
Efficient Collision Detection and Physics-based Deformation
for Haptic Simulation with Local Spherical Hash

Marilena Maule, Anderson Maciel and Luciana Nedel
Instituto de Informática - INF

Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
email: {mmaule, amaciel, nedel}@inf.ufrgs.br

Figure 1. A spherical hash approach is used to handle collisions between complex deformable models in constant time to the number of vertices. The
first image shows a tetrahedral mesh encapsulated into its spherical bounding. The other images present frames of real-time animations involving one,
two, three and four colliding deformable objects. Since our case study is on surgical simulation, we are using a reconstructed and decimated real liver to
exemplify.

Abstract—While real time computer graphics rely on a frame
rate of 30 iterations per second to fool the eye and render
smooth motion transitions, computer haptics deals with the
sense of touch, which requires a higher rate of around 1kHz
to avoid discontinuities. The use of haptics on interactive
applications as surgical simulations or games, for instance, can
highly improve the user experience, and the sense of presence.
However, its use in complex simulations involving realistic
rendering, deformable objects and collision detection requires
the development of very performing algorithms. This paper
presents an implementation of mass-spring system adapted
to CUDA implementation, and a novel method for collision
detection in haptic update rate. Important aspects of the port to
parallel programming and the GPU architecture are addressed,
as for example, strategy and frequency of memory access.
A quantitative experiment is also presented to evaluate our
methods capability and scalability.

Keywords-GPGPU; physics-based animation; medical simu-
lation; computer animation

I. INTRODUCTION

Haptic interactions are often suitable in computer graphics
systems to amplify the user interaction experience. However,
the high update rates required demand a great amount of the
computational power. While the display update rate needed
to fool the eye with smooth transitions rely on a frame
rate of 30 Hz, computer haptics deals with the sense of
touch, which requires a higher rate of around 1kHz to avoid
discontinuities.

Another desirable feature in many graphics applications

is physics-based simulation. From games to surgery sim-
ulation, physics has become a must have. However, re-
alistic physics-based models are often very complex and
also require high computational power. When deformations
are involved, even simple physical models, as mass-spring
systems, present a too costly numerical integration to run in
real time.

The combination of fast deformable physics-based models
with haptic interactions is still a challenge. In the present
work we highlight two major bottlenecks for such sim-
ulations: collision detection and deformation computation.
This work explores parallel hardware acceleration and ef-
ficient collision detection approaches to solve the problem
of simulating several deformable bodies in an interactive
environment with haptics. Experiments which may lead to
an effective bimanual surgical simulator with haptics have
been performed.

Our parallelization approach is based on the general
purpose GPU programming, which is no longer new. Many
researchers explored the parallelization capabilities of graph-
ics hardware to compute deformation and other procedures
using shader languages [1][2]. The greatest challenges then,
were how to model the problem in such a restrictive environ-
ment where GP (general purpose) data had to be converted
into graphics structures like texture memory, vertices, color
information, and so on, and then converted back.

More recently, CUDA architecture made the problem eas-
ier by providing programming mechanisms of higher-level



languages for GPGPU programming. However, GPGPU is
still bounded by the limitations of the general hardware
architecture. Such limitations must be in mind in the algo-
rithm project phase to take the best advantage of the parallel
power. An important detail that is highlighted in this paper is
the data organization, since the data access pattern impacts
deeply in the final performance.

In this context, and focusing on the problem of interactive
physics-based simulation with haptics, this work proposes
an integrated schema for the parallel implementation of a
simulator. The major contribution is an efficient method
for collision detection with deformable bodies inspired on
[3], and adapted to run on the GPU. We focus on data
organization to run efficiently in the GPU paradigm.

In the next section we review the literature of physics-
based deformation in graphics, collision detection, and hap-
tic interactions. In Section III we present how the deforma-
tion problem is modeled to run in a parallel CPU implemen-
tation using OpenMP, and in GPU, using CUDA. Section
IV describes the implementation of the local spherical hash
algorithm for collision detection, and Section V details the
approach and the devices used to render haptics and how the
feedback forces are calculated. Finally, Section VI presents
the experiments leaded and our results, and Section VII the
conclusions and future work.

II. RELATED WORK

A. Efficient mass-spring systems

A mass-spring system is a physically-based and less
expensive technique used to represent deformable objects
in interactive applications where physical accuracy is not
mandatory. Over the last decades, they have been applied in
real-time. Generically, the dynamic of a mass-spring system
is based on time-dependent formulae (force-laws). These
forces can be physically-based, such as linear springs or
dampers, or designed to hold some desired configuration.

Recently, some works [4][5]took advantage on both GPU
performance and parallelism, which usually fits in the simu-
lation needs – simple procedures performed over a lot of data
(streaming processing model) – to implement physically-
based simulations. This model fits in mass-spring system
requirements, and has been addressed by researches.

The first proposal of a GPU-based mass-spring system,
to our knowledge, was done in [6]. The authors perform
deformations on 3D rectilinear meshes extracted from med-
ical datasets. All particles are represented in a 2D texture,
and the topology is encoded using texture coordinates. Thus,
each vertex is always connected to its 18 neighbors, which
can be a significant limitation in simulation of more general
systems (with small valences). Explicit Verlet integration is
used to integrate the model dynamics.

Georgii et al. [7] discusses a mass-spring system that
allows deformations to tetrahedral meshes. Particles are
also stored in a 2D texture (here called vertex texture);

however, the mesh topology is represented by a stack of
vertex textures, where each texture encodes one of the
tetrahedral neighbors adjacent to the respective vertex in the
vertex texture. The authors also discuss a technique (valence
textures) which avoids the memory overhead required to
represent vertices with high valences. With this represen-
tation, they reach interactive rates through a GPU-based
computation of Verlet integration method. However, the
memory overhead introduced by storing each neighboring
vertex of the tetrahedra separately and the multiple spring
forces calculation are severe drawbacks in their proposal.

Tejada et al. [8] present a GPU-based system which both
performs physically-based deformation and volume visual-
ization of tetrahedral meshes on recent GPUs. The authors
propose a GPU-based implementation of implicit solvers, in
order to reach stable simulations with larger time-steps. The
model topology is implemented through two textures, which
encode the vertex neighborhood, and additional textures to
hold the vertex positions, velocities and external forces.

B. Collision Detection

The problem of collision detection came into the computer
simulation problematic because, as their real world counter-
parts, simulated objects are also expected not to penetrate
each other. The problem involves checking the geometry of
the target objects for interpenetration, which is usually made
using static interference tests. We refer to [9], [10] and [11]
for detailed surveys on general collision detection.

Following the point approach, a hybrid approach based on
uniform grids using a hash table and OBB-trees is presented
in [12] and provides a method for fast collision detection
between the haptic probe and a complex virtual environment.
OBB-trees are also used in [13] to reduce the problem to
local searches. Though they provide only point-based haptic
rendering, intersections are detected against a line segment
defined by the moving path of the haptic interaction point.

Image-based methods for collision detection use the
graphics hardware to detect collisions. As they are based
on the image space they are not bound by the size of the
meshes being tested but by the size of the image rendered.
For that reason, they can be used to detect collisions between
deformable objects. However, as these methods are based
on a discrete approximated representation of the objects –
an image – their precision depends on the errors of this
discretization, which represents a limitation as they provide
limited information for collision response. In [14] every
object is rendered in 2 depth buffers containing the least and
the greatest depth value for every pixel of the object. The
range of values represents the object in each pixel and can
be used to detect contacts between convex objects. In [15],
the authors use an image-based method to detect collisions
in line-like interactions with deformable objects. In a related
paper [16] they also discuss issues such as those pertaining



to the use of a discrete projection of the line on the mesh in
the context of a collision detection and response algorithm.

Some hash table-based methods have also been proposed.
In [3] a spherical hash is used to detect collisions. The
method evaluates in constant time the distance between a
point in one mesh and the closest point of another mesh.
However, it limits the mobility and the deformation of the
object around which the hash table is built due to the coor-
dinate system being fixed. More details about this method
are given in section IV where an extension is proposed.

Interactive applications, especially in computer graphics,
require efficient collision detection methods to render real
time graphics. This problem is solved in most cases using
traditional collision detection methods with the state of the
art hardware. However, while in real time computer graphics
interactivity is limited to a display rate of 30 frames per
second, in multimodal virtual environments involving haptic
interactions, a much higher update rate of about 1 kHz
is necessary to ensure continuous interactions and smooth
transitions [17]. Due to the presence of deformations, most
of the common assumptions upon which the methods cited
here are ineffective. Additionally, thorough methods are
inefficient due to the associated computational complexity.

III. FAST DEFORMABLE MODELS

GPGPU has been used to accelerate the execution of
algorithms in many domains, including the simulation of
deformable bodies. Combining the efficiency of mass-spring
systems with the power offered by the parallelization with
GPU programming, it is possible to quickly calculate the
numerous small steps required to explicitly integrate forces
into displacements in a physical simulation. For this, the
data structures used should be adapted to take advantage of
the GPU memory organization and access politics.

A. Problem Statement

We want to simulate soft body deformation using a mass-
spring system. The deformable object is modeled as a tetra-
hedral mesh, where each vertex corresponds to a particle and
each edge is a spring connecting two particles. Each system
step is achieved by evaluating the Euler integration of the
parameters of each mass mi, as shown in Equations 1, 2 and
3. The new position of the mass (xi+1) is given by the older
position (xi) added to its velocity (vi+1), where (vi+1) comes
from the previous velocity (vi), which is damped (1− d)
to simulate energy loss (caused by friction) plus the mass
acceleration (ai) in the time interval ∆t. The acceleration
(ai) is the addiction of the gravity acceleration g with the
pondered spring forces (Fi j) acting in the mass mi.

xi+1 = xi + vi+1 (1)

vi+1 = vi(1−d)+ai∆t (2)

ai = ∑Fi j/mi +g (3)

These parameters compose the dataset to be stored in
order to integrate the system. Assuming that all particles
have mi = 1, we will need to save positions (xi), velocities
(vi), as well as the springs rest and instantaneous lenghts for
each mass mi.

B. CPU Implementation

Each CPU core takes one particle at time, evaluates it, and
takes the next. Even with multiple cores, many architectures
reserve some cache to each core. So, to take advantage of
the cache locality, it is convenient to organize the data in an
array of structures, each structure corresponding to a particle
as shown in Figure 2, so all the data needed to evaluate that
particle will be at hand.

Figure 2. Data structure for mass-spring system implementation in
sequential processors. The organization in an array of structures allows
cache locality, providing the data needed to serial computing.

C. GPU Implementation

The mapping of the system parameters to structured data
in GPU memory must be done carefully. The memory access
pattern is different in the GPU and the memory hierarchy
is designed to hide the delay from the massive data fetch,
keeping the processing units busy all the time. All the
threads will run the same code at the same time. They will
first access their respective positions, then their velocities,
and so on. So, if we use the same organization, with arrays
of structures, all parameters for one thread will be brought
to cache at the same time when the thread only needs the
position, which may generate lack of cache to other threads.
However, if instead of using an array of structures, we use
a structure of arrays, as shown in Figure 3, when all the
threads need the positions, only the positions will be in the
cache, the same occurring to the other parameters.

Figure 3. Data structure for mass-spring system implementation in
GPU. The organization in a struct of arrays allows cache locality to the
many threads running concurrently, providing the data needed to parallel
computing.



The springs lengths are indirectly stored using an ad-
jacency list which indexes each particle j connected with
the particle i. The neighborhood is stored in two vectors.
The NeighborsIndexes vector contains all the adjacency lists
sequentially. The Bases vector contains the indices to the
first elements of each list, as shown in Figure 4. To compute
the forces acting on the particle i we sum the contributions
from all its neighbors by traversing the NeighborsIndexes,
from de index given from the ith entry of the Base vector
to the index given by the i+ 1th entry of the same vector.
Thus, the Base vector needs n+ 1 entries, where n is the
number of particles and the n+1th entry stores the size of
the NeighborsIndexes vector, which is the total of springs.

Figure 4. Data structures for mass-spring connectivity implementa-
tion in GPU. Each index in the Base vector points to the lists in the
NeighborsIndexes vector which indexes the connected particles.

IV. FAST COLLISION DETECTION WITH LOCAL
SPHERICAL HASH

In this section we introduce the Local Spherical Hash
(LSH) method, inspired on the Spherical Sliding method
– presented in [3] – for collision detection involving de-
formable bodies. The Spherical Sliding method builds a
hash table – called Spherical Sampling Table (SST) – where
each cell is indexed by the angles θ and φ in a spherical
coordinates schema.

One of the meshes is considered fixed because its center
is at the origin of the spherical coordinates system, and its
triangles will be stored in the SST. To build the SST, a ray is
traced from the origin to the cell, oriented by polar angles,
and the cell is filled with the triangles intercepted by the ray.
When computing collision detection, for each vertex from
the mobile mesh, the nearest triangle from the fixed mesh
is obtained in constant time.

Our method builds a similar hash table in preprocessing
time for n meshes. The initialization is made with the
tetrahedral mesh in its rest state, before the deformation
starts. The first step is to build a bounding box around the
mesh. The vertex closest to the center of the bounding box
is taken to be the origin of the local reference system. The

entire mesh is then translated in order to put this central
vertex in the origin of the global reference system. To build
the axes of the local frame, we choose the three vertices on
the mesh surface closest to the x, y and z axes of the global
reference system. Algorithm 1 describes this procedure in
high level, and Figure 5 shows an object with its spherical
bounding and deformable local coordinate system.

Figure 5. Spherical Bounding (left) encapsulates the model and provides a
fast first collision test. Deformable Local Coordinate System (right) allows
the correct mapping of the deformed vertices.

Algorithm 1 Building the local frame
build the bounding box (BB) // visit all the vertices and
collect the MIN and MAX coordinates;
find the BB central point extracting the mean point
between MIN and MAX ;
set the origin of the local frame ic by taking the mesh
vertex closest to the BB central point;
translate the mesh in order to put the vertex ic on the
global reference system (GRS) origin;
define the axes of the local frame as:
iu = index of the mesh vertex closest to the GRS axis y;
iv = index of the mesh vertex closest to the GRS axis x;
iw = index of the mesh vertex closest to the GRS axis z.

In a second preprocessing stage, all vertices on the object
surface are transformed into spherical coordinates, with
respect to the local reference system. φ and θ values are then
normalized to index a hash matrix as shown in Equations 4
and 5, where ratiot and ratiop define the size of the cell in
degrees. The index of the vertex is added to a list associated
with the selected cell. Algorithm 2 describes this procedure.

ix = 180θ/ratiotπ (4)

iy = 180φ/ratiopπ (5)

The last step is then the collision detection itself, done
at each integration step of the mass-spring system. The first
test is done with the bounding sphere of the mesh; if there
is intersection, the subsequent tests transform the vertices



Algorithm 2 Building the spherical hash table
map the vertex to local frame coordinates;
draw a vector from the local frame origin to the vertex
vi;
calculate the spherical coordinate for the vector, obtaining
φ and θ ;
add the index of the vertex vi to the list of a hash matrix
indexed by a scale transformation on φ and θ .

into the deformed coordinates system. The collision test is
made once for each pair of objects. Consequently, we can
say that we have made N(N−1)/2 tests between objects,
where N is the number of objects. For the Mi mesh, tests
should be made only with the mesh with indexes greater than
i. Algorithm 3 presents in detail this procedure. Notice that
no update step is required for the hash matrix. The table
is constructed at the initialization step and do not require
updates because the local axes move and deform with the
mesh.

Algorithm 3 Collision detection between meshes
for all vertex vi on a mesh Mi do

map vi to the local frame of the mesh M j, generating
v′i;
map v′i to spherical local coordinates and find the
corresponding cell on the hash matrix of mesh M j;
for all k index in the vertex list of the cell do

take the vertex vk of the corresponding mesh M j;
if dist(vi, OM j ) < dist(vk,OM j ) then

report a collision
end if

end for
end for

As creation of the hash table is made only once in
preprocessing time, it is performed on the CPU and the
results are sent and stored in the GPU memory. The hash is
represented by a matrix containing the bases that index an
array that contains the lists of particles in each cell of the
hash. Each particle is represented by an index that points
to its parameters in the other data structures, including the
array of positions.

Each particle of a mesh Mi is mapped to be processed
independently by a thread of the GPU. The thread, in turn,
maps the position of the particle to the spherical coordinates
of the mesh M j, indexing the hash for M j and obtaining the
list of particles of mesh M j that can possibly collide with
the particle of mesh Mi. If the distance from the vi particle
from mesh Mi to the origin of M j is less than the distance
from the colliding vertex v j to the origin of M j, then there
is a collision. The GPU implementation of the hash matrix
is similar to the adjacency list described in Section III.

The mapping works even if the basis is non-orthogonal.
Only possible problems are:

1) Two of the basis vectors become linearly dependent.
But it only happens if the model is completely crushed;

2) Two of the particles defining the basis invert positions.
It also only happens if the model undergo severe and
non-biologically acceptable deformation.

Of course, mapping resolution will vary with frame deforma-
tion, but this can either improve or worsen a bit the detection
quality.

Combining the efficiency of the Local Spherical Hash
algorithm with the power offered by the parallelization
achieved with GPU programming, it is possible to quickly
detect collision between a number of complex deformable
objects during a physical simulation.

V. HAPTIC INTERACTION

A. Haptic interactions
Haptics is the human sense of touch. It is related to

the perception of tactile and proprioceptive information as
vision is related to visual information. Computer haptics
is analogous to computer graphics and deals with various
aspects of computation and rendering of touch information
when the user interacts with virtual objects.

Computer haptics require a haptic rendering device. The
latest smartphones and other mobile devices like media
players and game consoles all come with some sort of
haptic interface. Moreover, haptic mice and joystick are also
available. Such devices render vibration and bumps as tactile
information to the user. Tactile information improve user
productivity while using the graphical interface as now touch
brings new cues for interaction, especially when combined
with visual and auditory information.

Other less popular but well developed devices render
force information. The most successful and widely used
haptic devices today are the Phantom family developed by
Sensable. The Phantom Omni, for example, is a generic 6
degree of freedom (DOF) input and 3 DOF output force-
feedback device featuring an articulated arm with three
uniaxial rotational joints and one 3-axis rotational gimbal.

More than just a device, an interaction model must be
implemented to calculate the feedback forces. They are often
based on some sort of collision detection and response (see
section II-B). As soon as the collisions and contacts between
virtual probe and the meshes are resolved, the collision
information has to be used to provide essentially two types
of response. The first response is a reaction in the model,
which will deform if it is soft or move aside if it is rigid.
The second is the calculation of a reaction force which will
be delivered to the haptics device to determine how it will
push the hand of the user. This second response is what we
call haptic rendering.

Haptic rendering algorithms make use of basic inter-
ference tests to provide force feedback. The first haptic



rendering algorithms were based on vector field methods
[18]. Then, to overcome the many drawbacks of vector
fields, the concept of god-object was introduced by Zilles
and Salisbury [19]. A god-object is a virtual model of the
haptic interface which conforms to the virtual environment.
Actually, one cannot stop the haptic interface point from
penetrating the virtual objects. The god-object represents
the virtual location of haptic interface on the surface of the
objects, the place it would be if the object was infinitely
stiff. Recently, Ortega et al. [20] introduced an extension
of the god-object paradigm to haptic interaction between
rigid bodies of complex geometry. The authors used a 6-
dof stringed haptic workbench device and constraint-based
quasi-statics with asynchronous update to achieve stable
and accurate haptic sensation. However, due to the use
of an inefficient collision detection method, they cannot
guarantee a 1kHz frame rate, which may result in inaccurate
representation of high-frequency interactions such as when
objects slide rapidly on each other.

B. Haptic rendering strategy

The haptic rendering procedures were implemented target-
ing the Sensable Phantom Omni force-feedback device (as
the one shown on Figure 6. Concerning software, we used
Open Haptics library to communicate with the Phantom,
but only the input/output application program interface to
communicate with the Phantom through the asynchronous
HD interface. As we need total control of the system
behavior for optimization reasons, we are not using any
of the included methods for collision detection or scene
modeling. Additionally, it is important to state that these
methods cannot handle deformable models.

Figure 6. Application interface with the shovel tool (in gray) used to
interact with a reconstructed human liver model. Phong shading and shadow
mapping were used to increase scene realism. In the lower right we can
see the Phantom Omni device in use.

The interactive experience is based on the manipulation
of the Phantom arm. Moving the Phantom arm, the user
controls a flat rectangular tool like a shovel in the virtual en-
vironment, as shown in Figure 6. Positions and orientations
of the tool are read from the device and used as the input

for our simulator, that physics module detects the collision
at every simulation step, while the graphics engine use it for
rendering purposes.

The collision detection method applied for tool-mesh con-
tact determination is trivially performed calculating scalar
products with the tool plane normal and edges, as illustrated
in Figure 7. If a particle was above the plane on the instant
time t−1, and on time t it is under the plane, then, for each
tool vertex a vector from the vertex to the projection of the
particle over the plane is traced. If all the angles between
the vector to the particle and the adjacent edge of the tool
are less than 90 ◦, then a collision is reported.

Figure 7. Collision detection between a mass point of the deformable
object and the shovel (gray rectangle): vectors are traced from the corners
of the tool to the projection of the particle over the plane. If all of them
produce a sharp angle with the tool border, then there is a collision. If at
least one angle is greater than 90◦, then the particle is not colliding with
the tool.

Once a collision between an object and the shovel is
detected, the force feedback exerted by the Phantom on the
user hand should be calculated. This force is calculated by
measuring the distance from each vertex of the object (only
vertices that crossed the shovel) that crossed the shovel plane
till the plane itself.

The greatest distance is then used to set the force feed-
back. This value is efficiently found using GPU processing.
A reduction operation is performed and consists in the
subdivision of an array of distances among all threads
recursively, until the result (greatest distance) is found and
put in the first position of the array.

VI. EXPERIMENTS AND RESULTS

In order to evaluate the performance and practicability
of the techniques proposed in this paper as well as the
CUDA implementation, a system prototype was developed.
The system – consisting of an interactive virtual environment
with realistic graphics and haptic rendering – conjugates a
number of functionalities, including physics-based deforma-
tion, collision detection between complex deformable mod-
els, contact evaluation between a haptic probe and complex
meshes, force-feedback computation and great quality Phong
shading with shadow maps (see Figure 8). Different modules
run at different update rates, being the haptics computation
and collision detection made at higher rates than physics and
graphics.



Figure 8. Four frames of a simulation of two objects dropping down, colliding and going to its rest position on the floor.

The performances are measured for a complete working
system. As the GPU is used for both graphics and general
purpose, we purposedly limited the number of graphics fps
to save GPU time for deformation. It is widely known that
around 30 graphic updates per second is enough to fool the
human eye.

As our target application is liver surgery simulation (also
named hepatectomy, a surgery for liver resection and trans-
plantation), a human liver model was reconstructed from the
Visible Human dataset and used as a case study. The model
composed by 1,312 mass points, 2,484 triangles, and 12,736
springs was used to perform experiments with the system.
The hardware used in the experiments is a PC with an Intel
Core 2 Quad Q6600 (2.4 GHz) processor, 2.0 GB RAM,
and a GeForce 9600 GT (512 MB, 64 cores at 650 MHz).

Our tests were made comparatively. For this, we also
implemented a parallel and very efficient CPU version of
the technique. The CPU implementation uses the OpenMP
API to parallelize the evaluation of the particles of the mass-
spring system, and the collision detection between models
and the interaction tool. A loop traverses all particles from
a mesh Mi evaluating the collision with each mesh M j. This
loop is broken in so many threads as cores in the CPU.

Table I presents the graphics results achieved for the
tests performed in CPU and GPU. In the same way, Table
II presents the results for the same tests, but performed
considering physical simulation rates. In all tests the haptic
rate is kept around 1kHz. Observe that the update rates for
graphics and physics processing decreases logarithmically
in CPU when the number of objects increases. In GPU,
the average update rates also decrease in the same rate, but
are one degree of magnitude higher. The chart on Figure 9
summarizes these differences.

One limitation of the algorithm for collision detection
may rise when handling meshes with large concavities or
protuberances. This happens because in such cases the
spherical coordinates system maps many vertexes to few
cells, generating subsamples in others cells, which reduces
the algorithm accuracy. One solution to maintain accuracy
with those meshes, is to subdivide de mesh in a hierarchy

GPU CPU
n. objects mean fps std. deviation mean fps std. deviation

2 38 2.70 6 0.16
4 20 1.60 3 0.06
6 13 0.32 2 0.06
8 9 0.87 1 0.1

Table I
GRAPHICS FRAME RATE

GPU CPU
n. objects mean fps std. deviation mean fps std. deviation

2 1,882 115 297 26.8
4 982 82.5 143 11.7
6 654 32.7 95 5.95
8 469 41.7 69 8.53

Table II
PHYSICS FRAME RATE

of LSHs and handle them separately. Nevertheless, with
smooth organic shaped objects, the algorithm is efficient and
accurate.

VII. CONCLUSION

The work presented in this article is part of a realistic
surgery simulator that will involve high-level graphics and
haptic rendering of soft tissues. We presented an efficient
implementation of a mass-spring system in GPU using the
CUDA architecture, as well as a novel collision detection
method for deformable models. The system achieves real-
time for graphics and haptic rendering. This means that
update rates around 1kHz can be achieved for force-feedback
while keeping graphics above 30Hz and explicitly integrat-
ing mass-spring simulation stable.

Tests have shown that an equivalent parallel implementa-
tion in CPU is one degree of magnitude slower than in GPU.
The massive parallel power of GPUs enables a number of
applications that were not possible in CPU implementations.
Such level of efficiency and accuracy allows for the devel-
opment of physically complex interactive systems, which
require haptic feedback, as for example, realistic surgical
simulators, immersive virtual environments, and games.



Figure 9. Graphics frame rate (FPS) decreases as the scene complexity
increases for both CPU and GPU. Nevertheless GPU shows better results.

Actually LSH does not handle self-collision. However,
future works should still explore the the subdivision of the
models for a hierarchy of LSH to handle this issue and im-
prove the physical model including volume preservation, for
example. Other types of deformation involving topological
changes – like cutting – should also be explored as previous
approaches suffer from this kind of interaction. We believe
our approach will keep the high rates achieved despite of
topological changes.

ACKNOWLEDGMENT

Thanks to Micosoft for sponsoring the project. This
work was also supported by CNPq-Brazil through grants
481268/2008-1 and 302679/2009-0.

REFERENCES

[1] C. A. Dietrich, J. L. D. Comba, and L. P. Nedel, “Storing and
accessing topology on the gpu: A case study on mass-spring
systems,” ShaderX 5 - Advanced Rendering Techniques, pp.
565–578, 2006.

[2] O. Comas, Z. Taylor, J. Allard, S. Ourselin, S. Cotin, and
J. Passenger, “Effcient nonlinear fem for soft tissue modelling
and its gpu implementation within the open source framework
sofa,” ISBMS, 2008.

[3] A. Maciel, R. Boulic, and D. Thalmann, “Efficient collision
detection within deforming spherical sliding contact,” IEEE
Transactions on Visualization and Computer Graphics, pp.
518–529, 2007.

[4] A. Lefohn, I. Buck, J. D. Owens, and R. Strzodka, “Gpgpu:
General-purpose computation on graphics processors,” in
Tutorial 3 at IEEE Visualization, October 2004.

[5] M. J. Harris, G. Coombe, T. Scheuermann, and A. Las-
tra, “Physically-based visual simulation on graphics hard-
ware,” in HWWS 2002: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware. Eurographics Association, 2002, pp. 109–118.

[6] J. Mosegaard, P. Herbor, and T. S. Sorensen, “A gpu accel-
erated spring mass system for surgical simulation,” in 13th
Medicine Meets Virtual Reality, 2005.

[7] J. Georgii, F. Echtler, and R. Westermann, “Interactive sim-
ulation of deformable bodies on gpus,” in Simulation and
Visualisation 2005, 2005.

[8] E. Tejada and T. Ertl, “Large steps in gpu-based deformable
bodies simulation,” Simulation Theory and Practice - special
issue on Programmable Graphics Hardware, to appear.

[9] M. C. Lin and S. Gottschalk, “Collision detection between
geometric models: a survey,” in Proceedings of the 8th IMA
Conference on Mathematics of Surfaces, 1998, pp. 37–56.

[10] P. Jimnez, F. Thomas, and C. Torras, “3D Collision Detection:
A Survey,” Computers and Graphics, vol. 25, no. 2, pp. 269–
285, Apr 2001.

[11] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann,
L. Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure,
N. Magnenat-Thalmann, W. Strasser, and P. Volino, “Collision
detection for deformable objects,” Computer Graphics forum,
vol. 24, no. 1, pp. 61–81, mar 2005. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2005.00829.x

[12] A. Gregory, M. C. Lin, S. Gottschalk, and R. Taylor, “Fast
and accurate collision detection for haptic interaction using
a three degree-of-freedom force-feedback device,” Comput.
Geom. Theory Appl., vol. 15, no. 1-3, pp. 69–89, 2000.

[13] C.-H. Ho, C. Basdogan, and M. A. Srinivasan, “Efficient
point-based rendering techniques for haptic display of virtual
objects.” Presence, vol. 8, no. 5, pp. 477–491, 1999.

[14] M. SHINYA and M. FORGUE, “Interference detection
through rasterization,” Journal of Visualization and Computer
Animation 2, p. 132134, 1991.

[15] J.-C. Lombardo, M.-P. Cani, and F. Neyret, “Real-time col-
lision detection for virtual surgery,” in CA ’99: Proceedings
of the Computer Animation. Washington, DC, USA: IEEE
Computer Society, 1999, p. 82.

[16] G. Picinbono, J.-C. Lombardo, H. Delingette, and N. Ayache,
“Improving realism of a surgery simulator: linear anisotropic
elasticity, complex interactions and force extrapolation.” Jour-
nal of Visualization and Computer Animation, vol. 13, no. 3,
pp. 147–167, 2002.

[17] C. Basdogan, S. De, J. Kim, M. Muniyandi, H. Kim, and
M. A. Srinivasan, “Haptics in minimally invasive surgical
simulation and training,” IEEE Computer Graphics and Ap-
plications, IEEE Computer Society,, pp. 56–64, 2004.

[18] T. H. Massie and J. K. Salisbury, “The phantom haptic inter-
face: A device for probing virtual objects.” in Symposium on
Haptic Interfaces for Virtual Environment and Teleoperator
Systems, C. J. Radcliffe, Ed. Chicago: ASME, 1994.

[19] C. B. Zilles and J. K. Salisbury, “A constraint-based god-
object method for haptic display,” in IROS ’95: Proceedings
of the International Conference on Intelligent Robots and
Systems-Volume 3. Washington, DC, USA: IEEE Computer
Society, 1995, p. 3146.

[20] M. Ortega, S. Redon, and S. Coquillart, “A six degree-
of-freedom god-object method for haptic display of rigid
bodies,” in VR ’06: Proceedings of the IEEE Virtual Reality
Conference (VR 2006). Washington, DC, USA: IEEE
Computer Society, 2006, p. 27.


