
Stochastic Competitive Learning Applied to
Handwritten Digit and Letter Clustering

Thiago C. Silva, Thiago H. Cupertino, and Liang Zhao
Department of Computer Sciences, Institute of Mathematics and Computer Science (ICMC)

University of São Paulo (USP)
Av. Trabalhador São-carlense, 400, 13560-970, São Carlos, SP, Brazil

e-mail: {thiagoch, thiagohc, zhao}@icmc.usp.br.

Abstract—Competitive learning is an important mechanism
for data clustering and pattern recognition. In this paper, we
present a rigorous definition of a new type of competitive
learning scheme realized on large scale networks. In this model,
several particles walk in the network and compete with each
other to occupy as many nodes as possible, while attempting to
reject intruder particles. As a result, each particle will dominate
a cluster of the network. Moreover, we propose an efficient
method for determining the right number of clusters by using
the information generated by the competition process itself,
avoiding the calculation of an external evaluating index. In
this work, we apply the model to handwritten data clustering.
Computer simulations reveal that the proposed technique obtains
satisfactory cluster detection accuracy.

Keywords-Stochastic competitive learning; handwritten pattern
clustering.

I. INTRODUCTION AND RELATED WORK

Competition is a natural process observed in nature and
in many social systems sharing limited resources, such as
water, food, mates, territory, recognition, etc. Competitive
learning is an important category of machine learning and
is widely implemented in artificial neural networks to realize
unsupervised learning. Early works include the development
of the famous Self-Organizing Map (SOM) [1], Differential
Competitive Learning [2], and Adaptive Resonance Theory
(ART) [3]. From then on, many competitive learning neural
networks have been developed [4] and a wide range of
applications, such as data clustering, data visualization, pattern
recognition, and image processing have been considered [5].
Without a doubt, competitive learning represents one of the
main successes of neural network development. However, at
least two problems remain: (i) The constructed network is
usually small. So competition occurs among a small number of
neurons. Consequently, the model may not exhibit high robust-
ness in data processing. (ii) There is not a direct connection
between the input data and the trained competitive learning
neural networks. When a large data set is mapped to a network
of a small number of neurons, apparently, it is hard or even
impossible to see the correspondence between the original
data and the processing result (the trained neural network).
This is one of the reasons why neural networks sometimes
are considered as “black box” systems.

A random walk is a mathematical formalization of a
trajectory that consists of taking successive random steps.

It has been used to describe many natural phenomena and
has also been applied to solve a wide range of engineering
problems [6], such as graph matching and pattern recogni-
tion, image segmentation, neural network modeling, network
centrality measure, network partition, communication network
construction and analysis, among many others. However, to
our knowledge, there is no theory yet to describe a process of
several interacting random walks.

In order to inherit the interesting features and, at the same
time, overcome the problems of competitive learning neural
networks, in this paper, we study a new type of competitive
learning mechanism. Consider a large scale graph (network),
where several particles walk in the network and compete with
each other to mark their own territory (occupy as many nodes
as possible), while they also attempt to reject particle intruders.
Each particle can perform a random walk by choosing any
neighbor to visit, a biased walk by choosing the node with
the highest domination to visit or a combination of them.
The straightforward applications are the community detection
in networks and data clustering. In essence, data clustering
can be considered as a community detection problem once
a network is constructed from the original data set, where
each node corresponds to a data item and the connections are
established by using a certain similarity measure. Considering
such applications, the competitive walking process reaches
dynamics equilibrium when each community or a data cluster
is dominated by only one particle.

Interestingly, the particle competition process is rather simi-
lar to many natural and social processes, such as resource com-
petition by animals, territory exploration by humans (animal),
election campaigns, etc. Moreover, the combined random-
biased walking of competitive particles can largely improve the
community detection rate. In this way, the model corroborates
the importance of the randomness role in evolutionary systems,
i.e., randomness serves to automatically escape from some
undesirable traps and to explore new spaces. Thus, our model
shows that a certain level of randomness is essential for the
learning process. Such randomness represents the “I don’t
know” state and serves as a novelty finder. It can also help
learning agents, like particles in our model, to escape from
traps in physical or learning spaces.

The particle competition model was originally proposed in
[7]. However, only a procedure is defined there. In this paper,

we present a rigorous model definition, i.e., we represent
the particle competition process by a stochastic dynamical
system. Besides of this, we also apply the model to solve
data clustering problems. Moreover, we have developed an
efficient method for determining the right cluster number
by using the dominance level information generated by the
competition process itself, i.e., the determination procedure
is already embedded in the model. As a result, it does not
increase the model’s complexity order. Since the determination
of the right or optimal number of clusters is an important
issue in data clustering, our method presents a contribution
to this end. Another interesting feature of the model is that
the underlying network is constructed directly from the input
data set, the correspondence between the input data and the
processing result (the final network) is maintained. As a result,
the “black box” effect can be avoided at a large extent.

Over the last decade there has been an increasing interest
in network research, with the focus shifting away from the
analysis of single small graphs to the consideration of large-
scale ones, called complex networks. Such networks have
emerged as a unified representation of complex systems in
various branches of science. In general, they are used to model
systems having a nontrivial topology and are composed of a
large amount of vertices [8]. One of the striking phenomena
of complex networks is the presence of communities. The
notion of community in networks is straightforward, each
community is defined as a subgraph whose nodes are densely
connected within itself but sparsely connected with the rest
of the network. Community detection in complex networks
has turned out to be an important topic in graph and data
mining [9]. In graph theory, community detection corresponds
to graph partition, which has been shown to be a NP-complete
problem [9]. For this reason, a lot of efforts have been spent
to develop more efficient approximate solutions, such as the
spectral method [10], modularity optimization [11], among
others. For a recent review of this topic, see [9]. As having
been mentioned, in this work, we will show how the proposed
model can be applied to solve community detection problems
and consequently to data clustering problems. Computer sim-
ulation results show that the network-based approach has an
advantage to detect various forms of cluster.

The remainder of the paper is organized as follows. The
proposed model definition is described in Section 2. In Section
3, computer simulations are performed to show how the
proposed model solves the problem of finding the number of
clusters in the data set, as well as how the algorithm behaves
in data clustering tasks. Finally, Section 4 concludes the paper.

II. MODEL DESCRIPTION

In this section, the proposed competitive learning model
pertaining to the unsupervised scheme is presented in details.

A. A Brief Overview of the Model

Consider that we are given a graph G = 〈V,E〉, where
V = {v1, . . . , vV } is the set of nodes and E = {e1, . . . , eE} ⊆
V×V is the set of edges. In the competitive learning model, a

set of particles K = {1, ...,K} is inserted into the vertices of
the network in a random manner. Each particle can be thought
of carrying a flag and its objective is to conquer new territories
- represented here by the vertices -, while defending its owned
territories. In this case, a competition process will naturally
take place amongst the particles. When a particle visits an
arbitrary vertex, it strengthens its own domination level on
the vertex and simultaneously weakens the domination levels
of all other rival particles on the same vertex. It is expected to
this model, in a broad horizon of time, will end up uncovering
the clusters in the network in such a way that each particle
dominates a cluster.

A particle in this model can be at two modes: either dead or
alive. Whenever the particle is alive, it navigates in the network
with a combined behavior of randomness and biased walking,
whereas, when it is dead, the particle changes to a movement
term that compels it to get back to its owned territory. The
randomness term is responsible for the adventuring behavior
of the particle, i.e., it visits vertices without taking into account
their domination levels. The biased walking term is responsible
for the defensive behavior of the particle, i.e., it prefers to
reinforce its owned territory rather than to visit a vertex that
is not being dominated by the particle. In order to make this
process suitable, each particle carries an energy term with it.
This energy increases when the particle is visiting a vertex
whose owner is the visiting particle, and decreases whenever
it visits a vertex that is being owned by a rival particle. If this
energy drops to a minimum allowed value, the particle dies
at that time step and teleports back to safe ground, i.e., its
owned territory at the next time step. With this confinement
mechanism, we expect to restrain the acting region of each
particle and, thus, reduce long range, apparently meaningless
visits in the network.

B. The Competitive Transition Matrix

In this section, we supply how each probability matrix that
composes the particle movement is constructed.

1) Determination of P(k)
transition(t): Regarding the move-

ment policy of each particle k ∈ K, it is basically composed
of two distinct types: (i) a random movement term, modeled
by the matrix P(k)

rand, which permits the particle to adventure
through the network, without accounting for the defense of
the previously dominated vertices; (ii) a biased movement
term, modeled by the matrix P(k)

bias, which is responsible for
inducing the particle to reinforce the vertices that are owned
by itself, i.e., the particle will prefer visiting its dominated
vertices, instead of a randomly selected one. In order to
model such dynamics, consider the stochastic vector p(t) =
[p(1)(t), p(2)(t), . . . , p(K)(t)], which denotes the localization
of the set of K particles presented to the network, where
the kth-entry, p(k)(t), indicates the location of the particle
k in the network at time t, i.e., p(k)(t) ∈ V,∀k ∈ K. It is
desired to find a transition matrix that governs the probability
distribution of the particles’ movement to the immediate future
state, p(t+ 1) = [p(1)(t+ 1), p(2)(t+ 1), . . . , p(K)(t+ 1)].

With only those two types of movement behavior, it is
possible that the owned territory of each particle to be swapped
between them. As there is no force that compels the particles
to regress to their owned territory time to time, the particles
can be considered free to travel anywhere in the network with
no penalties; so, the aforementioned scenario could happen
a substantial number of times until the system comes to a
stationary state. On account of that, the number of steps that
the system would require to converge is expected to be usually
high with only these two movement behaviors. In order to
overcome that, we introduce energy levels for all particles
and, with the aid of this measure, we apply some restrictions
on all particles in the following manner: if a particle visits a
vertex that is being dominated by itself, then the corresponding
energy of that particle increases. Likewise, if a particle visits
a vertex that is being dominated by a rival particle, then
the corresponding energy of that particle is drained. If the
actual energy of a specific particle reaches a certain minimum
threshold, then it is said that the particle has died at that
step. In the subsequent step, that particle is automatically
resurrected in a vertex that belongs to it in a random manner.
With this behavior, we expect that the particles will no longer
wander free in the network, possibly swapping territories
with other particles several times. Thus, this characteristic is
expected to restrain the particles’ effective acting region.

With the intent of modeling such dynamics, we introduce
the following random quantity S(t) = [S(1)(t), . . . , S(K)(t)],
where the kth-entry, S(k)(t) ∈ {0, 1}, indicates whether the
particle k is dead or alive at time t. Specifically, if S(k)(t) = 1,
then particle k is said to be dead. Likewise, when S(k)(t) = 0,
the particle is said to be alive. Thus, if S(k)(t) = 0, the particle
navigates in the network according to a combined behavior
of randomness and biased movement towards the dominated
vertices. However, if S(k)(t) = 1, the particle switches its
movement policy to a new transition matrix, here entitled
P(k)

res (t), which is responsible for taking the particle back to its
owned territory (“safe ground”). In brief terms, S(t) acts as
a switch that determines the movement policy of all particles
at time t. With all this information in mind, we are able to
define the transition matrix associated to the particle k as:

P(k)
transition(t) , (1− S(k)(t))

[
λP(k)

bias(t) + (1− λ)P(k)
rand(t)

]
+ S(k)(t)P(k)

res (t) (1)

where λ ∈ [0, 1] indicates the desired fraction of biased
movement that all particles in the network will perform,
P(k)

bias(t) portrays the transition matrix with a probability
distribution according to the biased behavior described above
and, likewise, P(k)

rand(t) describes the random behavior, S(k)(t)

indicates whether particle k is alive or dead, and P(k)
res (t)

is responsible for the particle resurrection behavior. Specifi-
cally, P(k)

transition(i, j, t) indicates the probability that particle
k makes a transition from vertex i to j at time t.

2) Determination of Prand: The derivation of the random
movement matrix is straightforward, since this matrix is only

dependent on the adjacency matrix of the graph, which is
previously known. Then, each entry (i, j) ∈ V × V of the
matrix P(k)

rand(t) is given by:

P(k)
rand(i, j) ,

ai,j∑V
u=1 ai,u

(2)

where ai,j denotes the (i, j)th-entry of the adjacency matrix A
of the graph. Note that (2) resembles the traditional Markovian
matrix for a single random walker, here symbolized as a
particle [12]. Also note that matrix P(k)

rand(t) is time-invariant
and is the same for every particle in the network; therefore,
we will drop the superscript k whenever the situation makes
it clear. In short terms, the probability of an adjacent neighbor
to be visited using only the random movement behavior is
proportional to the edge weight linking the vertex that a
specific particle is visiting and that neighbor vertex.

3) Determination of P(k)
bias(t): In order to assist in the cal-

culation of the matrix associated to the biased movement term,
P(k)

bias(t), for a given particle k ∈ K, we introduce the following
random quantity: Ni(t) , [N

(1)
i (t), N

(2)
i (t), . . . , N

(K)
i (t)],

where dim(Ni(t)) = 1×K and Ni(t) stands for the number
of visits received by vertex i up to time t (included) by all
the particles scattered throughout the network. Specifically,
the kth-entry, N (k)

i (t), indicates the number of visits made
by the particle k to vertex i up to time t. We now simply
extend this notation to all vertices in the network, defining
the global matrix that maintains the number of visits made by
every particle in the network to all the vertices as: N(t) ,
[N1(t), N2(t), . . . , NV (t)]T where dim(N(t)) = V ×K.

Let us also formally define the domination level vec-
tor of vertex i, N̄i(t), according to the following random
variable: N̄i(t) , [N̄

(1)
i (t), N̄

(2)
i (t), . . . , N̄

(K)
i (t)], where

dim(N̄i(t)) = 1×K and N̄i(t) denotes the relative frequency
of visits of all particles in the network to vertex i until the
time t (included). Particularly, the kth-entry, N̄ (k)

i (t), indicates
the relative frequency of visits performed by particle k to
vertex i up to time t. Similarly to the previous case, we
extend this notion to all vertices in the network, defining the
domination level matrix that sustains all the domination levels
imposed by every particle in the network to all the vertices
as: N̄(t) , [N̄1(t), N̄2(t), . . . , N̄V (t)]T , where dim(N(t)) =

V ×K. Mathematically, we define each entry of N̄ (k)
i (t) as:

N̄
(k)
i (t) ,

N
(k)
i (t)∑K

u=1N
(u)
i (t)

(3)

In view of that, we can define the (i,k)th-entry of the
matrix responsible for the biased movement behavior of a
single particle k ∈ K, denoted here by P(k)

bias(t), at time t,
as following:

P(k)
bias(i, j, t) ,

ai,jN̄
(k)
j (t)∑V

u=1 ai,uN̄
(k)
u (t)

(4)

Clearly, from (4), it can be observed that each particle has
a different transition matrix associated to its biased movement
and that, unlike the matrix associated to the random movement,
this matrix is time-variant with dependence on the domination
levels of all the vertices (N̄(t)) in the network at the time t.

4) Determination of P(k)
res (t): Now we define each entry

of P(k)
res (t) that is accounted for teleporting a dead particle

k ∈ K back to its owned territory. Suppose that particle k is
visiting vertex i when its energy is completely depleted. In
this situation, the particle teleports back to an arbitrary vertex
j of its possession according to the probability given by:

P(k)
res (i, j, t) ,

1{
arg max

m∈K

(
N̄

(m)
j (t)

)
=k

}
∑V
u=0 1

{
arg max

m∈K

(
N̄

(m)
u (t)

)
=k

} (5)

where arg max
m∈K

(.) returns the index m which maximizes the
argument and 1{.} is the indicator functions that yields 1 if
the argument is logically true and 0, otherwise. Indeed, a
careful analysis of the expression in (5) shows the probability
of returning to an arbitrary vertex j of the particle’s possession
follows a uniform distribution. Moreover, all rows of this
matrix are equal, showing that this movement does not depend
on which vertex a specific particle is. This provides a compact
way of computationally representing such structure. With that
in mind, (5) only results in non-zero transition probabilities for
vertices j that are being dominated by particle k, regardless of
the existence of a connection between i and j in the adjacency
matrix. In essence, once the particle is dead, the switch is
enabled, which, in turn, compels the particle k to return to
its previously owned territory, no matter if there is a physical
connection or not in the adjacency matrix. If no vertex is being
dominated by particle k at time t, we deliberately put it in any
vertex of the network in a random manner, using a uniform
distribution.

5) Particle’s Energy Calculation and Update Rule: Now
we proceed to the development of the particle’s energy update
rule. Firstly, it is useful to introduce the stochastic vector
E(t) = [E(1)(t), . . . , E(K)(t)], where the kth-entry, E(k)(t) ∈
[ωmin, ωmax], ωmax ≥ ωmin, denotes the energy level of
particle k at time t, whose update rule is given by:

E(k)(t) =

{
min(ωmax, E

(k)(t− 1) + ∆), if owner(k, t)

max(ωmin, E
(k)(t− 1)−∆), if not owner(k, t)

(6)

where owner(k, t) =

(
arg max

m∈K

(
N̄

(m)

p(k)(t)
(t)
)

= k

)
is a logi-

cal expression that essentially yields true if the vertex that par-
ticle k visits at time t (i.e., vertex p(k)(t)) is being dominated
by the visiting particle, and false otherwise; dim(E(t)) =
1 × K; ∆ > 0 symbolizes the increment or decrement of
energy that each particle will receive at time t. Indeed, the
first expression in (6) represents the increment of the particle’s
energy and occurs when the particle k visits a vertex p(k)(t)

which is dominated by itself, i.e., arg max
m∈K

(
N̄

(m)

p(k)(t)
(t)
)

= k.
Similarly, the second expression in (6) portrays the decrement
of the particle’s energy and occurs when particle k visits a
vertex p(k)(t) which is not dominated by itself, i.e., there is
a domination level on that vertex that is higher than the one
imposed by particle k. Hence, in this model, particles will
be given a penalty if they are wandering in rival territory,
so as to minimize aimless navigation of the particles in the
network which would only reduce the speed of convergence
of the dynamical system. By the same reasons, we expect
this behavior to improve the final classification rate of the
algorithm.

Now we advance to the update rule that governs S(t),
which is responsible for determining the movement policy
of each particle. As we have stated, an arbitrary particle k
will be transported back to its domain only if its energy
drops to a threshold ωmin. With that in mind, it is natural
that each entry of S(k)(t) has to monitor the current energy
value of its corresponding particle, i.e., if it ever drop to the
given threshold, the switch must be enabled; analogously, if
the particle still has an energy value greater than this lower
threshold, then the switch should be disabled. Mathematically,
the kth-entry of S(t) can be precisely written as:

S(k)(t) = 1{E(k)(t)=ωmin} (7)

where dim(S(t)) = 1 × K. Specifically, S(k)(t) = 1 if
E(k)(t) = ωmin and 0, otherwise. As there is an upper limit
for the random variable E(k)(t), it is clear that if particle k
frequently visits vertices owned by rival particles, its energy
will decrease in such a way that it could reach the minimum
energy ωmin and, hence, die. The upper limit, ωmax, is estab-
lished to prevent any particle in the network to keep increasing
its energy to an undesirably high value (by constantly visiting
vertices in its territory), and, once this energy is high enough,
it could go far away from its territory and visit a substantial
number of vertices belonging to rival particles before dying,
thus, considerably decreasing the convergence time and the
cluster detection rate of the dynamical system.

C. The Stochastic Particle Competition Model

In light of all we have obtained in the previous section,
we are ready to enunciate the proposed dynamical system
which models the competition of particles in a given network.
The internal state of the dynamical system has been chosen
to be: X(t) = [N(t) p(t) E(t) S(t)]T and the proposed
competitive dynamical system as:

φ :



N
(k)
i (t+ 1) = N

(k)
i (t) + 1{p(k)(t+1)=i}

E(k)(t+ 1) =


min(ωmax, E

(k)
i (t) + ∆),

if owner(k, t)

max(ωmin, E
(k)
i (t) − ∆),

if not owner(k, t)

S(k)(t+ 1) = 1{E(k)(t+1)=ωmin}
(8)

where, by the considerations that we have previously stated,
dim(N(t)) = V ×K, dim(p(t)) = 1×K, dim(E(t)) = 1×K,
and dim(S(t)) = 1×K, resulting that dim(X(t)) = (V +3)×
K, with N

(k)
i (t) ∈ [1,∞), (i, k) ∈ S, where S is the space

spawned by V ×K. Observe that p(t+ 1) has no closed form
because it is qualified as a distribution with dependence on
p(t) and N(t), therefore its acquisition is merely by random
number generation. Succinctly, the internal state of system φ
carries the current total number of visits made by each particle
to each vertex in the network, the current localization of all
particles in the network, the current energy that each particle
holds, and the information about each particle whether it is
current alive or dead.

Note that system φ is nonlinear. This occurs on account of
the indicator function, which is nonlinear. The first equation
of system φ is responsible for updating the number of visits
at vertex i by particle k up to time t; the second equation is
used to maintain the current energy levels of all the particles
inserted in the network; and the third equation is used to trigger
the particle dead or alive, depending on its actual energy level.
It is valuable to emphasize that the first expression of system
φ must be used for every (i, k) ∈ S and the second and
third expressions must be performed for every k ∈ K with
the intention of one properly derive the full state X(t) of the
system φ. One can also see that system φ is clearly Markovian,
since it only depends on the present state to derive the future
state.

D. The Initial Conditions of the System

In order to run system φ, we need a set of initial conditions.
Firstly, particles are randomly put in the network, i.e., the
initial values of p(0) are set randomly. Due to the competition
nature, the particles will separate from each other even if
they are put together at the beginning. Regarding the initial
condition of the system φ, X(0), it is valuable to stress
that, with the purpose of (3) to be well-defined, all terms
in
∑K
k=1N

(k)
i (t) cannot be zero simultaneously. In this way,

we arbitrary set the initial value of N (k)
i to 1, ∀(i, k) ∈ S,

with no loss of fairness in the competition process. However,
we also have to distinguish two types of vertices: (i) vertices
from which the particles have generated at time t = 0; (ii) all
other vertices. In view of that, we suggest the following initial
condition to the matrix N(0):

N
(k)
i (0) =

{
2, if particle j is generated at vertex i

1, otherwise
(9)

Regarding the initial condition of E(0), we desire a fair
competition amongst the particles, so we place isonomy in
their initial energy values, i.e., all particles k ∈ K start out
with the same energy level given by:

E(k)(0) = ωmin +

(
ωmax − ωmin

K

)
(10)

Lastly, the variable that accounts for indicating whether the
particle k is dead or alive at the initial step, S(k)(0), ∀k ∈ K,
is given by:

S(k)(0) = 0 (11)

i.e., we deliberately set alive all particles in the network in the
beginning of the process.

E. The Algorithm

Algorithm 1 summarizes all the steps to iterate the system
φ. Essentially, the algorithm accepts the data set (data) and
three user defined parameters: the number of particles (K), the
desired fraction of preferential movement (λ) and a stopping
factor (ε). The algorithm is not sensitive neither to λ nor to ε.
Usually, good results can be obtained by selecting an arbitrary
value between 0.6 to 0.8 for λ. ε can be set to an arbitrary
small value. In all simulations in this paper, we simply use
ε = 0.05MV×K , where MV×K is a matrix with dimensions
V ×K full of ones. Note that the stopping criterion can also be
defined as a certain number of iterations. The only parameter
that needs to be calibrated according to each input data set
is the number of particles K, whose determination will be
described later.

Algorithm 1 The Particle Competition Pseudo-Algorithm.
1: procedure PARTICLECOMPETITION(K,data, λ, ε)
2: A← BUILDGRAPH(data)
3: p(0)← GENERATEPARTICLESATRANDOM(A)
4: Prnd ← CALCULATERANDOMMATRIX(A): Use (2)
5: N(0)← CALCULATEINITIALN(p(0)): Use (9)
6: N̄(0)← CALCULATENBAR(N(0)): Use (3)
7: E(0)← CALCULATEINITIALE(K): Use (10)
8: S(0)← CALCULATEINITIALS(): Use (11)
9: t← 1

10: repeat
11: for k = 1 to K do
12: P

(k)
pref(t)← CALCULATEPPREF(N(t− 1),p(t− 1)): Use (4)

13: P
(k)
rean(t)← CALCULATEPRES(N(t− 1),p(t− 1)): Use (5)

14: P
(k)
tran(t)← SETPTRAN(λ, Prnd,P (k)

pref(t),P (k)
rean(t)): Use (1)

15: p(k)(t)←CHOOSENEXTVERTICES(P (k)
tran(t),p(k)(t− 1))

16: end for
17: N(t)← UPDATEN(N(t− 1), p(t)): Use 1st eq. in (8)
18: N̄(t)← CALCULATENBAR(N(t)): Use (3)
19: E(t)← UPDATEE(E(t− 1),N̄(t), p(t)): Use 2nd eq. in (8)
20: S(t)← UPDATES(E(t)): Use 3rd eq. in (8)
21: t← t+ 1
22: until

∣∣N̄(t)− N̄(t− 1)
∣∣ < ε

23: return N̄(t)
24: end procedure

III. APPLICATION: CLUSTERING OF HANDWRITTEN
DIGITS AND LETTERS

In this section, we provide an application of data clustering
for our proposed method for two real-world data sets. Specif-
ically, in Subsect. III-A, we derive a dissimilarity measure
that we will use in the network formation step; in Subsect.
III-B, we supply some metainformation about the data sets,
as well as the parameters to be used in the clustering task;
in Subsect. III-C, we show a method for determining the

optimal number of particles to be inserted into the network;
and Subsect. III-D reveals the data clustering results that we
have obtained from our algorithm applied to the MNIST and
Letter Recognition databases. It is worth noting that in all
simulations in this section, since the parameters ωmin, ωmax,
and ∆ are not sensitive to the model performance, we usually
fix ∆ as being 5% of the interval ωmax−ωmin. Therefore, we
set ∆ = 0.05, ωmin = 0, and ωmax = 1.

A. The Network Formation Technique

In this section, we describe the proposed dissimilarity
measure, which is appropriate to be used in a graph-based
data representation. In this situation, the images (data items)
are portrayed by the vertices, while the data relationships are
given by the links. A link holds a weight that numerically
translates the similarity between the two vertices (images) at
each end of it. Each image can be seen as “square” matrix
η×η, where η stands for the width and the height of the image.
For rectangle images, a pre-processing is required to make its
width and height equal. We conventionally set the range of any
pixels to lie within the interval [0, 1] by merely a normalization
procedure. With that in mind, an arbitrary data item of the
problem, say xi, can be seen as a matrix with dimensions
η×η, where x(u,j) ∈ [0, 1],∀(u, j) ∈ {1, . . . , η}×{1, . . . , η}.

In order to construct the network, we are required to
establish a similarity measure. The traditional pixel-per-pixel
distance is rather insufficient in terms of reliably representing
data, since such measure is very sensitive to rotations and scale
alterations. With the purpose of overcoming this difficulty,
we propose a measure based on the eigenvalues that each
image inherently carries with it. First of all, we remove
the mean associated to each data item (image), so that we
have a common basis of comparison. After that, we calculate
the φ greatest eigenvalues of the image. The magnitudes of
the eigenvalues are related to the variations that the image
possesses, hence it is a natural carrier of information. The
greater its value, more information about the image it conveys.
In virtue of that, a good choice is to only extract the greatest
φ < η eigenvalues and drop the smaller values, since these do
not transport too much information about the image. In order
to give more emphasis to the largest eigenvalues in an ordered
manner, we associate weights to each eigenvalue position. In
other words, during the comparison process, the difference
between the first eigenvalues (the largest eigenvalues) of each
image will have a higher weight than the difference of the
second eigenvalues of each image, and so on, in a strictly
decreasing order.

With that in mind, consider that we are to compare the
similarity between two images, say xi and xj , in relation to
the φ largest eigenvalues. We first order the φ eigenvalues
of each image as: |λ(1)

i | ≥ |λ
(2)
i | ≥ . . . ≥ |λ(φ)

i | and |λ(1)
j | ≥

|λ(2)
j | ≥ . . . ≥ |λ

(φ)
j |, where |λ(k)

i | marks the kth eigenvalue in
magnitude of the ith data item. In this case, the dissimilarity ρ
(or equivalently the similarity which is given by 1−ρ) between
image i and j is given by:

ρ(i, j) =
1

ρmax

φ∑
k=1

β(k)
[
|λ(k)
i | − |λ

(k)
j |
]2

(12)

where ρ ∈ [0, 1], ρmax > 0 is a normalization constant, β :
N∗ → (0,∞) indicates a monotonically decreasing function
that can be arbitrary chosen by the user. In another words,
β(1) > β(2) > . . . > β(φ), which mathematically reflects the
importance of the ordering of the eigenvalues. If two images
are similar, then it is expected that the difference between each
pair of the first φ eigenvalues to be small, hence (12) will yield
a small value. On the other hand, when we take into account
two very distinct images i and j, their eigenvalues will be
somewhat different, yielding a big value for ρ(i, j).

As a final motivating remark, about elements with high
dimensionality, the used similarity measure is of utter im-
portance. In the case of this weighted eigenvalue similarity
measure, it is independent on the dimensionality of the data.
For instance, if we use a Minkowski measure, then as the
dimensionality of the data increases, the quality of the algo-
rithm will decrease, since the Minkowski measure is highly
dependent on the data dimensionality.

B. Overview of the Data Sets

In this work, we have used 2 well-known data sets in order
to show the effectiveness of our model, which are detailed as
follows.
• The modified Modified NIST data set [13], which is com-

posed of real handwritten numerical digits (“0” to “9”).
Specifically, database originally comprises a training set
with 60.000 samples and a test set of 10.000. Each sample
is composed of an image of dimensions 28× 28. In this
work, the clustering task will be performed solely on the
test set. Additionally, we have conducted a pre-processing
step over the samples. In this case, we will normalize
all the gray-level pixels from the image and reduce its
size to fit in a 20× 20 pixel box, while preserving their
aspect ratio. In this simulation, we will make use of the
dissimilarity measure based on the first 4 eigenvalues of
each image out of 20 eigenvalues, since the image has
dimensions 20× 20. In virtue of that, we will employ as
the function β in (12) an exponential decreasing function
with a time constant fixed at τ = 3 and a scaling factor
given by 16, i.e., β(x) = 16 exp(x3). Since, this function
is mapped into the interval (0,∞) and is a monotonically
decreasing function, it follows that this β function meets
all the aforementioned requirements. Specifically in this
situation, we have that the weights associated to each
eigenvalue are: β(1) = 11.46, β(2) = 8.21, β(3) = 5.89,
and β(4) = 4.22. With the aid of such dissimilarity
measure, we construct the graph using the k-nearest
neighbor technique with k = 3.

• The Letter Recognition data set [14], which comprises
20.000 samples, each possessing a characteristic vector
of 16 attributes. In this case, there are 26 classes to

be recognized, each one representing one letter of the
alphabet (“A” to “Z”). The dissimilarity measure to be
used will be the plain Euclidean distance. Regarding the
network formation technique, we employ the k-nearest
neighbor with k = 6.

C. Determining the Optimal Number of Particles and Clusters

In this section, we present a method for determining the
optimal number of particles to be inserted into the network.
Since the number of clusters is unknown a priori, we expect
that the number of particles in the system to be exactly equal
to the number of estimated particles. We reinforce that this
is an intrinsic method that can be naturally captured from
the competitive model itself. This happens on account of the
rich set of information that the model implicitly and explicitly
convey.

In light of that, we introduce a useful network measure
denominated average maximum domination level 〈R(t)〉 as:

〈R(t)〉 =
1

V

V∑
u=1

max
m∈K

(
N̄ (m)
u (t)

)
(13)

where 〈R(t)〉 ∈ [0, 1]. When 〈R(t)〉 is near 1, we can infer
that the competition in the network for vertices has ceased and,
thus, the vertices’ ownerships have been properly defined. In
another words, the greatest domination level of any vertex
possesses a number near 1, in average, showing that this
vertex is being completely dominated by only one particle.
This suggests that the clusters have been properly discovered
and dominated. On the other hand, when 〈R(t)〉 approximates
0, we have that an intense competition is taking place into the
network. In other words, the domination levels imposed by
each particle in any arbitrary vertex is almost equal, in average.
With these considerations in mind, a good suggestion for the
optimal K in a given network is exactly when 〈R(t)〉 reaches
its maximum value. Figure 1a shows the results obtained
from the MNIST database. Indeed, the average maximum
domination level 〈R(t)〉 reached its maximum value precisely
when the number of particles is equivalent to the number
of clusters in the problem, confirming our conjecture about
the effectiveness of 〈R(t)〉 to establish the optimal number of
particles in the model.

D. Clustering on the MNIST and Letter Recognition
Databases

In this section, we provide the cluster detection accuracy
reached by our algorithm in details, along with the detection
accuracy of a selected set of competing techniques. For the
calculation of this measure, we set that the ideal result is that
each cluster represents a “digit” (in the MNIST database) or
a “letter” (in the Letter Recognition database). Particularly,
Table I supplies details about the algorithms that we have
chosen for comparison matters. We have used the genetic
algorithm available in the Global Optimization Toolbox of
MATLAB with its default parameters with the goal of op-
timizing the parameters of the algorithms. In our case, we

10 20 30 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Particles

〈R
(t

)〉

Letter
MNIST

(a)

Fig. 1. The methodology applied for determining the optimal number of
particles (and the number of clusters) to be inserted into the model. We have
used λ = 0.6 in this simulation. One can verify that the optimal number
of particles coincides with the number of clusters in the network in both
data sets, which is, in this case, 10 clusters for MNIST and 26 clusters for
Letter Recognition. This confirms our prediction about the construction of
the average maximum domination level 〈R(t)〉. We have run 5 independent
simulations and have taken the average value for each point in the trace.

have optimized λ over the range 0.2 ≤ λ ≤ 0.8. The Genetic
Optimization Algorithm supplies the following optimal param-
eters: λ = 0.58. Table II reports the data clustering accuracy
reached by each of these algorithms. Some of these results are
readily extracted from [15] and [16]. For more information
about the parameters, see the aforementioned references. In
order to compare the algorithm, we use the mean rank. In
order to calculate it, for each data set we rank the algorithms.
In the end, for each algorithm, we take the mean of the rank
achieved by each algorithm. As we can verify by looking at the
mean rank results, our algorithm has reached one of the best
positions, showing the effectiveness of the proposed technique.

TABLE I
INFORMATION ABOUT A SELECTED SET OF DATA CLUSTERING

TECHNIQUES.

Technique Reference

Gaussian Mixture Model (GMM) [17]
K-Means [18]

Locally Consistent Gaussian Mixture Model (LCGMM) [16]
Spectral clustering algorithm with normalized cut (Ncut) [19]

Ncut Embedding All (NcutEmbAll) [15]
Ncut Embedding Maximum (NcutEmbMax) [15]

Even though by Table II, it does not seem significant
the results obtained by our algorithm, the proposed method
has some advantages: (i) low computational complexity (for
community detection tasks, the technique itself is O(V) for
sparse graphs and O(V 2) for dense graphs; whereas, for data
clustering, it is stacked at O(V 2) - these points will be studied
in an extended version), (ii) the information that the system
carries is very rich, for example, we can derive measures to
capture the number of clusters that an arbitrary data set has,

(a) (b) (c) (d) (e) (f) (g)

Fig. 2. A broad set of samples that are classified as being member of the cluster representing the pattern “2”. Note that samples that are adjacent are similar
with regards to the weighted eigenvalue dissimilarity function. The transitions from the sample (a) to (g) are captured from the maximum geodesic distance
between two vertices in the cluster representing pattern 2. In this case, the diameter of such cluster is 17. We have only provided 7 representative samples
above.

TABLE II
DATA CLUSTERING ACCURACY REACHED BY A SELECTED SET OF

ALGORITHMS. 10 INDEPENDENT RUNS ARE PERFORMED FOR EACH
STOCHASTIC-BASED TECHNIQUE AND THE CORRESPONDING MEAN IS

PROVIDED.

Letter Recognition MNIST Mean Rank

LCGMM 73.60 93.03 2.5
GMM 66.60 91.24 4.5
K-Means 53.10 87.94 7.0
NCut 68.80 88.72 5.5
NCutEmbAll 75.10 90.07 3.5
NCutEmbMax 75.63 90.59 2.5
Proposed Technique 74.53 91.37 2.5

or we can even find overlapping vertices in the graph, among
many other possibilities.

In order to further verify the robustness of the proposed
technique, we inspect the members of the cluster representing
the pattern “2”. Figure 2 depicts some examples that have been
extracted from this cluster. These samples are captured using
the following strategy: we compute the vertices that compose
the maximum geodesic distance of the cluster representing
pattern “2” (diameter), which, in this case, is 17. We only
show 7 representative samples. Samples that are adjacent are
more similar than those distant one from another. On the basis
of this analysis, we conclude that the graph representation
has successfully captured several variations of the pattern “2”,
showing the robustness of the proposed model.

IV. CONCLUSIONS AND FUTURE WORK

This paper proposes a mathematical model for competitive
learning in complex networks, biologically inspired by the
competition process taking place in many nature and social
systems. In this model, several particles navigate in the net-
work to explore their territory and, at the same time, attempt
to defend its territory against rival particles. Additionally, we
have derived an embedded technique for determining the right
number of clusters in a data set, which happens to be exactly
the number of particles to be inserted into the network. As
this is evaluated from the competition process itself, no extra
processing is necessary. Finally, simulations have been carried
out on handwritten digits and letters recognition and promising
results have been obtained, showing that the proposed com-
petitive model is effective for data clustering tasks.

As future work, we are aiming at proposing some appli-
cations and extensions of the model, such as (i) detection of

overlapping structures or vertices in the network, (ii) usage of
different number of particles to provide hierarchical cluster-
ing, (iii) extension of the algorithm for the semi-supervised
approach, among others.

ACKNOWLEDGMENT

This work is supported by the So Paulo State Research
Foundation (FAPESP) and by the Brazilian National Research
Council (CNPq).

REFERENCES

[1] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, 1990.

[2] B. Kosko, “Stochastic competitive learning,” IEEE Trans. Neural Net-
works, vol. 2, no. 5, pp. 522–529, 1991.

[3] S. Grossberg, “Competitive learning: From interactive activation to
adaptive resonance,” Cognitive Science, vol. 11, pp. 23–63, 1987.

[4] L. C. Jain, B. Lazzerini, and U. H. (eds.), Innovations in ART Neural
Networks (Studies in Fuzziness and Soft Computing). Physica-Verlag,
Heidelberg, 2010.

[5] G. Deboeck and T. K. (eds.), Visual Explorations in Finance: with Self-
Organizing Maps. Springer, 2010.

[6] L. Grady, “Random walks for image segmentation,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1768–1783, 2006.

[7] M. G. Quiles, L. Zhao, R. L. Alonso, and R. A. F. Romero, “Particle
competition for complex network community detection,” Chaos, vol. 18,
no. 3, p. 033107, 2008.

[8] M. Newman, “The structure and function of complex networks,” SIAM
Review, vol. 45, no. 2, pp. 167–256, 2003.

[9] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, pp. 75–174, 2010.

[10] M. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Phys. Rev. E, vol. 74, no. 3, p. 036104, 2006.

[11] ——, “Fast algorithm for detecting community structure in networks,”
Phys. Rev. E, vol. 69, no. 6, p. 066133, 2004.

[12] E. Çinlar, Introduction to Stochastic Processes. Englewood Cliffs, N.
J.: Prentice-Hall, 1975.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[14] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[15] F. Ratle, J. Weston, and M. L. Miller, “Large-scale clustering through

functional embedding,” in Proceedings of the European conference on
Machine Learning and Knowledge Discovery in Databases - Part II, ser.
ECML PKDD ’08. Springer-Verlag, 2008, pp. 266–281.

[16] J. Liu, D. Cai, and X. He, “Gaussian mixture model with local
consistency,” in AAAI’10, vol. 1, 2010, pp. 512–517.

[17] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[18] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. of the fifth Berkeley Symposium on
Mathematical Statistics and Probability, vol. 1. University of California
Press, 1967, pp. 281–297.

[19] J. Shi and J. Malik, “Normalized cut and image segmentation,” Berkeley,
CA, USA, Tech. Rep., 1997.

	Introduction and Related Work
	Model Description
	A Brief Overview of the Model
	The Competitive Transition Matrix
	Determination of P(k)transition(t)
	Determination of Prand
	Determination of Pbias(k)(t)
	Determination of P(k)res(t)
	Particle's Energy Calculation and Update Rule

	The Stochastic Particle Competition Model
	The Initial Conditions of the System
	The Algorithm

	Application: Clustering of Handwritten Digits and Letters
	The Network Formation Technique
	Overview of the Data Sets
	Determining the Optimal Number of Particles and Clusters
	Clustering on the MNIST and Letter Recognition Databases

	Conclusions and Future Work
	References

