
Mesh Processing using On-the-Fly Connectivity Reconstruction given by Regular
Triangulations

Fernando B. Pires∗, Carlos A. Dietrich†, João L. D. Comba†, Luis Gustavo Nonato∗
∗ICMC-USP, São Carlos, SP, Brazil
†Instituto de Informática - UFRGS

Figure 1. Morphing sequence between the Nicolo and Julius datasets. For each dataset, we create a Regular Triangulation (RT) using a linear programming
procedure that assign weights to vertices, thus allowing the connectivity to be represented implicitly. In this example, the morphing between the two meshes
is easily defined by computing intermediate vertices and weights, and reconstructing the connectivity by simply computing the RT.

Abstract—Several applications in visual and geometric com-
puting require the ability to modify graphical models in such
way that geometric queries or high quality renderings can
be generated with great accuracy. Polygonal meshes are the
popular choice of representation, and several mesh processing
operations such as morphing, level-of-detail or deformation,
among others, introduce challenges on how this task can be
performed. A common problem that arises in such applications
is that the result of a mesh processing operation can either
require a costly mesh re-computation, thus impairing real-time
usage, or it requires constant updates and additional storage
to keep several information required to perform this task.
In particular, the topological information is often harder to
maintain updated, since it is often destroyed or modified during
such operations. In this work we propose a new framework
to reconstruct connectivity information in such way that the
quality of the mesh can be recovered. The connectivity retrieval
is accomplished by assigning weights to the vertices of the
triangulation, converting it in a regular triangulation. Once
weights have been computed, the connectivity can be rebuild
by algorithms devoted to construct regular triangulation. The
effectiveness of our new paradigm is illustrated through two
mesh processing applications: mesh morphing and level-of-
detail rendering.

Keywords-regular triangulation; mesh morphing; mesh rep-
resentation;

I. INTRODUCTION

The manipulation of polygonal meshes raise several as-
pects that need to be carefully addressed in many geometric
processing operations. One important point is enforcing

topological consistency, which plays vital role in appli-
cations where polygonal meshes undergo transformations
(e.g. morphing, level-of-detail or subdivision surfaces). The
simple need of inserting and removing vertices requires
local reconstruction of connectivity to keep a valid mesh
representation. In many cases, intensive mesh manipulation
leads to a complete loss of the original incidence and
adjacency relations, being necessary a history mechanism
to recover the original mesh. Depending on the order that
operations are performed, different representation might be
obtained if some vertices are removed from a surface mesh
and later reinserted. Preserving such consistent reconstruc-
tion of connectivity information can be highly desirable,
specially in cases where much effort was spent on creating
a quality mesh. However, only a very restrictive class of
surface meshes can be algorithmically reconstructed from
the geometry of its vertices (i.e. disregarding connectivity
information).

In this work we address the problem of reconstructing the
connectivity of a mesh without storing the original incidence
and adjacency information. Our proposal is based on a linear
programming algorithm that converts a mesh into a Regular
Triangulation (RT), which consists of a generalization of
Delaunay Triangulation with weights assigned to vertices.
We demonstrate with this construction that the connectivity
information becomes implicitly encoded at vertex weights,
and can be algorithmically recovered at any given time.



Mesh operations using this framework are simply performed
by manipulating vertex weights. For instance, to remove
a vertex we reduce its weight to an appropriate negative
value, which causes its automatic elimination. In Figure 1
we illustrate the application of our framework to compute
the morphing between two different meshes.

We can summarize the main contributions of our work as:
1) we provide a theoretical and computational framework
that shows how a triangulation can be converted into a
regular triangulation, which is achieved by transforming the
geometrical problem into a well-posed linear programming
problem; 2) we show how the proposed framework, com-
bined with mesh parametrization methods, can be used to
reconstruct connectivity information that is implicitly stored
at the regular triangulation; 3) we validate the potential of
our approach in two important mesh operations, namely,
mesh morphing and level-of-detail simplification.

II. RELATED WORK

Regular Triangulations Regular Triangulations (also
known as Weighted Delaunay Triangulations) and Power
Diagrams are basic geometrical tools that have been often
used for problems related with surface [1] and quality
mesh generation for numerical simulations [2], [3]. The
widespread use of regular triangulations and power dia-
grams in mesh generation is related to the advances in
the algorithms that handle these geometrical entities, which
results in a solid foundation from both theoretical [4] and
computational [5], [6] sides.

The essential property of allowing the assignment of
weights to points renders regular triangulation and power
diagram as extremely flexible and dynamic geometrical
structures, whose usefulness goes beyond mesh generation.
Several theoretical and computational frameworks have been
developed towards understanding and exploiting such po-
tentiality. One example is the work of Edelsbrunner [7],
which explores the equivalence between regular triangula-
tions (power diagrams) and the boundary of convex polyhe-
dra in one dimension above (see also [8], [9]) to derive an
algebra of circles from which a new paradigm for designing
smooth surfaces is formulated. The relationship between
regular triangulation and convex polyhedra has also been
investigated by Massada et al. [10] to propose an output-size
sensitive algorithm to enumerate all regular triangulations.
From a theoretical point of view, it has been shown a close
connection to well established algebraic concepts, such as
the relation of regular triangulations and convex polyhedra
to Gröbner bases [11].
Mesh Processing Many mesh processing operations create
versions of input meshes with different connectivity informa-
tion. For instance, morphing between meshes requires gen-
erating an intermediate mesh that combines the geometric
and topological aspects of the input meshes. Common to
all methods discussed in the literature is the definition of

a correspondence between vertices and connectivity infor-
mation. This is often done by first creating a mapping into
an unified space in which the geometry and connectivity
from both meshes are mapped, and by a synthesis algorithm
that generates an intermediate mesh from this space. Several
papers discuss aspects that range from how and when
such mappings are defined [12], [13], [14], to how mesh
information can be mapped to a parametric space, such as the
inter-surface mapping described in [15]. There are several
variations on how the connectivity information is generated
for intermediate meshes [16], [17], [18], [19], [20]. In this
paper we offer an implicit way to reconstruct connectivity
information that can be used in conjunction with several
of the methods proposed. We also investigate how our
proposal can be applied to generating different level-of-detail
representations of a given mesh, discussed in several work
and summarized in the book by Lubke et al[21]. Unlike
local operations such as vertex collapses that incrementally
change topology information, our proposal provides a more
general way to locally reconstruct connectivity information
that allows more complex topological changes, which might
be necessary to provide a smoother simplification process.

III. REGULAR TRIANGULATION AND WEIGHT
CALCULATION

In this section we formally introduce basic definitions
and properties of the mathematical framework of RTs, and
describe how they can be employed towards representing
any triangulation. We restrict our presentation to the two-
dimensional Euclidean space R2, but a more general de-
scription can be found in [9].

A. Basic Concepts

A weighted point s ∈ R2 × R is defined by its location
p ∈ R2 and weight w ∈ R, and can be interpreted as a
circle with center p and radius w

1
2 . In this discussion we

assume positive weights, although there is no theoretical
inconvenient in dealing with negative weights (circles with
imaginary radius). The power distance between two circles
si and sj is defined as pow(si, sj) = d2(pi, pj)− wi − wj ,
where d(·, ·) is the Euclidean distance. In particular, the
power distance between si and a point x ∈ R2 is given
by pow(si, x) = d2(pi, x) − wi. If si and sj are two non
concentric circles, the set of points x such that pow(si, x) =
pow(sj , x) is called the chordale of si and sj . It is well
known that the three chordales defined by the circles si, sj ,
and sl (with non-collinear centers) intersect in a common
point p that fulfills w = pow(si, p) = pow(sj , p) =
pow(sl, p). Furthermore, the circle s with center p and radius
w

1
2 satisfies pow(si, s) = pow(sj , s) = pow(sl, s) = 0 and

is called the orthocircle of si, sj and sl.
Let hsi

(sj) denote the closed half-space bounded by the
chordale of si and sj that contains the points with the



smallest power distance with respect to si. The power cell
of si is given by

V (si) =
⋂

j, j 6=i

hsi(sj) (1)

Letting S = {s1, . . . , sn} be a set of non-concentric
circles, the power cells of the circles in S comprise a
partition of R2 in convex polygons, the so-called Power
Diagram (PD(S)). The Power Diagram coincides with
the usual Voronoi Diagram if all circles in S have the
same radius. However, the Power Diagram produced by
circles with different radius may not satisfy the containment
condition, that is, a circle si may not be contained in its
power cell. Furthermore, depending on the weights, a circle
can give rise to an empty power cell. In this case, such circle
is called redundant.

If we suppose that the center of the circles in S are not
collinear, then the intersection of three (or more) power cells
is either empty or a vertex of PD(S). It is not difficult to
realize that a vertex of PD(S) is the center of the orthocircle
defined by at least three circles whose power cells have non-
empty intersection. In a non-degenerate case, each vertex v
of PD(S) is defined by the intersection of exactly three
power cells. In such case, the center of the three circles
whose power cells intersect in v define a triangle and the
union of all triangles makes up a simplicial complex, called
Regular Triangulation (we are using the term “Regular
Triangulation” as synonymous with “weighted Delaunay
triangulation, though some authors make distinction between
them). In fact, such a correspondence leads to a duality
relationship that associates circles to power cells, power
cell edges to triangle edges and Power Diagram vertices
to triangles, in this last case the Power Diagram vertex is
called the orthocircle of the associated triangle. Note that
redundant circles do not have dual power cells, and thus
do not appear at the RT. From the duality property we can
obtain RT from the Power Diagram (and vice versa) in O(n).
In the two-dimensional case existing algorithms can compute
both structures in O(n log n) [6] (expected time).

An important fact that is deeply exploited in this work
is the strong relation between Power Diagrams in R2 and
arrangement of planes in R3. Such a relationship can be
obtained by associating to each circle si ∈ S a non vertical
plane in R3 which is defined by the following function:

πsi
(x) = 2 < x, pi > − < pi, pi > +wi (2)

where < ·, · > is the usual dot product in R2. It can
be shown that a point x ∈ R2 lies in V (si) iff, at x,
πsi
≥ πsj

, i 6= j. Thus, PD(S) is the vertical projec-
tion of the Upper Envelope of the planes πsi , which is
a convex polyhedron in R3 (for a detailed definition of
Upper Envelope and its relation with the Power Diagram
see [8]). Figure 2 illustrates the correspondence between
Power Diagram, Regular Triangulation, and Upper Envelope.

Figure 2. Power Diagram, Regular Triangulation and Upper Envelope.

B. The Dynamics of Power Diagrams

Equation (2) helps us to understand the behavior of
PD(S) when the radius (weight) of a circle changes.
Suppose that both PD(S) and RT (S) have already been
computed from a set of circles S and let si be a circle of
S. When the radius of si increases the plane πsi

moves up,
enforcing the center of the orthocircles that comprise the
vertices of V (si) to be moved away from pi (center of si),
as illustrated in figure 3.

Figure 3. The center of the neighbor orthocircles move away from the
center of si when wi increases.

Due to the duality relationship, the RT remains unchanged
until the increase of wi gives rise to a degenerate case, that
is, two diagram vertices are collapsed into a single one,
causing the intersection of more than three power cells in
such vertex. When a degenerate case occurs, any further
increase of wi gives rise to an edge flipping in the RT, as
shown in Figure 4. A similar phenomenon occurs when the
weight wi is reduced.

(a) (b) (c)

Figure 4. Edge flipping after a degenerate case.a) original configuration b)
the increase in the weight of si gives rise to a degenerate case; c) further
increase of wi causing an edge flip.

The dynamic process described above allows us to realize
how to control the weights so as to avoid edge flipping.
Furthermore, the understanding of such a dynamics is the
main key to convert any given triangulation into a RT, as
we shall see in the next subsection.



C. Weight Calculation

Let P = {p1, . . . , pn} be a set of points in R2 and T be a
simplicial decomposition of the convex hull of P . Our goal
is to compute weights for the points in P so as to convert
T into a RT.

Let σ = [pi, pj , pk] and τ = [pj , pk, pl] be two triangles
of T sharing a common edge e with ends pj and pk. Suppose
that weights wj , wk, wl have already been assigned to the
vertices of τ . A degenerate case occurs if we tune wi in such
a way that the triangles σ and τ share the same orthocircle.
Using (2) one can build the system of equations (3) whose
solution supplies x (the center of the orthocircle) and the
value of wi that causes the degeneracy: πsi

(x)− πsj
(x) = 0

πsi
(x)− πsk

(x) = 0
πsi(x)− πsl

(x) = 0
(3)

By solving the system (3) one obtain:

wi = −aj(clbk − ckbl) + ak(cjbl − clbj) + al(ckbj − cjbk)
aj(bk − bl) + ak(bl − bj) + al(bj − bk)

(4)
where a? = 2(px

i−px
?), b? = 2(py

i−p
y
?), and c? =< p?, p? >

− < pi, pi > −w?, ? = j, k, l (px and py denote the
Cartesian coordinates of p). It is important to point out that
in equation (4) wi depends linearly on wj , wk and wl.

As formulated, the value of wi computed from equation
(4) gives rise to a degenerate case. However, based on the
dynamics of RTs discussed before, if the weight of pi is set
as wi − ε, for any ε > 0, the degeneracy can be removed,
thus assuring the edge e in the RT. From this observation
and the linear dependency of wi regarding wj , wk and wl,
one can rewrite equation (4) as:

αiwi + αjwj + αkwk + αlwl ≤ G+ ε (5)

where the coefficients α?, ? = i, j, k, l, and the term G can
be obtained by an algebraic manipulation of (4).

By applying the above reasoning for each interior edge of
T we obtain a linear system of inequalities from which one
can obtain weights for points in P so as to convert T into a
RT. In fact, such system of inequalities supplies a multitude
of possible weights for the points in P . In order to reach
an unique solution we can introduce an objective function
that, jointly with the system of inequalities (5), gives rise
to a linear programming problem, which can be solved by
conventional methods such as the simplex method [22]. In
our implementation we are assuming the sum of the weights
as objective function, that is, we are looking for the solu-
tion that minimizes the weights summation. This particular
choice is easy to implement and prone to produce solutions
in which most weights are equal to zero, which can be
desirable in some situations. It is worth mentioning that other
objective functions could be employed. The development

describe above allow us to state the problem of converting
a given triangulation T into a RT as follows:
The RT Linear Programming Problem: Let P =
{p1, . . . , pn} be a set of points in R2 and T a triangulation
for the convex hull of P . T can be converted into a RT by
associating to points in P the weight {w1, . . . , wn}, which
satisfy the following linear programming problem:

minimize : Z =
n∑

s=1

ws

subject to : αiwi + αjwj + αkwk + αlwl ≤ Gr + ε(6)
ws ≥ 0

r = 1, . . . ,m; s = 1, . . . , n

where m is the number of internal edges of T and i, j, k, l
are the indices of all four points pi, pj , pk, pl defining a
quadrilateral whose diagonal is an edge of T .

Although there is no theoretical guarantee regarding the
solution of the LP problem above (in fact there are cases
where no solution exists), in all experiments we have per-
formed we were able to nd a set of weights for the vertices
that allowed to rebuild the original triangulation correctly.

As discussed in the introduction, the topological structure
of the triangulation T can be discarded after assigning
weights to the points in P , as the original triangles and
edges can be recovered algorithmically, as for example by
using the incremental ipping algorithm [6]. This result is
very useful in a wide range of applications, two of which
are discussed in the next section.

IV. MESH OPERATIONS USING RTS

In this section we summarize a recipe for using regular
triangulations to perform mesh operations. Here we assume
that a valid mapping of the input mesh to a 2D convex
parametric space is possible, and limit the application of the
framework of regular triangulations to a two-dimensional
case. Given an input 3D mesh M , we first create a
parametrization to a 2D convex domain. Using the mesh
vertices mapped to the parametric space and the connectivity
of M we define a 2D triangulation, which is converted into a
2D regular triangulation as described in the previous section.

At this point the connectivity is encoded at the weights
of the regular triangulation, and therefore the original con-
nectivity can be discarded. All further mesh processing
operations operate over the parametric domain. Since this
domain is always defined, we guarantee that we always
have a valid triangulation at the end. The generation of
a new mesh with different connectivity information is ob-
tained by simply discarding vertices from the triangulation
in the parametric domain or setting a given weight to a
negative value. We rebuild the regular triangulation from the
remaining vertices and their corresponding weights (several
algorithms are described in the literature for this, we are



currently using the one provided by the CGAL library).
Figure 5 illustrates an example, showing a given mesh (a), its
parametrization to a 2D domain (b), the removal of vertices
in the parametric space (c) and the resulting mesh with new
connectivity obtained (d).

(a) (b) (c) (d)

Figure 5. Example of different connectivity reconstructions using regular
triangulations. Given a input mesh (a), deletion of vertices is performed in
its parametric space (b), which results a new set of vertices that is used to
create a new regular triangulation (c), which produces a new connectivity
that is copied to corresponding vertices of the resulting mesh (d).

V. APPLICATIONS

In this section we validate the framework of regular
triangulations in two mesh processing operations: morph-
ing between meshes, and mesh simplification to generate
continuous level-of-detail. Our focus in these experiments is
to illustrate the usefulness and potential of the framework,
stressing the importance of having an algorithmic way to
reconstruct connectivity information.

A. Mesh Morphing

Mesh morphing is an important mesh operation that
requires generating an intermediate valid mesh between a
source and a destination meshes. Most morphing algorithms
require a correspondence between source and destination
meshes, which allows geometric coordinates of the vertices
to be naturally interpolated, but the hardest problem to solve
is the reconstruction of a valid connectivity for intermediate
meshes. The framework of regular triangulations allows
a direct way to reconstruct the topology of intermediate
meshes without the need of explicitly mesh manipulation.
In Figure 1 we illustrate the steps required to perform a 2D
morphing operation.

In order to further illustrate our proposal, we tackle the
even more challenging problem of creating the morphing be-
tween input meshes that are represented by multiple charts.
The need to handle multiple charts is challenging since the
continuity across charts need to be kept consistent to avoid
cracks. The algorithm for mesh morphing is described in the
sections below, and involve the following steps:
• Chart correspondence: morphing is performed be-

tween pairs of corresponding charts in the source and
destination meshes

• Enforcing Boundary Consistency: each chart is rep-
resented as a regular triangulation, but vertices that are
shared by multiple charts (boundary vertices) need a
special treatment to enforce mesh continuity.

• Vertex correspondence: mapping that involves both
geometric coordinates, as well as weight information

given by the regular triangulation and additional infor-
mation to enforce boundary continuity

• Creating Intermediary Meshes: producing the output
mesh at any intermediate point.

1) Chart correspondence: Given a source mesh Ms and a
destination mesh Md, we process them in such way that each
one is broken into the same number of charts, with a 1-1
correspondence between charts in the source and destination
meshes (Figure 6). We encode the topology defined by each
multi-chart in graphs Gs and Gd, which are by construction
homeomorphic to each other and have a direct correspon-
dence among vertices. Enforcing the homeomorphism can
be done manually or using several algorithms described in
the literature, such as the inter-surface mapping described
in [15]. Since our goal is to simply validate the technique,
we employ a simple iterative procedure controlled by the
user. It starts by the user specifying n corresponding pairs
of control points in both source and destination meshes.
An explicit mapping is defined automatically between each
pair specified, and charts are created by a region growing
algorithm using control points as seeds.

Once both Gs and Gd are created, we perform an ad-
ditional relaxation procedure to find a rigid transformation
that reduces geometric distortion between vertex coordi-
nates. This is accomplished by setting a simple mass-spring
relaxation procedure, but several other strategies described
in the literature can also be used. The mass-spring sys-
tem is formed by masses defined over the control points
specified by the user over Ms e Md, and two types of
springs, connecting adjacent vertices in the same mesh, and
connecting a vertex in the source mesh to the corresponding
vertex in the destination mesh (and vice-versa). The first
set of springs enforces geometric proximity inside a mesh,
while the second minimizes the geometric distortion during
morphing.

Figure 6. Creating corresponding charts. A source mesh (left) is broken
in the same number of patches as the (right) destination mesh, and each
chart from the source mesh is associated a chart in the destination mesh.

2) Enforcing Boundary Consistency: Each chart in the
source and destination meshes is processed individually
as if it was a single mesh, and converted into a regular
triangulation as described in the previous section. As a
result, we obtain one regular triangulation for each chart,
each containing for each vertex its geometric coordinates
(vx, vy, vz), parametric coordinates (vu, vv) and weight vw.

Vertices that appear at the boundary of charts (boundary
vertices) deserve special attention, since they belong to sev-



eral charts, and therefore may have possibly been associated
a different weight to each chart they belong to. In order to
properly handle boundary vertices, we store in addition to
the local weight a second weight vwminrepresenting the min-
imum weight of all charts the boundary vertex appears. This
additional information guarantees that boundary vertices
have the same behavior during morphing because vwmin is
used to decide when the vertex is included or removed from
the mesh. If this decision was solely based on the local
weight of the vertex inside a patch, it would be possible
that a given vertex could suffer a different morphing in each
patch that contains it, thus producing inconsistent boundary
transitions between charts.

3) Vertex correspondence: Only the correspondence be-
tween charts from the source to the destination mesh is
established at this point. For the morphing to be performed,
it is necessary to establish the correspondence between every
vertex vs in a given chart of Ms to a vertex vd in the
corresponding chart in Md. This is accomplished in a per-
chart basis, that starts by first finding a corresponding corner
vertex in both the source and destination chart. Once this
vertex is found, corresponding boundary loops are recovered
by a traversal along boundary vertices. The steps of this
algorithm can be summarized as follows:

1) Find a corner boundary vertex vs in Ms that is incident
to k > 2 charts.

2) Find the corresponding boundary vertex vd in the des-
tination mesh (this is enforced during chart creation).

3) Reconstruct boundary loops by tracking common
boundaries of 2 clusters. Mark vs and vd as visited,
and push

(
k
2

)
searches on a stack having vs and vd

as starting points, and every pair of clusters shared by
them as directions.

4) While the stack is not empty, pop a given search and
traverse simultaneously Ms and Md in the given di-
rection tracing the boundary between the two clusters
until a new corner vertex is found. If this vertex was
not visited, repeat step 2 using this vertex as starting
point.

Once boundary loops are reconstructed, mapping internal
vertices across charts is easily defined by finding their closest
correspondence in parametric space of source and destina-
tion charts. The mapping of boundary vertices, however, is
more involved since it is performed individually for each
corresponding boundary loop in the source and destination
meshes, which most likely have a different number of
vertices.

Assuming for the sake of the discussion that the boundary
loop of Ms has more vertices than Md, then we need to
map several vertices of Ms to one given vertex in Md. In
order to properly remove vertices at intermediate morphing
steps, we need to gradually remove vertices from Ms until
only one vertex is maintained. This is accomplished by
defining an invalid weight mapping (a mapping to a negative

weight, which automatically removes a vertex from the
regular triangulation). This invalid mapping is defined to all
but one vertices of Ms that are closer in the parametric space
to a given vertex in Md (the only valid mapping is to the
closest vertex of Ms). Invalid mappings are computed by
a backward search that process all vertices of Md to find
the closest vertices of Ms. Figure 7 illustrates this mapping
process.

Figure 7. Mapping in parametric space. Two different views of the
mapping for source and destination meshes of Figure 6: (left) side-view with
only boundary mappings (right) top-view showing boundary and interior
vertices. Red vertices are scheduled to be removed and green vertices to
be maintained.

4) Creating Intermediary Meshes: Every corresponding
pairs of charts in the source and destination meshes are
traversed. The mapping defined for each vertex vs in Ms

to a vertex vd in Md as described above is used to generate
the geometric and parametric coordinates, as well as the
resulting vertex weight. This is accomplished as follows:
• Check if the mapping of vs to vd is invalid. If this

is the case, geometric and parametric coordinates are
interpolated between vs and vd, and the weight of vs

is interpolated to a given negative value (user-defined).
This will in essence make the vertex disappear once the
weight becomes negative. Otherwise (valid mapping),
all attributes of vs are interpolated to the attributes of
vd.

• The resulting weight is compared against a given
threshold. If the value is greater or equal, the vertex is
inserted in a regular triangulation using the interpolated
attributes.

• Once all vertices in a given chart were processed, the
topology defined by the regular triangulation is used to
reconstruct the intermediary mesh

Figure 8 shows the results for two morphing sequences.

B. Level-of-Detail

Level-of-Detail generation illustrates another problem that
might benefit from the on-the-fly topology generation pro-
vided by regular triangulations. Given an input mesh, we
need to obtain a simplified valid mesh in a given level-of-
detail. We first implemented a simplification algorithm that
allows the user to select certain regions of interest over the
input mesh that are to be preserved as much as possible in
the process. Remaining regions are simplified based on a



Figure 8. Multi-chart morphing sequence between the Homer and Bucky Ball datasets. Each mesh is segmented into corresponding charts and morphing
is applied as described between each chart. An intermediate morphing sequence can be generated at any instant between the two mesh models. First row
contains 8 intermediate results, and second and third rows display detailed results of each of these results.

simplification level informed by the user. The contribution
that regular triangulations bring to this problem is that a
correct topology of the simplified mesh is automatically
reconstructed to any desired simplification level.

For this application we consider a mesh without partition
into charts. The first simplification algorithm we imple-
mented involves user interaction, and starts by the user
indicating the control points representing regions of interest
in the original mesh. All vertices in the mesh are processed
and are associated a new attribute representing the closest
distance to a given interest point. In addition to this value,
the weights for each vertex in the regular triangulation are
computed in the parametric space. The generation of the
simplified mesh starts by the user informing a parameter that
represents a given distance that will define which vertices
will be preserved in the construction of the mesh. Every
vertex that is within the distance given by this parameter
to its corresponding interest point is sent to the regular
triangulation. The regular triangulation is computed and
displayed to the user. Top row of Figure 9 illustrates the
results of this approach.

We also tried a variation of the algorithm that would
not depend on user input, but instead was based on local
geometric features of the mesh such as curvature. The proce-
dure is simple: the curvature at each vertex is approximated
and associated as an additional parameter (similar to the
closest distance parameter used before). The remaining of
the algorithm is the same, the curvature is compared against
a threshold informed by the user. Bottom row of Figure 9
show the results of this approach for different levels of detail.

VI. CONCLUSION

In this work we introduced a methodology for repre-
senting and manipulating triangular meshes. The method
is based on a theoretical and computational framework
that computes appropriated weights for vertices of a given
triangulation in such way that it defines a RT, thus allowing
to disregard connectivity information, since connectivity is

implicitly stored at the weights of mesh vertices. The flexi-
bility and ease of implementation of this new approach has
been investigated in applications such as level-of-detail and
mesh morphing. Unlike similar alternatives to perform those
operations, our solution does not require special care to keep
the mesh connectivity consistent, since this is automatically
enforced by our methodology.

We are currently working in two other problems using
the theoretical results presented here. The first one concerns
mesh compression, since connectivity information can be
completely discarded. The second problem is multi-scale
tetrahedral mesh representation. By extending the proposed
theory to the three-dimensional case we would be able to to
deal with tetrahedral mesh simplification and refinement in
a broader sense, thus being capable of handling any kind of
tetrahedral mesh algorithmically.

ACKNOWLEDGMENT

This work was supported by grants Fapesp-Brazil
(#2008/03349-6), CNPq-NSF (#491034/2008-3) in the
framework of Instituto Nacional de Ciłncia e Tecnologia em
Medicina Assistida por Computao Cientfica (CNPq, Brazil).

REFERENCES

[1] N. Amenta, S. Choi, and R. Kolluri, “The power crust,”
Computatinal Geometry, vol. 19, pp. 127–153, 2001.

[2] S.-W. Cheng, T. K. Dey, and E. A. Ramos, “Delaunay
refinement for piecewise smooth complexes,” in SODA ’07:
Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2007, pp. 1096–1105.

[3] S.-W. Cheng, T. Dey, and T. Ray, “Weighted delaunay refine-
ment for polyhedra with small angles,” in 14th International
Meshing Roundtable. Springer-Verlag,, 2005, pp. 11–14.

[4] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and
S.-H. Teng, “Sliver exudation,” in SCG ’99: Proceedings of
the fifteenth annual symposium on Computational geometry.
New York, NY, USA: ACM Press, 1999, pp. 1–13.



Figure 9. Mesh simplification with user specified regions of interest (first row) and curvature (second row). (a) interest points or curvature, (b)-(d)
increasing levels of detail of the mesh.

[5] M. Vigo, N. Pla, and J. Cotrina, “Regular triangulations of
dynamic sets of points,” Comput. Aided Geom. Des., vol. 19,
no. 2, pp. 127–149, 2002.

[6] H. Edelsbrunner and S. Shah, “Incremental topological flip-
ping works for regular triangulations,” Algorithmica, vol. 15,
pp. 223–241, 1996.

[7] H. Edelsbrunner, “Deformable smooth surface design.” Dis-
crete & Comput. Geom., vol. 21, no. 1, pp. 87–115, 1999.

[8] H. Edelsbrunner and R. Seidel, “Voronoi diagrams and ar-
rangements,” Discr. Comput. Geom., vol. 1, pp. 25–44, 1986.

[9] F. Aurenhammer, “Power diagrams: Properties, algorithms
and applications,” SIAM J. Comput., vol. 16, pp. 78–96, 1987.

[10] T. Masada, H. Imai, and K. Imai, “Enumeration of regular
triangulations,” in Symposium on Computational geometry,
SCG, 1996, pp. 224–233.

[11] J. DeLoera, J. Sturmfels, and R. Thomas, “Gröbner bases and
triangulations of the second hypersimplex,” Combinatorica,
vol. 15, no. 3, pp. 409–424, 1995.

[12] M. Floater and C.Gotsman, “How to morph tilings injec-
tively,” J. Comput. Appl. Math., vol. 101, pp. 117–129, 1999.

[13] V. Surazhsky and C. Gotsman, “Morphing stick figures using
optimized compatible triangulations,” in Pacific Graphics,
2001, p. 40.

[14] J. Danciger, S. L. Devadoss, and D. Sheehy, “Compatible tri-
angulations and point partitions by series-triangular graphs,”
Comput. Geom. Theory Appl., vol. 34, no. 3, pp. 195–202,
2006.

[15] J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe, “Inter-
surface mapping,” in SIGGRAPH ’04, 2004, pp. 870–877.

[16] M. Ahn and S. Lee, “Mesh metamorphosis with topology
transformations,” pg, vol. 00, p. 481, 2002.

[17] M. Ahn, S. Lee, and H.-P. Seidel, “Connectivity transforma-
tion for mesh metamorphosis,” in Eurographics/ACM SIG-
GRAPH Symposium on Geometry Processing, 2004, pp. 75–
82.

[18] J. Parus and I. Kolingerová, “Morphing of meshes with
attributes,” in SCCG ’04: Proceedings of the 20th spring
conference on Computer graphics. New York, NY, USA:
ACM Press, 2004, pp. 73–81.

[19] A. W. F. Lee, D. Dobkin, W. Sweldens, and P. Schröder,
“Multiresolution mesh morphing,” in SIGGRAPH ’99, 1999,
pp. 343–350.

[20] D. Zorin, P. Schröder, and W. Sweldens, “Interpolating sub-
division for meshes with arbitrary topology,” in SIGGRAPH
’96: Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques. New York, NY, USA:
ACM Press, 1996, pp. 189–192.

[21] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varsh-
ney, Level of Detail for 3D Graphics. New York, NY, USA:
Elsevier Science Inc., 2002.

[22] G. Dantzig and M. Thapa, Linear Programming: 1: Intro-
duction, ser. Springer Series in Operations Research and
Financial Engineering. Springer, 1997.


