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Abstract—The segmentation of poorly defined structures in Another simpler related problem concerns the availability
medical imaging and heterogeneous objects in natural image  of means to resume a previous segmentation session in a
usually call for considerable user assistance. Consequént specific interactive tool. In operator-assisted segmiamtat

automatic results are often far from desirable and interactve tools. th I dds/ K d pixel
repairs become an essential feature to consider. Howeverot ools, the user usually adds/removes markers (seed pixels,

to import automatic results obtained from external proceses ~ anchor boundary points) for recognition, while subsequent
and complete their segmentation interactively is an issueince  delineation is performed by the computer in interactive
different t00|§ are based on different optimization criteria.. time. Accuracy becomes a compromise between the user's
Another simpler related problem concems how to confinue  ,aience for verification and correction, and the quality of
a previous segmentation obtained by the same interactive ob . - - .
This ability to stop and later resume interactive segmentabn del!neatlon. In practice, the user tends tlo stop the cavesct
sessions is specially important for tridimensional imagesand ~ actions when the efforts needed to improve the results
video. However, very often crucial data (e.g., the history b  increase too much relative to the returned improvement in
user input) are no longer available; or are no longer reliabe,  accuracy. In the context of 3D medical image and video
as consequence of some post-processing. segmentation, the user is tempted to stop even earlier due

How to offer a comprehensive recovery and resume ca- . . A
pability, comprising all these different scenarios, underthe (0 the weariful and hard work. In this sense, it is highly

framework of the “Image Foresting Transform” (IFT) is the desirable that segmentation tools provide the ability tp st

central focus of this paper. and later resume segmentation sessions at will.
Keywords-image foresting transform; robustness in image ~ However, many times crucial data like the history of user
segmentation; and graph search algorithms; inputs (e.g., the sequence of selected markers) are norlonge
available or valid. Usually, such features are not supplorte
|. INTRODUCTION by open file formats and are encoded only in proprietary

In image processing and computer vision, there are seformats, or are stored in separate files, potentially legdin
eral situations in which user interaction becomes esdentido consistency problems while transferring data to différe
in obtaining effective image segmentation. The high-levellocations. Moreover, the image may have been altered by
application domain specific knowledge of the user is ofterfiltering (e.g., Gaussian blur, radiometric transformaljar
required in medical image analysis [1] because of poorlyby some spatial transformation (e.g., interpolation, segt
defined structures, and in the digital matting of naturaltion) after the last interactive session. As a consequehee,
scenes [2], because of their heterogeneous nature. task of making corrections in existing databases becomes

As a consequence, automatic segmentation techniquesmplex.
always tend to present some sort of errors and may even fail Discrete Mathematics provides an elegant framework for
under critical circumstances. Hence, without the necgssarimage processing, rich of efficient algorithms with proofs o
corrections by edition, the results generated by automaticorrectness. As a consequence, many image segmentation
segmentation tools may become inappropriate in any moreethods have been modeled as graph-search problems [2],
rigorous study (e.g., medical image analysis). Manualmeglit [3], [4], [5]. In these approaches, a graph derived from the
can always be adopted to make corrective repairs, sincenage is computed and the user indicates hard constraints
it does not depend on any additional data besides thby selecting some of its nodes as seeds. An optimal graph
segmentation mask, but it is an extremely time-consumingartition satisfying this supplied set of constraints isneo
and tedious task. On the other hand, interactive tools lysual puted and displayed. Corrections can then be performed by
depend on the whole history of user input. Thus, in ordemew seed addition or seed removal.
to interactively correct an arbitrary segmentation, we tmus Under this scenario, we have tlimage foresting trans-
first solve an inverse problem, i.e., how to guess the missinfprm (IFT) [4] — a tool for the design of image processing
user input from the given segmentation result. operators based oronnectivity functiongpath-value func-



tions) in graphs derived from the image. The IFT algorithmextracted fromI [8]. In this work, higher arc weights
minimizes/maximizes a connectivity map by taking into across the object’s boundary (i.e., a dissimilarity measur
account all paths with terminus at each pixel, such that abmetween pixelss and t) will be considered without loss
optimum-path forest is computed from the graph. of generality. For example, one may use the mean gradient
More recently, it was shown that IFT segmentation meth-magnitude (i.e.,w for a gradient imagd). We also
ods can lead to a minimum cut in the graph according taconsider only undirected and weighted graphs. That is, the
some appropriate graph-cut measures [5]. Indeed, it waadjacency relation is symmetric and(s,t) = w(t,s) for
shown that procedures adopted to circumvent the existingll (s,t) € A.
bias of the min-cut/max-flowalgorithm [3], [6] lead to

approximations of the IFT with internal and external seed Lt 2
competition [5]. Hence, the IFT with seed competition (IFT- P, t . j{
SC) is our option of choice in this work. It is especially L ST rll . I
suitable for our purposes, since it allows corrections to be iR(ﬁt’)””‘nt

performed in sublinear time by its differential version.[1] @ = ®) = ©

The central focus of this paper is to devise a com-
prehenswe_z recovery and resume capability, comprising aI,Ligure 1. (a) Pathr, = s - (s,1) indicates the extension of path,
aforementioned cases, under the framework of the IFT [4]by an arc(s, t). (b) A 4-neighborhood graph showing a path (dashed
However, as already mentioned, in order to complete afine) represented in backwards, whef¥t) is the predecessor node of
arbitrary segmentation we have to first find a suitable sef™d /() IS the root pixel. (c) A spanning forest with two root nodes,

. . . 71 ande.
of seeds that assembles it. This could be accomplished by

the method described in [7], which computes a set with For a given image graptt, A), a pathm, = (t1,ts,...,t)
minimum number of seeds under some constraints. Hoyveveirs a sequence of adjacent pixels with terminus at a pixal
it usually places too many seeds glong weak and amblguoqfath istrivial whenm, = (t). A pathr; = 7,-(s, t) indicates
segments of the boundary, making fur_ther corrections tQhe extension of a path, by an arc(s,¢) (Figure 1a). All
behave almost manual over these regions. In the presephths considered in this work are simple paths, that is,spath
paper, we theoretical extend these results to a more genefgith no repeated vertices (pixels).
and flexible case leading to fewer seeds. A predecessor majs a function P that assigns to each

For the sake of completeness in presentation, Sections Hixel ¢ in Z either some other adjacent pixel i, or a
and Il include an overview of concepts on image graph angjistinctive markemil not in Z — in which caset is said
a revision of the IFT. Section IV shows how to completeto be aroot of the map. Aspanning forests a predecessor
any segmentation process interactively using the IFT. Thenmap which contains no cycles — i.e., one which takes every
Section V treats some particular cases about how to resuniixel to nil in a finite number of iterations (Figures 1b and
a previous Segmentatlon by IFT when more information ISlC, WhereR(ﬂ-t) is a root node andD(t) is the predecessor
available. Our conclusions are stated in Section VI. node of¢ in the pathm,). For any pixelt € Z, a spanning

Il BASIC CONCEPTS ONIMAGE GRAPHS forest P defln_es a pathr, recgrswely ast) if P(t) = nil,

andm, - (s, t) if P(t) = s # nil.

A multi-dimensional and multi-spectral imadeis a pair

(Z,1) whereZ C Z" is the image domain anfi() assigns Il. I MAGE FORESTING TRANSFORM(IFT)
a set ofm scalarsl;(t), i = 1,2,...,m, to each pixet € 7. For purposes of completeness in the presentation, several
The subindex is removed whemn = 1. concepts introduced in [5] are included in this section.

An adjacency relationA4 is a binary relation orZ. We  However, differently from [5], the IFT is presented here in
uset € A(s) and(s,t) € A to indicate that is adjacent to its equivalent dual form, in accordance with the original IF
s. Once the adjacency relatioA has been fixed, the image paper [4].

I can be interpreted as a gragii, A) whose nodes (or A connectivity functiorcomputes a valug (r;) for any
vertices) are the image pixels ih and whose arcs are the path 7;, usually based on arc weights. LEi(Z, A, ¢) be
pixel pairs (s,t) in A. In this work, we are interested in the set of all paths in the grapli, .A) with terminus att.

irreflexive and symmetric relations. For example, one carn this work, a path isoptimumaccording to the following
take A to consist of all pairs of pixelss, ¢) in the Cartesian  definition.

productZ x Z such thatd(s,t) < p ands # t, whered(s, t)

denotes the Euclidean distance ani$ a specified constant  Definition 1 (Optimum path)A path 7; is optimum if

(e.g., 4-neighborhood, whep = 1, and 8-neighborhood, f(m:) < f(r) for any other path € TI(Z, A, t).

whenp = v/2, in case of 2D images).

Each arc(s,t) € A has a fixed weightv(s,¢) > 0 which By taking to each pixet € Z one optimum path with
may be computed from local image and object propertieserminust, we obtain the optimum-path valdé(t), which



is uniquely defined by
V() = {f(me)}-

The image foresting transforr{iFT) algorithm solves the

1)

min
Vi €I1(Z,A,t)

above optimization problem by dynamic programming [4].

The IFT takes an imagd, a path-value functionf and
an adjacency relatiord; and assigns one optimum pat
m to every pixelt € Z such that aroptimum-path forest

P is obtained — i.e., a spanning forest where all path

are optimum. Howeverf must besmooth that is, it must

9. Computetmp — f(7s - (s,t)).

10. If tmp < V(t), then

11. If V(t) # 400, then removet from Q.
12. L SetP(t) — s, V(t) — tmp.

13. L(t) < L(s) and insertt in Q.

Line 1 initializes maps and inserts pixels with finite trivia

h Path values inQ). The minima of the initial map” compete

with each other and some of them become roots of the forest.

gr'he main loop computes optimum paths from the minima

to every pixels in a non-decreasing order of value (Lines

satisfy Definition 2, as demonstrated in [4]. The attributes?—8)- At each iteration, a path, of minimum valueV'(s)

of the forest include the maypg, the rootsR (), root labels
L(t), and the predecessdt(t) of ¢ in the optimum path.

The image operators are then reduced to a local processiﬁ

of these attributes [4].

Definition 2 (Smooth path-value functionk path-value
function f is smoothif for any pixel ¢ € Z, there is an
optimum pathm; which either is trivial, or has the form
7s - (s, t) where
(C1) f(rs) < f(m),

(C2) 7, is optimum,
(C3) for any optimum path’, f(7] - (s,t)) = f(m:).

An interesting property of an optimum-path forest is that
any path starting in a root node is also a complete optimun{t

path (path-value function must lsenooth, according to the
following definition.

Definition 3 (Complete optimum pathp path =, =
(t1,ta,...,tn) is complete optimumif all paths m;, =
(ti,to,...,t;),i=1,2,...,n are optimum paths.

From this point on, we will use the notatieh when we
want to explicitly refer to a complete optimum path.

A. General IFT Algorithm

Algorithm 1 obtains an optimum-path foreBt in which
all paths satisfy conditionsC'1) — (C3), by minimizing a
smooth path-value funtioff.

Algorithm 1: — GENERAL IFT ALGORITHM

INPUT: Image I = (Z,I), adjacency.A, and path-value
function f.

OUTPUT: Optimum-path foresP, the minimum path-value
mapV and label mapL.

AUXILIARY :  Priority queue@, variabletmp, and an array of

status.
For each ¢t € Z, do
SetP(t) « nil and V' (t) «— f((t)).
L Setstatus(t) < 0.
If V() # 400, then insertt in Q.
While @ # 0, do
Removes from @Q such thatV (s) is minimum.
Setstatus(s) « 1.
For each ¢ € A(s), such thatstatus(t) = 0, do

ONogRA~RWNE

is obtained inP when we remove its last pixel from @
(Line 3). The rest of the lines evaluate if the path- (s, t)
Eat reaches an adjacent pixethroughs is cheaper than
the current pathr; in P and updat&), V(¢), L(t), and P(t)
accordingly.

B. IFT segmentation with internal and external seeds

Although the results of this paper can be extended to mul-
tiple objects, we will focus on binary image segmentation
for sake of simplicity. A binary segmentation of an image is
represented by a labeled image= (Z,L), whereL(t) =1
for object pixels and.(t) = 0 for background pixels. Hence,

a binary segmentation corresponds to an image partition
into two disjoint sets0; = {t € I | L(t) =1} andB; =

€ I | L(t) =0} representing object and background re-
spectively. Each segmentation also definesiratuced cut
boundaryC in the graph, which is the set of arcs(s,t)
such thatL(s) = 1 and L(¢) = 0.

We consider image segmentation from two seed sefs,
and S, (S, NS, = 0), containing pixels selected inside
and outside the object, respectively. A feasible segmientat
must satisfy these sets of hard constraints (Lét) = 1 for
allte S, andL(t) =0 for all t € Sp).

We are interested in a particular case of smooth path-
value functions, the monotonically incremental path-ealu
function f..«. This function basically assigns to any path
m; the maximum arc-weight along,. Equation 2 presents
it in the recursive form.

B -1 ifteS,US,
fmax((t)) = { +o00 otherwise

Jmax(7s - (s,1)) = max{ fmax(7s),w(s, 1)}, (2)

Note that the search for optimum paths is constrained to
start inS, U S, (roots by imposition).

The internal and external seeds compete with each other
for their most strongly connected pixels, such that the ienag
is partitioned into two optimum-path forests — one rooted at
the internal seeds, defining the object, and the other rooted
at the external seeds, representing the background [1$. Thi
method is sometimes referenced as IFT-8ET (segmenta-
tion by Seed Competitipf5]. Both the internal and external
forests are encoded on the same predecessorrhmaturned



by the IFT. The segmentatiahis defined as follows, where suitable set of seeds. These seeds must restore an optimum-

m; is the optimum path with terminusobtained frompP. path forest in a manner consistent with the segmentation
1 it R(m) €S L*. ane t.his is don_e, the porrect!ons can the_n be done in
L) = { 0 othervxt/ise o (3)  sublinear time by using thBifferential IFT algorithm [1].
' A trivial solution to this problem would be simply to

In fact, Algorithm 1 is already propagating the root labelsselect all object pixels as being internal seeds (.€.S, if
to all graph nodes. Hence, we only have to 5ét) = 1 for L*(t) = 1), and all background pixels as external seeds
allt € S, andL(t) = 0 for all t € S, before calling the (i.e.,t € S, if L*(t) = 0). However the corrections in
algorithm. this case would degenerate into a manual segmentation
As observed in reference [4], the optimum-path forestorocess. Note that, in order to add new hard constraints
may not be unique. For example, if all paths have thefor correction, other old constraints would necessarily be
same value, then any spanning forest will be optimumoverwritten becaus&, NS, = . Since we also have
Ties between paths; and 7, from seedss; = R(m) S,US, = Z, the execution of Algorithm 1 would not change
and s, = R(r;) with the same label{s;,s2} C S, or  anything in the results.
{s1,s2} C S;) are never a problem, since they lead to Therefore we have to be as less invasive as possible in the
exactly the same final segmentation resllt Hence, any choice of seeds, in order to avoid restricting too much the
solution in this case is satisfactory. However, a specig ca action of the algorithm during the corrections. So the best
has to be taken in the case of seeds with different labelsolution in theory is to choose a set of seeds with minimum

which constitute the basis of the rei@ zonesas follows.  cardinality that generates the same segmentation redt. T
work in [7] solves this problem in a particular case assuming

Definition 4 (Tie-zone pixel)A pixel ¢ is atie-zone pixel ~that there are no tie-zones. We theoretically extend tisisire
if there exist two complete optimum paths and 7, such ~ to two kinds of tie-breaking policies:
that R(m;) € S, and R(7;) € S,. (P1) all tie-zone pixels are assigned to the object,
(P2) all tie-zone pixels are assigned to the background.
In many implementations of Algorithm 1, ties are usually
broken in@ using first-in-first-out (FIFO) policy. That is, Thus, since the solution proposed in this work is more
when two optimum paths reach an ambiguous pixelith  flexible, it usually produces fewer seeds than in [7]. That
the same minimum value, is assigned to the first path that is, it is always possible to eliminate ties at the price of
reached it [4]. But if we simply assign a fixed labél ¢r  adding more seeds. Also note that under the conditions (P1-
0) to all tie-zone pixels then a theorem stated in [5] holds.P2) we have that Theorem 1 is valid, and therefore many
For our purposes, we just present here a particular versiommtermediate results will be explained here based on this
although the theorem as proved in [5] is more general. ~ concept of graph-cut energy introduced in [5].
In order to start we first must introduce the notion of
Theorem 1 (Optimum-path forest cut in IFT-S@ny seed robustnesdhe problem is to find the regions where
segmentation. defined by an optimum-path forest with seeds can be moved without altering the segmentation. In the
path-value functionf...x and with a single label value for case of tie-breaking policies last-in-first-out (LIFO) ansfi
all tie-zone pixels (Definition 4) maximizes the graph-cutin-first-out (FIFO), this problem becomes very complicated
measure E defined by Equation 4 among all possible because the results may vary depending on the order that
segmentation results satisfying the hard constraints. the data is processed. Hence, in this case any movement of
a seed connected to tie-zone regions can affect the results.
However, the tie-breaking policy P1 (or P2) always leads to
E(L) = (st %1(15)171 L(t)fow(s’ t) (4)  an unique result allowing us to devise a theoretical anglysi
’ S The regions, where the seeds are free to move, are called
Another important result presented in [5] concerns thein some works as theores [7]. But since the approach
proof that the cut boundaries obtained by the IFT-SC areyere is more flexible, the cores as presented here will be
also piecewise optimum. That is, under the same conditiongyentually bigger than in [7].
of Theorem 1, any part of a cut boundary is chosen as one Without loss of generality, we will constrain the analysis
that maximizes its minimum valug'. of robustness only to internal seeds, being the external
seeds a completely symmetric problem. We will use the
notation L4 to refer to a segmentation obtained using as
Let L* be a general segmentation obtained by any methothternal seeds only the elements in a sktIn order to
with no additional information. We may start computing the define our cores, we must first introduce the notions of seed
image graph as usually, but the seeds are not known. Hencequivalence and redundancy.
to complete this segmentation via IFT, we first have to find a

IV. HOW TO COMPLETE ANY SEGMENTATION VIAIFT



(b)

Figure 3. (a) A CT image of a patella segmented by IFT. (b) Newds
added to the object are all redundant under tie-breakinigyp®il (or P2).

DL 0 QL

Figure 2. (a) A4-neighborhood graph, where the numbers indicate the
arc weights. (b-d) Results by IFT usinhax (EQ. 2) for different object’s
seeds inS, = {a, b, ¢} and one fixed external seed (bigger black dot). The
numbers inside the nodes indicate the valugs) (Eq. 1). Note that and

b are equivalent, and is redundant in relation ta andb.

Definition 5 (Equivalent seeds)fwo internal seedss;
and s; are saidequivalentif they separately produce the

same result. That is, for the given external seedSethe (c) (d)
result L,y obtained fromS, = {s:} is the same ad,,;
obtained fromS, = {82}_ Figure 4. (a) A4-neighborhood graph. (b) Example of an IFT with P2

policy showing the combined result of the seedandb. (c-d) The results
o R ) of a andb separately.
Definition 6 (Redundant seeds)et L be a segmentation

result by IFT-SC (under P1 or P2) with internal and external

seeds given bys, andS,. An internal seed seB C S, is  the search space from. Thus, the optimum cut boundary

said redundantin relation toS,\ B if it can be eliminated for AU B can not be better than the best obtained for

without affecting the segmentatidn That is, the resull.y ~ Therefore, since the solutioh 4 is feasible in relation to

obtained using only5 as internal seeds is contained within AU B (i.e., L4(t) = 1 for all t € AU B) we have that it is

L which can be obtained by using as internal seeds thalso optimum forA U B.

elements inS,\B (i.e., O, € 0;). Now to prove thatO; C O; ., we must only note

that, by removing internal seeds the optimum-path values

If a seeds; € S, is equivalent to another seed € S, (Eg. 1) from object’s seeds may only get worse. Hence,

then {s1} is necessarily redundant in relation &\ {s1}. a segmentation with fewer seeds may only shrink under

But a redundant seeg} is not necessarily equivalent to any P1 (or P2). Figure 4 shows that, the union of the objects

other seed irS, (Figure 2). obtained for each internal seed separately may be smaller
In order to better understand the idea of redundancy, let'han the combined result of all internal seeds at once (i.e.,

consider an example. Ldt, be the segmentation obtained Uses, 0% 9 C Oﬁso)-

using onlyA as internal seeds. Any additional set of object's The notion of equivalent seeds introduced by Definition 5

seedsB selected inside the object's madk, (i.e., B C is a binary relation= on the setO;, i.e., s; = s, if and

O} ) won'tchange the result (i.ef3 is redundant in relation only if s; andsq are equivalent. This relation is reflexive,

to A, see Figure 3). This is a direct consequence of thesymmetric and transitive, hence, it is indeedesuivalence

optimization of the the graph-cut measure (Theorem 1) undetelation as defined in mathematics. Therefore, twee of

the condition P1 (or P2) which provides a single solution.a seeds; is in fact theequivalence classf s; under=,

The universe of possible cut boundaries using thedset3  denoted.s], which is defined a$s;] = {t € O; | s1 = t}.

as internal seeds is more restricted and is contained within The notion of redundant seeds introduced by Definition 6



leads to a binary relatiosx on the powerseP(0O; ) (i.e., the

set of all subsets of; ). In other words, we havel o< B

if and only if the seed setd is redundant in relation to
the seed seB. This relation is transitive, i.e., il o« B
and B « C then we have thadl « C. This is easy to
verify, since(’)ﬁA - Oﬁa and Oﬁa - Oﬁc implies that
O;, € O;... Note also that, mutually redundant seeds are
equivalent. That is, if{s1} « {s2} and{s2} x {s1} then

we have thats; = so. This is true becausé{sl} must

be contained inli{SQ} and vice-versa. On a more general Ei _ , .

L . . Figure 5. (a) Ad-neighborhood graph. (b-c) The results using P1 policy for
way, we also have that any cycle of redundancies implies IBhe seeds. andb, respectively. (d) Note that they are equivalent, although
equivalence. fla,b) = Egqy = Egyy = 4.

Next, we give a formal definition of redundancy and
equivalence in terms of the values of optimum paths linking
seeds and their energies. LBY; be the value of the graph- first formally define the notion of redundancy. From the
cut energyE(L4) (Eq. 4) whereL 4 is the segmentation Definition 6, we have that if seB is redundant in relation
obtained by Algorithm 1 withf,,., under condition P1 (or to a setA (i.e., B x A) then Ly = Laup. Thus,
P2),S, = A andS, fixed. If A = {s1}, we haveE(,;; Ea = Eaup = min(E4, Ep). Therefore, we have that
which is said to be the energy of the internal seed Ep > E4. But this condition alone is not sufficient to prove
The energy of a sek 4,5 is always less than or equal to the redundancy. If a set is redundant, then all its elements
the energies of the individual parfs4 and Fg. This is a  are too. Hence, we may restrict our attention only to sets of
direct consequence of the optimization of the the graph-cundividual seeds (e.g{s1}).
measure, because an optimum cut in a smaller search space_et f©: (a,b) be the pass-value between two nodesnd
with more constraints (i.e., seeds) can not generate bettérin the subgraph induced g;, or +oc if a andb are not
energy values than a search in a larger space with fewaronnected in this subgraph. In other wordSz (a, b) is the

constraints. In fact, it is possible to prove thBu, g = best value of a path interconnecting nodeandb with the
min (E4, Ep). constraint of having to pass entirely inside the object. We
If two internal seeds; andss are equivalent (i.e.s; = can extend this concept, and define the constrained pass-

s2), by the Definition 5 we have that,,;, = Ey,,,. But  value from a set to a node as follows
this condition alone can not guarantee that= s,. Let's

o; _ . o;
define thepass-valuebetween two nodes andb as Foi(4,0) = v {7 (a,0)} . @)
f(a,b) = min { max w(ti,ti+1)} . (5 In the case of condition P1, if = ﬁAU{b} then
Vmir=(t1=a,...,t,=b) | i=1,...,n—1
FOL(Ab) < E b} o A. 8
If the best path betwees, and s, has pass-value lower HAL) < Epy = (b} )
than £,y = Ey,,y, then this implies thas; and s, are Equation 8 with strictly decreasing inequality falls in
equivalent. a particular case, very similar to Equation 6, wheérés

. equivalent to some node of. In case of equality, the energy
Fls1,82) < Bpayy = By = 51= 52 (6) Eyg, says that, in the best scenario, the background seeds
The valueEy,,; is the boundary energy of the best cut will reachO; = with this path value. Hence, since the pass-
that separates; from the background seeds. f{ s, s2) < value from A has the same value, then by the policy P1
Eys,y, thens, is certainly inside the object obtained from we have that{v} will be part of O; . Therefore,{b} is
s1 (i.e., Lgs,3(s2) = 1). Hence, from the discussion of redundant.
Figure 3, we may conclude thdtss} o« {s1}. Since we In the case of condition P2, the problem becomes more
also havef(s1,s2) < Es,3, then by similar arguments we complicated, and Equation 8 will only remain valid if we
have {s;} « {s2}. Therefore,s; = s, as we wanted to redefineF'®i(A,b) as+oco when3s, such thatr, is rooted
prove. in S, and S, = A\ {b}. In other words,+oco must be
However, the converse of Equation 6 may not be trueconsidered if there is a complete optimum path from the
under tie-breaking policy P1 (Figure 5). That is why the background seeds that reachigswhen we disregard as
cores may be bigger here than in [7]. In this sense, the IFTinternal seed. That is, if such path exists then, accordingl
SC under P1 (or P2) can not be less robust than the methdd P2, we have thak will be assigned to the background,
RFC [9] discussed in [7]. so it can not be redundant in relation to
Since mutually redundant seeds are equivalent, in order Now that we have a better characterization of equiva-
to fully characterize the seed equivalence relation we mudence and redundancy, we may discuss how to get a set



of seeds with minimum cardinality. LeL* = (Z,L*) a tree whose sum of arc weights is minimum. In a MST, if
be the given segmentation, that we intend to resume. Weve take any node € Z, there is a single path connecting
may initially take all object pixels as internal seeds (i.e. to any other nodé and this path always hag(a,b) as its

S, = {teZ|L*(t)=1}) and all background pixels as maximum arc weight. Therefore, a MST encodes all possible
external seeds (i.e§, = {t € Z | L*(¢t) = 0}). At a first  pass-value¥(a, b) [10].

moment, we may then reduce this number of seeds by |n order to compute a MST, we may use Algorithm 1 with
selecting just one seed per core. Hence, we end up Witthe non-smooth path-value functigi,; (Eq. 13). Despite

a smaller se5, containing only non-equivalent seeds. After thjs function not being smooth (Definition 2), Algorithm 1
that, we may then identify a seed that is redundant in refatio sjl| returns a spanning treB. Although this tree is rooted

to all others and remove it. We can repeat this process untiin an arbitrary starting point) an# is a directed graph, the
there are no more redundant seeds. At this point, we have @c orientations have no meaning. The minimum-spanning
minimal subset ofS, with respect to the segmentatidif.  tree isP without arc orientations. That is, Algorithm 1 with

But does it have minimum cardinality? In order to answery, . becomes Prim’s algorithm that computes the MST [6].
this question we must prove that the order of removal of

redundant elements does not affect the final results. That is 0 i ¢ is the starting point
g_'f; T ga} L;B L; {}c}, under the hypotheses fmst((1)) = { oo otherwise

ay X bUqcy, B
(H2) {c} x BU{a}, fmst(ms - (s,8)) = w(s,t) (13)

(H3) there are no equivalent nodessy,
we must prove thafa} o B and {c} « B. Similarly, we can calculate the pass-valffé: (a, b) con-
strained inO; by analyzing the paths of a MST restricted
Proof: From Eqg. 8 and hypotheses H1,H3, we have thato the object. That is, by computing a MST over the
0. subgraph induced by); . Of course, if the object presents
By = F i(BU{c},a) several disconnected parts, then a MST for each connected
= min {Foi (B,a), FOL({c}, a)}. (90 component will be needed. In this case each component can
be analyzed separately from the others, because the seeds

From Eq. 8 and hypotheses H2 and H3, we have that between different components are necessarily non-regiinda

E(y = F9(BU{a},c) in relation to each other.
= mjn{Foi (B,c),Foi({a},c)}. (10) To compute the cores, we may start by verifying Eq. 6
. which is simpler. Note that, thanks to the transitive proper
From Equation 9 we may conclude that in order to check whether an element belongs to a core or
FOL({c},a) if FOL(B,a)> Efg not, we just have to compare it with a single representative
Eay —{ FP:i(B,a)  otherwise (11)  element of the core. So it is not necessary to test all

possible combinations between elements. Hence, this could
be implemented in annion-findmanner.

By = { FOi({a},c) if FOi(B,¢) > By (12) But in order to find the core by Eq. 6 of a given repre-

From Equation 10 we may conclude that

FOi(B,c) otherwise sentative seed, a better implementation would be simply

The only valid combination between Equations 11 and 130 Make a breadth-first search fromn the MST topology,
is (., = FOL(B,a) andE, = FOz (B, c) which implies ar_1d selgct all e_Iements that are reached only through arcs
that{a} < B and{c} « B as we wanted to prove. The other with weights strictly less thay) .
combinations lead to contradictions like= ¢, or violations During this process, we can create a graph of representa-
of transitivity. m tive seeds with arcs weighted by the pass-value between
Now that we have a general procedure to find a set ofhem. A MST over this very reduced graph, can then
seeds with minimum cardinality, we may proceed with abe€ computed in order to encode the pass-value between
discussion about implementation issues. different cores. This greatly simplifies the evaluation of
A first point concerns the problem of how to evaluate EQ. 8. Thus, we may then finish the process by the successive
Equations 6 and 8 efficiently. The energié,, of all removal of redundant representative seeds.
internal seedss € O; are easy to compute. They are Other possible implementation would be simply to first
the valuesV(s) of the path-value mag’ computed by consider, the efficient algorithm proposed in [7], whichlwil
Algorithm 1 with f,,.x, but using only the external seeds return a small number of seeds. We may then reduce it even
during its execution. In order to compute tipass-value more by following the proposed extension to P1 and P2
f(a,b) (Eq. 5) we may exploit its relation with minimum-  with the advantage of having to evaluate Eq. 8 only over a
spanning tree(MST) [6]. A minimum-spanning tree — is reduced set of points.



V. HOW TO RESUME A PREVIOUSFT SEGMENTATION VI. CONCLUSION

The next subsections treat, in order of severity, the most In_ .this work, a comprehen;iye recovery and resume ca-
common causes of problems that occur when we decide tBability was developed comprising different scenariosaund

continue a previous segmentation session using the IFT. the framework of theémage foresting transfornfiFT) [4].
Theoretical advances in relation to the state of the art were

A. Dealing only with ambiguities presented with an extension to different tie-breakingqied

This is the simplest case to treat. The previous segmenté-Pl and P2). This extension can also be elegantly combined

tion to resume was obtained by IFT-SC, for a given knownWith the previous work [7]. As future work, we intend to

graph and set seed. However, as shown in Section I1I-B, th@nalyze practical aspects that were not covered here.
segmentation may not be unique due to the possible presence ACKNOWLEDGMENT

of tie-zone pixels. Indeed, when popular tie-breakingpoli  the authors thank FAPESP (2009/16428-4 and 07/52015-

cies such as LIFO or FIFO are adopted, the segmentatiog) and CNPq (481556/2009-5, 201732/2007-6 and
results may vary depending on the order that the data i§02617/2007-8) for the financial support.
processed.

Fortunately this case is very easy to solve. Let's denote
by L* = (Z, L*) the previous segmentation (label map) that [1] A. Falcdao and F. Bergo, “Interactive volume segmentati
we intend to continue. Only a small modification is needed  With differential image foresting transformdEEE Trans. on
in order to obtain an optimum-path forest that is always  Medical Imaging vol. 23, no. 9, pp. 1100-1108, 2004.
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