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Abstract—Accelerometers integrated in modern smartphones
pave the way to intuitively use gestures for collaboratively con-
trolling interactive applications. Using and holding smartphones
has become natural and ensures user acceptance as well as
intuitive handling. We focus on using accelerators in several
smartphones at the same time to interactively control a medical
imaging solution. To this end, we introduce a framework to
collect, modify, and distribute acceleration sensor data from
multiple smartphones and integrate it with a medical imaging
system which results in an environment suitable for e.g. doctors
reviewing and explaining diagnostic findings. We performed some
experiments to evaluate the usability of this approach and present
an ongoing research in adapting the smartphone interface to
physical simulation applications. Keywords: mobile, acceleration
sensor, smartphone, medical images

I. INTRODUCTION

The adoption of smartphones and their ever expanding
feature list [1] makes new forms of user interaction both
possible and more readily accepted by users. In particular,
the availability of acceleration sensors in recent smartphones –
such as in Symbian-based phones (e.g. N95), Android phones,
and iPhones – brings motion based user interaction to the
masses. Increasingly, the user interaction goes beyond simply
switching the screen orientation when a phone is turned to
actually using three-dimensional acceleration data to control
the position of objects. However, most scenarios are limited
to controlling applications on the device itself. And even if
acceleration data is used to control remote applications, it is
typically limited to just one user and one device.

In this paper, we provide and evaluate a solution that allows
to remotely control interactive applications with acceleration
data potentially sent by several devices from several users
simultaneously. To this end, we provide a framework to collect,
manipulate, and distribute acceleration data from smartphones
and integrate it with an interactive visualization application for
three-dimensional medical image data. The solution provides
accurate and intuitive browsing and positioning of medical
image data for e.g. doctors that need to work with three
dimensional data obtained from an MRI scan.

In section II we give an overview of related work using

acceleration sensor data to remotely control interactive appli-
cations. In section III we introduce our solution to interact with
medical images and detail the solution architecture. The main
components, WS3D with a multimodal open input framework
and PySensor to collect, manipulate, and distribute acceler-
ation sensor data are detailed in section IV and section V
respectively. We conduct some initial experiments and provide
a first evaluation of our prototype in section VI and conclude
in section VII.

II. RELATED WORK

In previous decades, experiments to provide a new input
device to three dimensional applications resulted in clumsy
and sometimes unnatural interfaces [2]. First approaches with
smartphones used the embedded cameras to track the device
movement and transmitted those as commands to the target
application [3]. With the recent advances in the accelerometer
technology, it is possible to make this kind of input more user-
friendly and less costly.

Sensors are becoming common devices in modern smart-
phones and used for controlling applications [1]. Most of
the research seems to focus on bringing the applications
to the device, e.g. [4] and not bringing the data to the
application. But increasingly applications appear that remotely
collect acceleration information and use them to better un-
derstand human behavior [5], [6]. Now it is possible to not
use dedicated but common devices such as smartphones for
controlling applications. Maybe the most prominent example
of remote controlling with acceleration data from a smartphone
is ShakerRacer [7].

The concept to remotely control applications with accel-
eration sensor data is well known, commercialized with the
Wii-Controllers, and used in gesture recognition [8]. Luigi et
al. [9] performed experiments in controlling the visualization
of 3D medical data with the WII-Controllers.

III. OVERVIEW

Our main objective is to couple the complexity of the visu-
alization of a medical dataset in 3D with a multimodal input



Figure 1: Architecture of the framework

environment. Despite the recent advances in input devices for
three-dimensional scenarios, most users still rely on mouse
and keyboards to interact with computers. Many of the new
devices target audiences like videogame consumers. Using
game controlers may demotivate potential users in a platform
designed to serve health professionals. According to Bowman
et al. [10] "the problem currently facing 3D UI researchers
is that despite this broad coverage and extensive knowledge
of 3D interaction techniques, the usability of 3D UIs in real-
world applications is still surprisingly low in many cases". We
believe that some part of the rejection by users is that they are
just hesitant to touch and learn when dealing with a different
device. Therefore, we focused on a device that physicians are
more familiarized with: smartphones.

As users are already acquainted on how a smartphone
works, it is easier for them to use it as an input device.
Moreover, smartphones have better capabilities than other
input devices, such as mice and other accelerometer-based
hardware. They are capable of giving the user feedback
(vibrating, playing sound / videos and so on), which mice
cannot. In addition, users probably already use their phones
in their everyday work, so they’re always present and ready
for use. Finally, smartphones can give multiple ways of input,
that could be explored in the future, such as image tracking
from the camera or even voice commands.

Nowadays smartphones have different functionalities and
can track different input signals: from the simple press on a
click button to the change of the device rotation angle. Since
this kind of input can be tracked and tailored to specific appli-
cation needs we chose to use then to control the visualization
of data in a 3D environment. The smartphone connectivity
possibilities allow to build a scenario where many users can
interact, without worrying about physically connecting a cable
to the PC running the application. The connection is performed
through the smartphones wireless capabilities, there is no
problem related to the distance between the user and the
computer that runs the application, something that can happen
with device that communicates by a Bluetooth connection,
such as the WII-Controller.

We focus two different scenarios:

• A physician is analysing a patient’s data with more
doctors in the same room. He points to the patient
data’s characteristics and asks for the others physicians’
opinions. Provided the possession of a smartphone, any
other physician in the room can join the interaction.

• All the physicians are in different places. They comuni-
cate with each other through a web conference. They are
sharing the view of a remote application. At any time,
each one of the physicians could manipulate the model
that was supposed to be displayed to everyone.

The first scenario is easy to figure out. In fact, a different input
may not seem a real improvement in the users interaction. But
if we realize that probably a single mouse would be available
at the moment, instead of a smartphone for every user, we can
see that a lot of progress could be achieved specially where
two or more users are accessing the application at the same
time.

There are many tools that allow interactions through web
conferences. However our advantage is that only the machine
that runs the application requires distinguished hardware con-
figurations. Since our signals are sent directly to the internet,
the smartphone can be anywhere a wireless connection is avail-
able. Users send signals via the internet and can visualize the
result on screens. In this scenario users should be visualizing
their results on a third party software (that could be running
on a PC or the smartphone), but they could input data freely.

With these two scenarios in mind we performed a set of
tests. The first goal was to find a more natural way to use
the cellphone capabilities in dealing with 3D data. So we
used the accelerometer’s commands to perform geometrical
transformations in 3D environment’s objects.

IV. VISUALIZING AND INTERACTING WITH MEDICAL
IMAGES

The Workstation3D (WS3D) [11] is an application to vi-
sualize and manipulate medical images in a 3D environment.
The application builds volumes from images gathered from
CT or MRI examinations. To this end, the WS3D extracts 3D
polygonal meshes from the volumes by radiological density
or curve selection. It also allows the application to apply
VOIs (Volumes of Interest) on discarding polygons from
the meshes and to measure tubular meshes cross sections
and length. Typical user interaction with the WS3D is via
a desktop user interface with typical widgets. The actual
interaction to position the 3D object is primarily done with
mouse which can be operated in different modes to allow to
control several aspects of the visualization. As we do not aim
to use the smartphone as a full replacement for keyboard and
mouse, we focus on replacing the 3D interaction and do not
cover replacing the existing typical desktop widgets nor using
these with the smartphone. Therefore, we take advantage of
the acelerometer to control geometric transformations on the
camera. The visualization tool relies on trackball and free-
look visualization allowing camera repositioning and zoom
operations. To allow continuously working with the smart-
phone without being interrupted by necessary small mode



settings with the keyboard, we also use the keyboard on the
smartphones to do most basic commands with single key
strokes.

Using acceleration data as input data to control the 3D posi-
tion of a medical model requires to bring the acceleration data
to the application. Thus, the receiving side – the medical image
application the WS3D – has to be open to accept acceleration
data or in general different input devices. BILL [12] is part
of the WS3D and serves as a multimodal input framework
to allow dynamic binding between different input devices and
software events.

For every input device BILL needs a respective representa-
tion, which we call Input Device, that translates regular events
to BILL’s events. Once the event is inside the framework,
already translated, it is distributed to every listener, here called
Action, that was previously bound to that specific event. Then,
the Action performs whatever the application is supposed to
when recieving that event.

In this smartphone example, we defined a Cellphone Device,
which translates the events from the smartphone (buttons
pressed, accelerometer data) into BILL’s events. Then, we
constructed a Cellphone Action, crafted to apply to the ap-
plications the commands from the smartphone. This structure,
shown in Figure 2, has a very modular nature, as every
application that uses the cellphone as input only needs to
design its own Cellphone Action. In fact, it only needs to do
that if the commands applied to that application differs from
the previously defined Cellphone Actions. Also, the Cellphone
Device and all the events in BILL, if well constructed, can be
reutilized as a basic cellphone input structure.
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Figure 2: Representation of the communication between de-
vices, BILL and the application.

BILL’s purpose is to improve code reusability and develop-
ment time speed while decoupling the event management from
a prototype application. Every action in the code repository
could be employed in any application without expressing hard
coded connection between any input device; e.g., a joystick,
camera, or in this case cellphone. The application prototype
used in the experiments in this paper were conceived to be
manipulated with mouse and keyboard passed to BILL through
the wxWidgets library. Therefore, we linked different events
with some already implemented actions. As it would be non
intuitive to manipulate an application with many toolbars and
buttons entirely with a smartphone – and since the input
layer allows multimodal inputs – it is still possible to use the
prototype with mouse and keyboard alongside the cellphones.
It was easily possible to accomodate the client side of the
PySensor comunication layer as single logical input device
on BILL. In the PySensor environment acceleration data for

different devices is collected and prepared to serve as input
data for the application. Thus, while the WS3D and BILL are
capable of dealing with data from different smartphones, they
are not aware of that multiplicity and will treat all the events
as they were from one source.
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Figure 3: C3DE libraries internal in UML component
model[11].

V. COLLECT, MANIPULATE, AND DISTRIBUTE
ACCELERATION SENSOR DATA

PySensor [13] is an open environment to collect acceleration
sensor data from various mobile devices, manipulate the data
to include for example gesture recognition, and distribute the
resulting data to client applications. We first give an overview
of PySensor and then detail the specific data preparation for
browsing medical images.

PySensor includes for each mobile platform a device-
specific software that sends raw UDP packets containing
acceleration and keypress data. The software on the device
itself is dumb and does nothing but collect and distribute data.
Optionally, images can be sent to the device and visualized
providing for a full user interaction loop. The most common
smartphone platforms such as Symbian and Android, as seen
in Figure 4, are supported and porting to new platforms is
straightforward. A server (PC) part allows further processing,
logging, recording, and visualization of this data, which is
finally distributed to a client application.

Figure 4: Android OS capable smartphone executing PySensor

As most smartphones nowadays include wireless LAN this
is the preferred option to send packets. Alternatively, Bluetooth
can be used to send the data packets. The server runs the main



PySensor framework which is written completely in Python.
Data processing is realized as a filter chain and allows to
manipulate the data stream (with access to past packets) with
user provided python functions. Data packets from several
sources can be mixed, altered and sent as combined data
stream to a receiving application. To integrate receiving client
applications, libraries in C, Java, and Python are provided that
can be used to generate asynchronuous user interaction events.
In addition, a simple user interface as shown in Figure 5 allows
visualization and interactive development of user-provided
filters such as ones used for gesture recognition. A recording
and playback facility of acceleration data streams allows even
unit testing of gesture recognition algorithms.

Figure 5: PySensor configuration and signals values

For the described scenario the following filters have been
realized. First, all acceleration sensor input data of each device
is normalized to a -1 to 1 cube to ensure device independence
and make sure that the neutral position on a table with earth
gravity is really (0, 0, -1). In addition, earth gravity is removed
from the data and neutral position then is (0, 0, 0). Users
feel uncomfortable if even slight deviation from a neutral
position starts changing the model. Note that movement might
occur if the device lies on a table that is not a 100 percent
level. Thus, we set the cube from -0.1 to 0.1 to not have
any effect. Lastly, as exact positioning is needed as well as
fast movement, we apply a nonlinear function – after some
experiments we settled for quadratic – to the acceleration data
to allow for a faster movement if the acceleration is large and
a more fine grained control if the acceleration is small. This
also accomodates the inherent unprecision in the delivered
acceleration data. Precise control over the actual position can
be exercised near the neutral position. In addition, we felt
that holding a key for a specific selection feels unnatural
to the users. Thus, we make the keys that select a specific
part under control of the acceleration data behave as On/Off
keys. To this end, we make sure that within a specific time
limit a stream of “key pressed” events generates just a single
“key press” event. Finally, note that two devices that send
roughly 30 packets per second result in 60 packets (or three
devices in 90 packets), which was too much for the receiving
application to handle, as each time the complete model has
to be shifted and redisplayed. Thus, we limit the data rate of

the combined generated packets to a level comfortable to the
receiving application – 15 packets per second – which still
maintains the illusion of direct manipulation.

VI. EXPERIMENTS AND EVALUATION

We designed three applications to test the framework. In
the first one, we bound some of the commands used in the
Workstation3D to the cellphone, so it’s focused on the medical
imaging part of the framework. The second is a more generic
application, so we can run the tests over a more diverse group
and focus on usability. With the third prototype we tested the
framework reusability and adaptability.

The initial experiments on limited user groups show promis-
ing results. For the first application, we asked two doctors
and four non-specialist users to interact with it, while trying
to achieve some simple goals. Initially, we gave each user a
manual with the commands that the application can perform
and how to apply each of them properly. In addition, the
manual included an explanation of every goal to be performed.
When the users understood the instructions, they had a period
of 5 minutes to play around with the application and get used
to the commands and look and feel of the interaction. Then,
we asked them to perform the tasks. The focus of the first
experiments was not speed, but assesing how comfortable and
natural it is to use the smartphone to interact with the imaging
solution.

(a) (b)

Figure 6: (a) A user can manipulate the software alone in
front of an audience, distant from the computer. (b) Two users
interacting with the application through smartphones.

In the experiments the users were asked to visualize a
polygonal mesh reconstruction of a skull gathered from a
CT examination as shown in Figure 7. Users were asked to
perform the following steps:

• Look at a reconstruction from the left and right side
• Zoom on the nose
• Find two implant teeth

The doctors immediately felt more acquainted in controlling
the application in comparison to the non-specialized users and
completed the tasks much faster in a natural way. However,
the non-specialized users did not feel at ease navigating
through the skull of a human being. After completing the tasks
the users were interviewed with open questions about their
experience and prompted to provide suggestions and advices



Figure 7: PySensor - WS3D interaction

in order to improve the application. In the next paragraph, we
concentrate on the feedback of the two medical doctors.

One doctor is a dentist and works as a professor at a
university. It took her about five minutes to get used to
using the smartphone as an interaction device. She controlled
the application very well, but tended to move her shoulder
alongside the hand toward the direction the smartphone was
turned. She suggested to switch the directions in zoom control,
such that pulling towards the body means zoom in and not
move back1 which basically means zoom out. All casual users
made this suggestion after trying to move the smartphone in
the “wrong” zooming direction first. The other doctor is a
radiologist. He performed all the tasks after the initial phase
focused, with ease and faster than all other users. He stated
that the application could work as useful tool in discussing
examinations within a group of specialists. Both doctors
made suggestions and critics of features of the workstation
concerning software user interface which is independent of the
interaction with the smartphone. A common complaint was the
lack of a indication of the three axis origin in the volume and
mesh visualization.

Figure 8: The second test application, before and after the user
achieved the goal

For the second application, we gathered a group of 15

1The opposite of an average FPS game

testers. The tests were performed individually and no time
was given for the users to get used to how the application or
the controls worked.

The application itself was fairly simple. We reconstructed
a skull and a thorax, moving the skull away from the thorax.
Then, we asked the user to put the skull back into its place,
right above the thorax. They had to use the phone to translate
the skull and, when it reached the right position, it would turn
green, indicating that the user succeeded. After a few seconds,
another skull would appear on the screen, but now rotated from
its original orientation instead of translated. The users had to
rotate the skull, making it face forward. Again, when the skull
reached the target orientation, it would turn green. Finally, a
third skull is shown, now translated and rotated at the same
time. On completion of the final task, the program exits and
the test is over.

We timed every test and, as shown in Figure 9, the users
fall roughly in three groups. The first group (users A through
E), are experienced computer gamers and very habituated
to mouse control rotations and translations. They also share
knowledge of how the smartphone accelerometers and the
application itself work. Group two (users F through K) share
the same experience in computers with the first group but were
unfamiliar with the smartphone. The last group (formed by
the rest of the users) did not use the computer much and were
unfamiliar even with rotation and translation using the mouse.

Some of the users that were more used to the interface
provided by the smartphone to perform rotations and transla-
tions could perform the tasks easily, while the ones that had
been just introduced to this new input method took a while to
apply any conscient transformation to the skull. In fact, eleven
users took less time to perform the last task (which requires
translation and rotation combined) than to set the second skull
right (which only requires rotation) as it can be seen in Figure
11. Probably because they became more skilled in performing
the rotation action over time.

Figure 9: User x Time spent in the test in seconds



Observation revealed that most participants initially ex-
pected the smartphone position to reflect the position of the 3D
object. They needed some time – much more time for the non-
specialized users – to get acquainted to the idea of using the
acceleration to indicate position “change”. Nonlinear controls
and an area without effect is instantly accepted by the user.
The eyes are focussed on the screen and the smartphone is
not checked at all. However, the natural “zero” position for a
smartphone when held is not flat (like on a table) but slightly
raised, as seen in Figure 10, which should be accomodated in
the future.

Figure 10: Cellphone natural holding position

A usual complaint was about the lack of a third axis for
rotation. Accelerometers cannot provide data for rotations in
the Z-axis, but the framework is easily adaptable to make use
of that axis whenever it’s acessible in hardware. But, after
explanations that it is only possible to apply rotations in the
X and Y-axis, users quickly adapted and performed the tasks

Figure 11: User x Time spent in each task for the second
application

Figure 12: Smartphone interaction with the Spring Mass
System

with relative ease.
For the last application, we added smartphone controls to a

physical simulation prototype. Instead of controlling a skull,
the user could translate a ball through the 3D space, where
it would interact with a mesh. Users could also pause the
simulation and change some of the mesh properties. Little
changes were made to the Cellphone Action, but the rest of
the framework remained the same. As some modifications are
inevitable, we believe the framework achieved a very good
level of reusability. Moreover, smartphone events were easily
mapped to match the application needs, so the framework
could be used in a wide range of applications with different
ends.

VII. CONCLUSION

We have provided a prototypical solution to interactively
visualize medical data with commonly available smartphones
using acceleration sensor data. The setup does not need any
specialized hardware and provides a good user experience
due to its intuitive controls and good user acceptance due
to its use of smartphones. Both doctors used the application
intuitively after a few minutes and did no longer concentrate
on the interaction/navigation but on the generated images as
anticipated. Collaborative scenarios can be easily supported
with current hardware. A simple environment to remotely
control applications with acceleration sensor data has been
provided and helps to easily develop application specific
interpretation of the acceleration data and is very useful to
iteratively tune the user interaction.

In the second experiment we realized that users with expe-
rience in manipulating 3D data can work with the smartphone
more effectively. Despite the initial difficulties in understand-
ing how the input commands work, the results showed a
promissing learning curve across the experiment’s three stages.

The framework is open to support several different client ap-
plications and scenarios. In particular, more elaborate gesture
recognition algorithms can be performed within the framework



and tailored to specific use cases. Furthermore, the collabora-
tion possibilities of using accelerometer based input devices
need to be further investigated and evaluated.

VIII. FUTURE WORKS

At the present moment we worked with the smartphones
as mere input to control and to visualize objects in a three-
dimensional environment, but they can also receive signals.
In the near future we intend to increase the user interaction,
allowing the cellphones in displaying images and/or videos
generated by the application executing on a PC. In a more
elaborated scenario, users may participate in a web conference
using just the smartphones, without concerns about download-
ing medical images and heavy 3D models. In the PySensor
interface users interact with the smartphone’s touchpad just as
it was with the keypad. Since touchable devices are widely
spread nowadays, we could take more advantage of that;
allowing the user to control an interface with graphical buttons
and touch gestures.

It is hard to find a good device that simulate displacement
in surgical simulator with an acceptable cost. The devices
are specially developed for that goal and are focused in
capturing movement precision [14]. On the other side, the
interaction with three dimensional objects through devices
such as mice constraints to users, because the movements are
limited by a degree of freedom. We also intend to perform
some experiments in simulating physical behaviours with the
cellphone, probably using the vibrate sensors present in many
cellphones to act as a response tool.
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