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Abstract—In this paper, we present a simple and fast inverse
halftoning algorithm, targeted at reconstructing halftoned images
generated using dispersed-dot ordered dithering algorithms. The
proposed algorithm uses a simple set of linear filters combined
with a stochastic model in order to predict the best intensity
values for the binary image pixels. The algorithm produces
images with a better perceptual quality than the available
algorithms in the literature, preserving most of the fine details
of the original gray-level image. It has a high performance,
which can be further improved with the use of parallelization
techniques.

Keywords-halftoning, inverse halftoning, dispersed-dot ordered
dithering, dithering.

I. INTRODUCTION

Halftoning is the technique of converting continuous-tone
images into binary images using patterns of white and black
dots. This technique is useful for creating the illusion of
seeing multiple intensity levels in a binary image, which
makes it suitable for applications where a reduced number
of levels is needed, such as newspapers, fax machines, and
document printing processes. Halftoning algorithms can be
roughly classified as dithering or error diffusion [1].

Dithering algorithms generate halftoned images by com-
paring the pixel intensity values of the original image with
threshold scalar values or matrices, which can be generated by
various methods. Error diffusion algorithms compare the pixel
intensity values with a fixed threshold. The resulting error
between the output value and the original value is distributed
to neighboring pixels according to predefined weights. Both
the ordered dithering and the dithered with error diffusion
have advantages and disadvantages for specific applications.
The choice of algorithm often depends on the application with
which it is associated.

Inverse halftoning is the technique that allows the restora-
tion of the original information of an image (with multiple
levels of intensity) from a binary (black-and-white) represen-
tation of it. This technique can be used in several applications
when the only available version of the image is a binary
one. For example, it is well known that dithered images
suffer great degradations when subject to simple operations,
such as filtering, decimation, interpolation, sharpening, etc. In
these applications, it is necessary to use inverse halftoning

techniques to convert the binary images into gray-level images
and, then, apply the desired operation.

Different solutions have been proposed to solve the inverse
halftoning problem, such as iterative projection [2], neural
networks [3], vector quantization [4], lookup table [5], [6],
wavelet estimation [7][8], and least square methods [9]. Al-
though the above techniques produce satisfactory results for
some cases, they all have a high computational cost, which
is mainly due to their high mathematical complexity. Among
the algorithms in the literature, the work by Damera-Venkata
et al. is one of the most computationally efficient algorithms
[10][11].

A more recent and non-conventional application of inverse
halftoning is in error concealment or recovery [12] and data
hiding. For example, in the work by Adsumilli et al. a dithered
version of the original video is embedded into the original
itself using a spread-spectrum watermarking technique. If parts
of this original are lost in the transmission or compression
stages, the receiver can extract the corresponding dithered ver-
sion of the original from the received frame. Then, an inverse
halftoning technique is used to obtain an approximation of the
lost data of the frame.

In this paper, we present a simple and fast inverse halfton-
ing algorithm, targeted at reconstructing halftoned images
generated using dispersed-dot ordered dithering algorithms.
The proposed algorithm uses a simple set of linear filters
combined with a stochastic model to predict the corresponding
intensity values of the binary image pixels. Our goal is to
obtain the best approximation of the original image with
the lowest computational cost. Our target application is the
recovery of lost information (e.g. error concealment) in real-
time processing applications, such as video decoding.

This paper is organized as follows. In Section II, we present
a description of the dithering algorithm considered in this
work. In Section III, we describe the details of the proposed
inverse halftoning algorithm. In Section IV, we present the
results and, finally, in Section V, we give our conclusions.

II. ORDERED DITHERING

In this work, we focus on ordered dithering algo-
rithms. These algorithms have the characteristic of generating
halftoned images with sets of pixel clusters that have a
predictable pattern. This, in turn, generates binary images that



have an adequate redundancy that allows successful inverse
halftoning operations. Given our target applications, generat-
ing a more easily predictable image is very important, and has
a significant impact on the performance of the technique.

The ordered dithering technique can be classified into
two types: dispersed-dot ordered dithering and clustered-dot
ordered dithering. In the first type, the less relevant dots for
the representation (e.g., white pixels in a dark area) are spread
out in an apparently random order, but the density is varied in
order to match the gray-level intensity of the original image. In
the second type, geometric shapes of different sizes are used to
create a pattern that is proportional to the gray-level intensity
of the original image. That is, the pixels of the binary image
are clustered to create a visual sensation of different tones.

Fig. 1 shows examples of these two types of dithering
techniques. In Fig. 1, an image with decreasing gray-level
intensities (top) is depicted, along with dithered versions of
this image obtained using the dispersed-dot (middle) and
clustered-dot dithering algorithms (bottom).

The dots pattern model used in this work is the dispersed
dithering. The ten 3 × 3-pixels dot patterns used to generate
the dithered images are depicted in Fig. 2. These patterns were
generated using the following Bayer Matrix (MB) [13]:

MB =

 6 8 4
1 0 3
5 2 7

 .

To generate the dithered image according to this model,
we first quantize the image intensity levels using ten intervals
shown in Table I. The image with quantized levels, Iquantized,
is obtained from the original image, Ioriginal, using the
following expression:

Iquantized =

⌈
10

255
Ioriginal

⌉
.

Then, we filter the quantized image using the Bayer matrix.
The values of each cell of the matrix are used as thresholds.
If the normalized output values corresponding to the pixel

Fig. 1. Original gray-level image (top) and dithered images generated using
dispersed-dot (middle) and clustered-dot (bottom) ordered algorithms.

Fig. 2. Dot patterns corresponding to each level of quantization.

are smaller than the number in the matrix cell, the pixel
will be substituted by a black value. Otherwise, if the values
are greater than the number in matrix cell, the pixel will be
replaced by a white value. In other words, the intervals are
mapped into one of the patterns shown in Fig. 2.

The algorithm for generating the dithered image from the
original 8-bit image is presented Algorithm 1. The resulting
dithered version of the image Lena is shown in Fig. 3.

Fig. 3. Halftoned Lena image using Dispersed-dot Ordered Dithering
technique.

TABLE I
MAPPED INTERVALS

Interval Level
[0, 25.5) 1
[25.5, 51) 2
[51, 76.5) 3
[76.5, 102) 4
[102, 127.5) 5
[127.5, 153) 6
[153, 178.5) 7
[178.5, 204) 8
[204, 229.5) 9
[229.5, 255] 10



Algorithm 1 Produce 1-bit dithered image from 8-bit image

Input: 8-bit gray-scale input image Igray
Output: 1-bit binary output image Idither

1: Generate pattern as a dictionary data structure that maps a level-value
to a dot-pattern, as shown in Fig. 2.

2: Filter the image Igray with a high-pass unsharp filter to obtain Iunsharp

3: Define a new image Iquantized = d 10
255

Iunsharpe, which is Iunsharp

quantized with 10 gray levels.
4: for all pixel p ∈ Iquantized do
5: level = Iquantized[p]
6: Idither[p] = pattern[level]

7: end for

III. PROPOSED FAST INVERSE HALFTONING ALGORITHM

Inverse Halftoning is the process of finding the most appro-
priate value in a gray-level interval to represent a black-and-
white pixel of a dithered image, i.e. it is basically the inverse
of the process used for obtaining the dithered image discussed
in the previous section. Let us define M(p) as a spatial mask
of size 3 × 3 surrrounding a pixel p of the image, Igray as
the original gray-level, Idither as the the dithered image, and
D(p) as the distribution of the area surrounding the pixel p. To
reconstruct an 8-bit pixel image from an 1-bit pixel halftoned
image, we first calculate the local distribution D(p) for all
pixels in Idither. Then, we find the most probable mapped
intervals corresponding to the original pixel intensity levels
in Igray . Once this interval is found, we randomly select a
value within it, following a random walk on fluctuating lattice
model [14].

In order to randomly select the best value in an interval,
the random walk model uses a renormalization group trans-
formation, which is a transformation of the space of spatially
connected pixels. In this work, we chose to use a simple
model with only spatial dependencies for the renormalization
transformation. With this model, the transformation rescales
the value of a particular pixel depending on the levels (see
Table I) of the pixels in the surrounding 3 × 3 area. More
specifically, for a given pixel p, we must first find the most
frequent level value in the neighborhood. If this value is the
same as the level of p, or it is not in the immediate vicinity,
we choose a random value in the level interval. If the most
frequent level is higher than the level of p, we set the upper-
bound as mid-value of the upper interval and the lower-bound
as the current value of the pixel. If the most frequent is lower
than the level of p, we set the upper-bound as the current value
of the pixel and lower-bound as the mid-value of the lower
interval. From these new bounds, we choose a new random
value for pixel.

The result of applying this inverse halftoning technique to
the dithered version of the image Lena (see Fig. 3) is shown in
Fig. 4(b). For comparison, the original Lena image is shown in
Fig. 4(a). As expected, although a consistent gray-level image
was obtained, lots of false-contours defects are present as a
consequence of the quantization of the intensity levels.

To mitigate the problem of false contours, we apply an
unsharp filter before the dithering process. The unsharp filter is

(a) (b)

(c) (d)

Fig. 4. Inverse Halftoning and Filtering Effects: (a) Original, (b) Random
Walk, (c) Random Walk with unsharp masking, and (d) Random walk with
unsharp masking and Gaussian filtering.

used to highlight the image details and, therefore, to avoid the
loss of important information. Then, we classify the regions
of the image as ‘smooth’ or ‘active’ using a simple standard
deviation measure over a 3 × 3 pixel area. If the region
has a low value of standard deviation, it is replaced by its
average. Otherwise, it remains unchanged. Using this small
modification, we obtain a much better result. The result of
applying this technique for the Lena dithered image is depicted
in Fig. 4(c).

As can be observed in Fig. 4(c), unfortunately, the random
choice of gray level intensity produces a fair amount of visible
noise in the reconstructed image. We can smooth it out by
applying a low-pass filter after the reconstruction process. We
use a Gaussian blurring filter, generating the image in Fig.
4(d). As can be seen in this image, excess noise was greatly
reduced in this final image, without affecting the image details.
The proposed algorithm for inverse halftoning is presented
Algorithm 2.

To find better filter parameters for the proposed algorithm,
we conducted a set of tests, which basically consisted of
choosing the optimal filter configurations to maximize the
PSNR values for the resulting reconstructed images. The
spatial masks that offered the results for the unsharp masking
and Gaussian filters are:

Munsharp =

 −0.489 −0.022 −0.489
−0.022 3.044 −0.022
−0.489 −0.022 −0.489


and



MGaussian =

 0.052 0.124 0.052
0.124 0.297 0.124
0.052 0.124 0.052

 .

Algorithm 2 Reconstruct 8-bit image from 1-bit image

Input: 1-bit binary input image Idither .
Output: 8-bit gray-scale output image Igray .

1: Generate inversePattern as a dictionary data structure that maps a
3× 3 dot-pattern to a level-value, as shown in Fig. 2.

2: for all pixel p ∈ Idither do
3: Define as mask the 3 × 3 matrix populated with values of pixels

around p = Idither(x, y)

mask =

[
p(x− 1, y − 1) p(x− 1, y) p(x− 1, y + 1)
p(x, y − 1) p(x, y) p(x, y + 1)

p(x+ 1, y − 1) p(x+ 1, y) p(x+ 1, y + 1)

]
4: Use mask as key in inversePattern, obtaining the correspondent

level
level = inversePattern[mask]

5: Calculate the level corresponding to pixel p

Ilevels[p] = level

6: end for
7: for all pixel p ∈ Idither do
8: Get level = Ilevels[p]
9: With level, set min and max as the lower and upper limits of range

mapped by level, as illustrated in Table I.
10: Choose a random value between min and max, storing the result in

a new variable grayvalue.
11: Create a matrix v containing the pixels in 3×3 neighborhood around

p.
12: Call the renormalization(v) procedure and store the result in

Ireconstructed[p] (random walk model)

Ireconstructed[p] = renormalization(v)

13: end for
14: Filter the Ireconstructed with a gaussian low-pass filter, save the result

in Igray and return.

Igray = gaussianLowPassF ilter(Ireconstructed)

IV. EXPERIMENTAL RESULTS

We tested the proposed algorithms using a set of gray-level
images. The results obtained for the images ‘Rose’, ‘Einstein’,
‘Chester Cathedral’, ‘Paper machine’, ‘Bear’, ‘Hurricane’,
‘Peppers’ and ‘Pills’ are depicted in Figs. 5 and 6. In both
figures, the first column shows the original gray level images,
the middle column shows the dithered version, and the last
column shows the reconstructed image using the proposed
algorithm.

The images chosen to test the proposed algorithm have
a high level of details, what represents a big challenge for
inverse dithering algorithms. Notice that the proposed algo-
rithm is able to recover the details of the original image,
even in high contrast areas (see ‘Rose’ and ‘Bear’ images).
It is also able to recover the large variations in luminance
(see ‘Paper machine’ image). The algorithm does add some
graininess to the uniform areas. This is a characteristic of most
sharpness enhancement algorithms, including the sharpness

algorithm used in the proposed technique used compensate
for the blurring effect of the dithering.

We also compared the algorithm proposed in this paper with
other inverse halftoning algorithms. The following state-of-
the-art algorithms were considered for comparison: Fast Blind
Inverse Halftoning (FBIH) [10] and Wavelet-based Inverse
Halftoning via Deconvolution (WinHD) [7]. Fig. 7 shows the
reconstruction images using the proposed algorithm and these
two reference algorithms. We can observe from this figure that
the image reconstructed using our approach preserves much
more details than the images reconstructed using the other
two methods.

In our simulations, we also used three metrics for estimating
the objective quality of the reconstructed images: Peak signal-
to-noise ratio (PSNR), Universal Image Quality Index (UIQI)
[15] and Structural similarity (SSIM) [16].

The results obtained with PSNR are listed in Table II.
From the data, we can observe that the proposed method has
significantly lower PSNR scores than the other two algorithms.
As the results in Fig. 7 show, the low PSNR values listed in the
Table II do not necessarily represent a lower visual quality, but
only bigger differences in relation to the original. PSNR is a
fidelity metric that simply estimates error differences between
original and test images, not being able to identify if these
differences cause an improvement or a degradation in quality.
Over the years, PSNR have been widely criticized for not
correlating with quality as perceived by human viewers [17].

TABLE II
RESULTS USING PEAK SIGNAL-TO-NOISE RATIO (PSNR)

Image FBIH WinHD Proposed
Cameraman 24.7800 31.1112 24.2410
Galaxy 33.6986 35.1189 25.6677
Peppers 27.4723 31.0780 24.8490
Chester cathedral 20.9075 23.5957 22.1560
Hurricane 26.8154 26.0245 25.4556
Pills 28.0535 31.3776 25.7641
Dollar 22.1636 21.4012 24.2334
Lena 29.5776 32.4471 25.3655
Bear 27.0785 30.5968 25.9224
Einstein 31.3399 33.0679 24.2774
Paper machine 27.6452 29.9093 25.4409
Rose 31.0464 30.2284 29.6955

Table III shows the results using the metric UIQI as a com-
parison criteria. In this case, we observed a strong fluctuation,
making the results obtained with UIQI inconclusive.

Table IV shows the results obtained with the quality metric
SSIM. The SSIM metric is one of the most reliable qual-
ity metrics available in the literature today, being able to
give a better estimate of quality instead of only measuring
the error differences between a pair of images [17]. When
compared to the WinHD algorithm, a very computationally
intense algorithm, the proposed method presents better results
in around 60% of the tested images. When compared to the
FBIH algorithm, the proposed method presents better results
in all tested images. This is in agreement with the visual
(perceptual) results presented in Fig. 7. In particular, notice



that the proposed method performed very well (according to
SSIM) for images with a high level of detail, such as ‘Rose’,
‘Pills’ and ‘Papermachine’.

TABLE III
RESULTS USING UNIVERSAL IMAGE QUALITY INDEX (UIQI)

Image FBIH WinHD Proposed
Cameraman 0.9413 0.9675 0.9978
Galaxy 0.9993 0.9992 0.9290
Peppers 1.0003 0.9945 0.9688
Chester cathedral 0.99867 1.0006 0.9915
Hurricane 0.9840 0.9822 0.8949
Pills 0.9976 1.0054 0.9742
Dollar 0.9973 0.9981 0.9914
Lena 0.9989 0.9999 0.9804
Bear 0.9158 0.9427 0.9092
Einstein 0.9998 0.9999 0.9875
Paper machine 0.9710 0.9995 0.9596
Rose 1.0513 0.6299 0.5358

TABLE IV
RESULTS USING STRUCTURAL SIMILARITY (SSIM)

Image FBIH WinHD Proposed
Cameraman 0.7375 0.9139 0.8599
Galaxy 0.8640 0.9191 0.9076
Peppers 0.7894 0.8469 0.8590
Chester cathedral 0.6648 0.8337 0.8352
Hurricane 0.7451 0.6842 0.8529
Pills 0.8597 0.9157 0.9279
Dollar 0.7352 0.6783 0.8921
Lena 0.8318 0.8896 0.8698
Bear 0.8092 0.8807 0.8418
Einstein 0.8513 0.9173 0.8988
Paper machine 0.8384 0.8788 0.9169
Rose 0.6697 0.6590 0.8278

We also compared the elapsed time for executing the
proposed algorithm and the two others algorithms. In Table V,
we list these times (in seconds) for all images in our dataset.
As can be observed from the results, the proposed model
has a much better performance than the other two reference
methods, which makes it very adequate to any application that
requires real-time processing. It is worth pointing out that both
the dispersed-dot ordered algorithm and the proposed inverse
halftoning algorithms are highly parallelizable algorithms. So,
the processing time could be reduced even further for both the
codification and the decodification phases.

TABLE V
ELAPSED TIME FOR RECONSTRUCTION (IN SECONDS).

Image Proposed FBIH WinHD
Cameraman 1.79 2.46 35.14
Dollar 1.01 3.00 52.27
Einstein 1.53 3.00 53.36
Galaxy 1.44 3.01 65.78
Hurricane 1.24 2.99 75.48
Rose 1.24 2.02 73.13
Lena 1.26 2.40 36.29

V. CONCLUSIONS AND FUTURE WORK

We have presented a simple and fast approach for recon-
structing halftoned images generated using dispersed-dot or-

dered dithering algorithms. The proposed algorithm produces
images with a better perceptual quality than the available
algorithms in the literature, while preserving most of the fine
details of the original gray-level image. The proposed method
has a high performance, which can be further improved with
the use of parallelization techniques. Also, perceptual results
would certainly benefit from the use of low-pass and high-pass
filters optimized by taking into account a quality metric that is
better correlated with perceptual quality, as opposed to PSNR.
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Fig. 5. Results obtained for the images ‘Rose’, ‘Einstein’, ‘Chester cathedral ’ and ‘Paper machine’: original image (left), halftoned image (center), and
reconstructed image using the proposed algorithm (right).



Fig. 6. Results obtained for the images ‘Bear’, ‘Hurricane’, ‘Peppers’ and ‘Pills’: original image (left), halftoned image (center), and reconstructed image
using the proposed algorithm (right).



Fig. 7. Results obtained using the Proposed (left), FBIH (center), and WinHD (right) inverse halftoning methods for the images ‘Bear’, ‘Chester cathedral’,
‘Lena’ and ‘Peppers’.


