supplied along with algorithms to solvethe
separation problem and to add new constraints to the model.

In the next section, we describe our ILP formulation for the
Max-Total physically realizable drawing problem.

III. I NTEGERL INEAR PROGRAMMING FORMULATIONS

We begin by describing the model for the Max-Total stack-
ing drawing problem presented in [4] because our model is
related to it.

A. Max-Total Stacking Drawing

We need the following data, which can be calculated in
polynomial time given the input set of disksS:

• R ≡ set of all arcs of the arrangement;
• ℓr ≡ length of arcr ∈ R ;
• dr ≡ disk that contains arcr in its border;
• SI

r ≡ set of disks that contain arcr in their interior.
The model uses two set of variables. For each arcr ∈ R, let

the binary variablexr be equal to 1 if arcr is visible, and equal
to 0 otherwise. The Max-Total problem targets maximizing

∑

r∈R

ℓrxr . (1)

For each pair of disksi, j ∈ S, we define the binary variable
wij which is equal to 1 if diski is above diskj, and equal to
0 otherwise. The constraints are given by:

wij + wji ≤ 1, ∀ i, j ∈ S, i < j (2)

xr ≤ wdrj , ∀ r ∈ R, j ∈ SI
r (3)

wij + wjk − wik ≤ 1, ∀ i, j, k ∈ S, (4)

i 6= j 6= k 6= i

xr ∈ {0, 1}, ∀ r ∈ R (5)

wij ∈ {0, 1}, ∀ i, j ∈ S, i 6= j (6)

Constraint (2) states that eitheri is abovej, or vice-versa.
Constraint (3) states that if arcr is visible, its diskdr has to be
above all other disks that containr in their interior. Finally,
(4) makes sure that the (partial) order imposed by thewij

variables is transitive.
In [4], the authors study the convex hull of the feasible

integer solutions to (2)–(6), which we will denote byPSD,
from the point of view of polyhedral combinatorics. They start
by proving thatPSD is fully dimensional, and that (2)–(4)
define facets forPSD. Note that for eachr ∈ R, (5) represents
the constraints0 ≤ xr ≤ 1, as well as, for two distinct disks
i, j ∈ S, (6) spans0 ≤ wij ≤ 1. Next, it is proven thatx ≥ 0
defines a facet ofPSD, while xr ≤ 1 does so only when
SI
r = ∅. Finally, it is also shown thatwij ≥ 0 defines a facet

for PSD only if SI
r = ∅ for all r in the border of diski,

whereaswij ≤ 1 does not define a facet ofPSD.
Additional Inequalities:In [3], [4], additional inequalities

are introduced to strengthen the models, improving the running
time of the algorithm. One of those inequalities is based on
the fact that some arcs may not be simultaneously visible.

We define a graphGI = (V,E), with a vertexv(r) ∈ V

corresponding to arcr ∈ R and an edge(v(r1), v(r2)) if dr1
containsr2 anddr2 containsr1. Two arcs whose vertices are
adjacent inGI cannot both be visible. We can extend this
observation to cliques. Given a maximal cliqueK in GI , we
denote byR(K) the set of arcs with corresponding vertices
in K. We then have the following valid constraint:

∑

r∈R(K)

xr ≤ 1 ∀K ∈ GI (7)

We define a vertex of the arrangement to be non-degenerated
if it is formed by the intersection of exactly two circumfer-
ences. Given one such vertexv, its neighborhood consists of
four incident arcs as in Fig. 6(i). It is easy to verify that from
all 16 possible configurations of visible arcs, there are only five
that are actually feasible. These cases are shown in Fig. 6(ii)–
(vi). Together with (7), a set of valid constraints introduced in
[3] avoids all infeasible cases. Referring tor1, r2, r3 and r4
as in Fig. 6(i), those constraints are written as follows:

xr1 ≥ xr3 (8)

xr2 ≥ xr4 (9)

xr3 + xr4 ≥ xr1 (10)

xr3 + xr4 ≥ xr2 (11)
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Fig. 6. Arcs incident to a non-degenerated vertexv (represented by the black
dot) in (i), and feasible configurations in (ii)–(vi).

In [3], it is shown that constraints (7)-(11) are facet-defining
for PSD.

B. Max-Total Physically Realizable Drawing

In this section, we will show that an ILP formulation cor-
responding to a given subset of constraints from the previous
model is valid for the Max-Total physically realizable drawing
problem. LetF be the set of faces from the arrangement. Given
f ∈ F , let Sf be the set of disks that contain facef .

Our model is similar to the previous one except that
constraint (4) is replaced by the following:

wij + wjk − wik ≤ 1, ∀ f ∈ F, i, j, k ∈ Sf . (12)

Intuitively, physically realizable drawings cannot contain all
transitivity constraints in (4) because that would preclude valid
drawings such as the one depicted on the right side of Fig. 2.
However, the definition of a physically realizable drawing
implies that transitivity needs to be enforced on disks that
intersect to form a face, which gives rise to (12).

Let FPR be the formulation with constraints (2), (3), (12),
(5) and (6). Given a solution satisfyingFPR we can build
a solution satisfying (2) as equality, as stated in Proposition
1. Note that if we think of thew variables as relations be-
tween disks, solutions satisfyingFPR represent partial orders
between the disks ofSf for eachf ∈ F . Proposition 1 shows
that we can transform them into total orders without decreasing
the objective value of the solution.

Proposition 1. Given a solution satisfyingFPR, we can build
a solution also satisfying(2) as equality with greater or equal
objective value.

Proof: First, let us restrict ourselves toSf for eachf ∈ F .
Define a digraphKSf

= (V,A), with vertex set corresponding
to the disks inSf , wherev(d) is the vertex correlated to disk
d. There is an arc(v(i), v(j)) in A iff wij = 1. Clearly,
this graph is acyclic. Leth(v) be the position of vertexv in
some topological order ofKSf

. Then, for each pair of disks
i, j ∈ Sf such thatwij = 0 and h(v(i)) > h(v(j)), we set
wij = 1 and add(v(i), v(j)) to A. One can see thatKSf

remains acyclic and thusw satisfies (12). We also now have
that eitherwij = 1 or wji = 1 for all pair of disksi, j ∈ Sf .
It is clear that for each pairi, j ∈ S, everywij or wji will
be set to1, except for those pairs such that bothwij andwji

were initially set to0 and {i, j} 6∈ Sf for any f ∈ F . But
for these pairs, we may arbitrarily set any of them to1, since
this will not violate any transitivity constraint. Hence, this new
solution satisfies (2) as equality. Because now variable was
set to0 during this process, nox variable has decreased in
value (see (3)). Therefore, the objective function value cannot
go down.

We now define an alternative formulationF ′

PR that is equiv-
alent toFPR with (2) replaced by an equality. Proposition 2
shows that we can solve the Max-Total physically realizable
drawing problem by solving the ILP model consisting of
maximizing (1) subject toF ′

PR.

Proposition 2. The solution that maximizes(1) subject toF ′

PR

is an optimal solution for the Max-Total physically realizable
drawing problem.

Proof: It suffices to show that a solution that satisfies
F ′

PR and maximizes (1) corresponds to a physically realiz-
able drawing and that, conversely, any physically realizable
drawing corresponds to a solution that satisfiesF ′

PR.
Let (x∗, w∗) be a solution satisfyingFPR that maximizes

(1). We first note that for eachf ∈ F , there exists a total order
between disks inSf induced byw∗ because this relationship
between disks inSf is anti-symmetric and total, due to (2), and
transitive, due to (12). Also, no two disksi, j can have their
relative order differ across distinct faces because, otherwise,
we would havew∗

ij = w∗

ji = 1, contradicting the fact that
w∗ is anti-symmetric. Hence, the orders induced by faces do
not conflict, and it is physically possible to draw the disks
following those orders. Moreover, because we are maximizing
(1), any visible arc in such a drawing has itsxr set to 1. If an
arc r is not visible in the drawing, there exists a diskj that
contains it and is abovedr, sow∗

drj = 0 andx∗

r = 0.
Conversely, given a physically realizable drawing, we con-

sider the total order induced by each facef from the ar-
rangement. Given two disksi, j ∈ Sf , we assume, w.l.o.g.,
that i is abovej. We then setwij = 1 andwji = 0 which
clearly satisfies (2) as equality. For any three disksi, j, k ∈ Sf ,
assumingi is abovej andj is abovek, it is true thati is above
k and thus such construction satisfies (12) forf . For pairs of
disksi, j that do not both belong to anySf , we arbitrarily set
wij = 1 andwji = 0. Since in this casewij does not appear
in (12), it is enough to observe that it satisfies (2) as equality.
Given any visible arcr from this drawing, its diskdr must
be above all disks containingr, so settingxr = 1 will satisfy
(3).

C. Additional Inequalities

In a physically realizable drawing, it is also the case that,
for two given arcsr1 and r2, if dr1 contains r2 and dr2
containsr1, then at most one of these arcs is visible. This
allows us to build the graphGI , defined for the Max-Total
stacking drawing problem, and thus constraint (7) is valid for
our model as well.

Going back to Fig. 6, we observe that for a non-degenerated
vertexv, there is a face that is contained in the same disks as
v. This means that there is a total order among such disks
and therefore, locally aroundv, the behavior of the disks
is a stacking. Because the possible configurations aroundv

are the same for stacking and physically realizable drawings,
constraints (8) through (11) are also valid for our model.

D. Polyhedral Properties

Propositions 1 and 2 allow us to maximize (1) subject to
FPR, instead ofF ′

PR, to obtain the optimal solution to the
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Fig. 7. An instance that allows for decomposition.

Max-Total physically realizable drawing problem. We denote
the convex hull of the points satisfyingFPR by PPR, and
establish some theoretical properties of polyhedronPPR.

BecauseFPR contains a subset of the constraints that define
polyhedron PSD, the dimension ofPPR must be greater
than or equal to the dimension ofPSD. Since the latter has
full dimension [4], PPR must have full dimension as well.
Therefore, any inequality that is facet-defining forPSD and
is valid for PPR is also facet-defining forPPR. Thus, we
conclude that (2), (3), (12), and (7)–(11) define facets ofPPR.

IV. D ECOMPOSITIONTECHNIQUES

In addition to the trivial decomposition that considers
disjoint sets of disks independently, we argue that the two
decomposition techniques presented in [3] are also valid for
physically realizable drawings. Observe that if a diskd1 is
contained inside another diskd2, there exists an optimal
solution in whichd1 is drawn aboved2. In general, if two sets
of disks do not intersect at their boundaries, such as sets{a, b}
and{c, d, e, g} in Fig. 7(i), the drawing problem can be solved
independently for each set. To combine those solutions, sets
of disks contained inside other disks (e.g.{a, b} are insideg)
can be drawn above the disks containing them, while keeping
the orders resulting from the independent solutions.

Given a set of disksS, we can define a disk graph,GS =
(V,E), with a vertexv(d) ∈ V corresponding to a diskd ∈ S

and an edge(v(d1), v(d2)) belonging toE if disks d1 andd2
overlap. If this graph is not biconnected, then there must exist a
articulation pointv(d∗) in it. The removal of the corresponding
disk d∗ from S will spawn new connected components inGS .
It is a simple exercise to verify that if we replicated∗ in each
set of disks corresponding to these components, then these
augmented sets may be solved separately and their solutions
easily assembled. In our example, this corresponds to the
instances in Figs. 7(ii)–(iv).

We now introduce a new decomposition technique that takes
advantage of the specific structure of physically realizable
drawings. If a pair of disksi and j have the property that
any face of the arrangement contained in both of them is
not contained in any other disk, then all induced orders that
include i and j are restricted to these two disks. Hence, any
order we choose betweeni and j will not conflict with any
other induced order. This establishes that we may remove
the corresponding edge(v(i), v(j)) from GS , solve for the
connected components ofGS independently, and later decide
the relative order between disksi andj, in a greedy way. For
example, Fig. 8(i) depicts a set of disks with the underlying
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d4

d5

(i) (ii)

d

Fig. 8. (i) An instance with its corresponding disk graph. Dashed edges may
be ignored in the ILP model. (ii) An instance where diskd would be replicated
nine times when applying the decomposition that removes articulation points.

disk graph. The dashed edges can be removed fromGS . On
the other hand, because facef is contained ind1, d2 and
d3, no edges between vertices corresponding to those disks
may be removed. The resulting connected components are
{d1, d2, d3}, {d4} and{d5}.

V. I MPLEMENTATION DETAILS

A. Solver

Our implementation was done in C++ (gcc 4.4.3) and em-
ployed CGAL [6] (v3.5.1) to assemble the necessary input data
for our model. We also made use of the commercial ILP solver
XPRESS [7] (v20.00.05) to solve the optimization models.
The experiments were run on an Intel Core 2 Quad 2.83GHz
machine with 8GB of RAM, running Linux (v2.6.32).

B. ILP Model

Our original optimization model includes (2) as an equality,
(3), (5), (6), and (12).

When it comes to (7), because the number of maximal
cliques in a graph may be an exponential, we decided to select
only some of them using the following heuristic. For each
facef , let B+

f initially be the set of arcsr that belong to the
boundary off and whose disksdr containf . Let C+

f initially
be the set of all disks that contain an arc inB+

f . It is easy
to see that the vertices corresponding to disks inC+

f form
a clique inGI . Since this clique is not necessarily maximal,
we might try to extendC+

f (and its corresponding clique).
Let r′ be an arc contained in all disks inC+

f and whose disk
dr′ contains all arcs inB+

f . The vertex set corresponding to
C+

f ∪{dr′} forms a clique inGI . We thus adddr′ to C+
f and

r′ to B+
f , and repeat this procedure until the resulting clique

is maximal inGI .
Surprisingly, our experiments showed that extending the

original set C+
f decreases the performance of the branch-

and-bound algorithm. One possible explanation is that this
extension increases the density of the model (in terms of its
coefficient matrix), making it harder to solve at each search
node. Therefore, we opted for simply using the initialC+

f in
the experiments reported in Section VII. As a consequence, the
total number of constraints (7) and (8)–(11) is relatively small
when compared to the number of constraints in the original
model (16.3% on average). Hence, we decided to include all



of those constraints at the beginning of the search, insteadof
using a separation procedure to add them gradually as they
became violated (a practice known asbranch-and-cut).

C. XPRESS Parameters

For reproducibility purposes, we provide here the
XPRESS parameters that had their default values changed
in our experiments: XPRS_MIPRELSTOP set to 0.0,
XPRS_MIPABSSTOP set to 10−7, XPRS_MIPRELCUTOFF
set to 0.0, XPRS_MIPADDCUTOFF set to 10−7, and
XPRS_MAXTIME set to −18000. For more information on
these parameters and their default values, please refer to the
XPRESS-Optimizer Manual [7].

VI. PROBLEM INSTANCES

We assess the effectiveness of our solution approach through
a series of experiments with various data sets. The following
data sets first appeared in [2]:

• City 156andCity 538– Populations of the 156 and
538 largest cities in the United States;

• Earthquake-Death– Death counts due to earthquakes
around the world;

• Earthquake-Magnitude– Magnitudes of earthquakes
around the world.

In addition to the data sets above, we created additional
instances consisting of the populations of the largest cities in
the following countries: Belgium, China, Denmark, Indonesia,
Israel, Netherlands, Norway, Spain, United Kingdom; and in
eastern United States.

In Section VII we scrutinize the outcome of our computa-
tional experiments.

VII. R ESULTS AND DISCUSSION

A. Decomposition Results

We begin by discussing the effects of the decomposition
techniques on the instances used in [2], which are summarized
in Table I. For simplicity, we name the decompositions as
follows. DecompositionA is that which regards sets of disks
with no boundary intersection independently; decomposition
B is the one that keeps removing articulation points until the
resulting components are biconnected; and decompositionC

is the new one introduced in Section IV. We reproduced the
results in [3] by decomposing the original instance withA,
and further decomposing each resulting component withB.
We denote this chain decomposition asAB. Using similar
notation, we denote byACB the decomposition sequence of
A, followed byC, and thenB. The reason to performC before
B is that some cases are decomposable by eitherB or C, as in
Fig. 8(ii), but sinceB replicates vertices, increasing the total
number of disks to be solved, it is best to applyC first.

The first two columns of Table I indicate the names of
the instances and their original number of disks. For each
decomposition, we show the size of the largest component
(Max), the total number of resulting components (#), and
the average component size (Avg) obtained after performing
the decomposition. Note that multiplying the average number
(of disks) by the number of instances will not necessarily

TABLE I
DECOMPOSITION RESULTS

DecompositionACB DecompositionAB
Instance Disks Max # Avg Max # Avg
City 156 156 26 66 2.39 29 53 3.09
City 538 538 53 258 2.10 53 240 2.35
Death 573 70 355 1.62 70 333 1.77
Magnitude 491 50 116 9.92 45 116 11.22

produce the number of original disks because decomposition
B replicates disks.

The reductions in problem size are remarkable. For example,
instances City 538 and Magnitude can now be solved by
optimizing over sets of disks no larger than about a tenth of
their original sizes. Even after introducing decomposition C,
the largest component of most instances remained unbroken,
but this decomposition did split other smaller components,
decreasing the average number of disks to be solved at a time.

B. Experimental Results

In the following discussion, we focus on the chal-
lenging components from City 538, Earthquake-Death
and Earthquake-Magnitude because the remaining in-
stances/components could be solved very easily. In general,
instances whoseGS graphs contain large cliques tend to be
the most challenging for our algorithm.

Table II summarizes our results.

TABLE II
RESULTS ON THE LARGEST COMPONENTS THAT WERE SOLVED FROM

EACH ORIGINAL PROBLEM INSTANCE. TIMES ARE REPORTED IN SECONDS.

Base Optimal Nodes Time
Component Value Value PR SD [4] PR SD [4]
538-1-6 (29) 21.98 44.32 1 1 3 5
538-1-0 (51) 77.37 90.08 1 1 4 19
538-24-0 (53) 18.98 65.08 177 453 14554 84308
death-2-0 (70) 725.28 1152.13 1 1 6 61
mag-6-0 (26) 217.21 579.58 1 1 4 13
mag-1-1 (39) 417.32 1128.52 1 1 13 48
mag-5-0 (81) 601.79 1914.27 1 1 14 2312
mag-1-0 (113) 581.41 3158.82 3 1 107 34306
mag-7-0 (116) 700.37 2916.17 1 1 42 25256

The first column contains the component name in the form
α-β-γ (δ), whereα relates to the original instance (“538”
for City 538, “death” for Earthquake-Death and “mag” for
Earthquake-Magnitude),β identifies the component id from
decompositionA, andγ indicates theγ-th component obtained
after performing decompositionB on componentβ. Finally,
δ denotes the number of remaining disks in this component.
Column Base Valueshows the total length of the arcs that
are always visible in any solution, that is, those that are not
contained in any disk. TheOptimal Valuecolumn shows the
value of the optimal solution minus the base value. The last
four columns show the number of search nodes and time (in
seconds) required by our branch-and-bound algorithm (PR)
and by the algorithm (SD) in [4].

For all tested instances, PR requires less time to obtain
provably optimal solutions than SD does, sometimes by more
than one order of magnitude.



TABLE III
OPTIMAL SOLUTIONS FOR POPULATION INSTANCES: PR VS. SD

Base Optimal Optimal
Country Value Solution (PR) Solution (SD)
Belgium (312) 5354.299813 3127.987567 3127.787579
China (141) 1988.466543 2409.172764 2409.150757
Denmark (310) 4640.934381 2301.315222 2301.088704
Indonesia (150) 2062.608287 1275.764650 1275.749352
Israel (150) 1772.046049 1892.880942 1892.823147
Netherlands (367) 6459.025937 4720.454497 4720.453335
Norway (150) 2108.152483 1230.658095 1230.632434
Spain (300) 4469.564331 3861.170977 3861.156866
United Kingdom (186) 2530.147579 1999.491671 1999.490668
United States (East) (87) 1810.833802 2462.579637 2462.556433

The results for population-based instances are split between
Tables III and IV. We selected ten instances for which an
optimal physically realizable drawing has an objective value
strictly greater than the value of an optimal stacking drawing,
thus resulting in visually better solutions. See Fig. 9 for an
example.

Fig. 9. A close up of the Denmark instance, showing a difference between
the SD and PR optimal solutions.

Table III shows the base values as well as the optimal
solution values obtained by the physically realizable (PR)and
the stacking drawing (SD) algorithms, respectively. TableIV
complements Table III with the number of nodes explored by
each algorithm and their execution times.

TABLE IV
SEARCH NODES ANDCPU TIME FOR POPULATION INSTANCES: PR VS. SD

PR SD
Country Nodes Times Nodes Times
Belgium (312) 18 6 18 2757
China (141) 5 6 5 3797
Denmark (310) 19 9 19 1007
Indonesia (150) 2 14 2 2477
Israel (150) 6 22 6 1044
Netherlands (367) 23 9 24 4222
Norway (150) 4 11 3 3433
Spain (300) 16 54 15 194
United Kingdom (186) 8 7 8 422
United States (East) (87) 8 22 6 2788

Although the solution values of the physically realizable
drawings in Table III are only slightly greater than their
stacking counterparts, surprisingly, when looking at a map
with hundreds of disks, even a minor improvement can be
significant. In fact, it can mean the difference between seeing
or missing a city.

In terms of execution times, once again, the PR algorithm
is greatlysuperior to the SD algorithm, as shown in Table IV.

As before, improvements can range from one to more than
two orders of magnitude.

VIII. C ONCLUSION

We propose and implement an exact algorithm to solve the
NP-hard problem of generating physically realizable drawings
of proportional symbol maps, which are an important visual-
ization tool for geo-positioned data. Furthermore, we describe
in detail the results of an extensive experimental study on the
behavior of our method.

The symbols under consideration are opaque disks whose
areas are proportional to the magnitude of the events or data
they represent.

Our optimization approach is based on an integer linear
programming formulation that maximizes the total length of
the visible borders of the disks on the map (an established
measure of quality). The importance of physically realizable
drawings stems from the fact that they improve on the previ-
ously studied stacking drawings by exposing greater portions
of the disk borders.

We enhance the performance of our optimization model by
using known and novel decomposition techniques, as well as
several families of facet-defining inequalities.

Our computational results, which involve real life data sets
related to natural events and population statistics, indicate
that, in addition to being visually superior, optimal physically
realizable drawings can be obtained at a fraction of the com-
putational effort required to obtain optimal stacking drawings.

To the best of our knowledge, we are the first to find
provably optimal physically realizable drawings of the data
sets proposed in [2], as well as of the population-based data
sets described in Section VI of this paper.
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830510/1999-0. Pedro J. de Rezende is partially supported by
CNPq grants 472504/2007-0, 483177/2009-1, 473867/2010-
9, FAPESP (Fundação de Amparo à Pesquisa do Es-
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