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Abstract—This paper presents a novel quad-based remesh-
ing scheme, which can be regarded as a replacement for
the triangle-based improvement step of an existing image-
based mesh generation technique called Imesh. This remesh-
ing scheme makes it possible for the algorithm to gener-
ate good quality quadrilateral meshes directly from imaging
data. The extended algorithm combines two ingredients: (1)
a template-based triangulation-to-quadrangulation conversion
strategy and (2) an optimization-based smoothing procedure.
Examples of meshes generated by the extended algorithm, and
an evaluation of the quality of those meshes are presented as
well.

Keywords-Image-based mesh generation; template-based
mesh; remeshing; mesh smoothing; mesh segmentation; Bézier
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I. INTRODUCTION

Generating meshes from 2D digital images is an important
problem, which has been investigated in several different
contexts such as image representation and numerical sim-
ulation. In numerical simulation, most methods rely on a
two-stage scheme: image segmentation and mesh generation
itself. The image segmentation stage is responsible for
partitioning the image in well defined regions, which are
then “meshed” in the mesh generation stage.

An alternative approach was adopted by the Imesh al-
gorithm [1], [2] (Figure 1). The Imesh approach combines
image segmentation and mesh generation into a single
processing stage, requiring only a couple of parameters to
trigger the meshing process directly from the input image.
Moreover, Imesh is able to segment the mesh in accordance
with image features, making it possible to identify and
build a correspondence between regions of the image and
partitions of the mesh. The Imesh output is a provably good
quality triangulation which contains smaller triangles along
the boundary of image regions, and larger triangles in their
interior.

Triangle meshes have been extensively investigated by
the meshing community, and their theoretical properties
are now well understood [3]. In addition, algorithms for
generating good triangle meshes of polygonal and curved
planar domains, such as the one used by Imesh, have been
proposed and implemented [4], [5]. In contrast, the gener-
ation of good quality quadrilateral meshes is not so well
understood [6]. Directly generating quadrilateral meshes

from a description of the domain is intrinsically harder than
generating triangle meshes. Yet, quadrilateral meshes are
more appropriate than triangle meshes for some numerical
methods and simulations [7].

Contributions. We describe an extension of Imesh which
generates quadrilateral meshes directly from imaging data.
Our extension combines two ingredients: a template-based
triangulation-to-quadrangulation conversion strategy, and an
optimization-based smoothing procedure. The former aims
at generating quadrilateral meshes that respect the image
object boundaries (as defined by the mesh partition step of
Imesh). The latter improves the quadrilateral shape quality.

The use of a template-based meshing approach makes
it possible for Imesh to generate a quadrilateral mesh
indirectly, i.e., from a triangle mesh rather than directly
from a description of a polygonal domain. This indirect
strategy makes the quadrilateral mesh generation task easier.
Templates also enabled us to devise a novel and simple
smoothing procedure to locally improve the quality of the
quadrilaterals, while preserving the previously defined image
object boundaries. Our experimental results indicate that
the combination of our template-based mesh generation ap-
proach with the new smoothing procedure is very effective,
rendering Imesh one of the few techniques able to generate
quadrilateral mesh straightly from images.

II. RELATED WORK

In this section we summarize the main techniques devoted
to generate meshes from images as well as triangle-to-
quadrilateral meshes techniques in 2D. A comprehensive
overview, mainly in the context of surfaces, is beyond the
scope of this paper and can be found in [8].

Mesh generation from images. Techniques for generat-
ing meshes from digital images can be grouped into two
main classes: mesh-based image representation and image
modeling for simulation. Mesh-based image representation
techniques build meshes that minimize the approximation
error between the original image and the image represented
by the mesh. In this class one finds adaptive methods, which
iteratively refine the mesh until a lower bound error is
reached [9]–[11], mixed methods [12], and error diffusion
schemes [13]. A main drawback of most mesh-based image
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Figure 1. The three main steps of Imesh.

representation methods is the use of interpolation error to
guide the mesh generation process, which is not effective
in textured and color images, impairing the use of such
methods in a wide class of problems. Image modeling for
simulation techniques divide the mesh generation process
in two main steps: pre-processing and mesh generation.
The pre-processing step aims at filtering and segmenting
the image in order to detect regions of interest, which
are meshed in the mesh generation step [14]. Binarization
combined with implicit function reconstruction [15], [16],
pre-segmentation with Delaunay meshing [17], and shape
deformation [18] figure among the most popular approaches,
all of them relying on a segmentation stage.
Quadrilateral mesh generation. Generating a quadrilateral
mesh of a polygonal domain is intrinsically harder than
producing a triangular mesh. Indeed, if we require the set
of vertices of the mesh to be the set of vertices of the input
polygon, then a triangular mesh can always be obtained. In
contrast, additional vertices may be necessary in order to
generate a quadrilateral mesh. In addition, the theoretical
properties to generate good quality quadrilateral meshes are
not as well understood as the ones for producing good qual-
ity triangular meshes [6]. So, several researchers adopted
an indirect approach to produce quadrilateral meshes [19]–
[21]: a triangle mesh of the domain is generated, and later
converted into a quadrilateral mesh. This approach relies on
the premise that a quadrilateral mesh can be more easily
generated from an existing triangle mesh. Here, we adopt a
two-stage indirect approach. First, we combine adjacent tri-
angles to form quadrilaterals and produce a hybrid, triangle-
quadrilateral mesh. Second, we convert the hybrid mesh
into an all-quadrilateral mesh using template subdivisions of
triangles and quadrilaterals. Templates subdivisions of mesh
elements have been used before for refining quadrilateral
meshes [22] and respecting domain boundaries [6]. We use
template subdivisions for mesh conversion and optimization
purposes. To our best knowledge, this is the first work
that exploits the potential of template subdivisions for both
purposes.

III. PRELIMINARIES

This section introduces basic concepts from Computa-
tional Geometry and Digital Topology, which are used in the
description of the Imesh algorithm in the following section.
We refer the reader to [4], [21], [23] for a detailed discussion
of those concepts.

Let S be a finite set of points in R2. A triangulation,
T (S), of S is a set of triangles, along with their edges and
vertices, such that (1) the set of vertices of T (S) is exactly
S, and (2) the intersection of any two triangles, σ and τ , of
T (S) is either empty or a common vertex or edge of σ and
τ . The underlying space, |T (S)|, of T (S) is the point set
consisting of all points of R2 that belong to the triangles of
T (S). Similarly, we define a quadrangulation, Q(S), of S
as a set of quadrilaterals, along with their edges and vertices,
such that (1) the set of vertices of Q(S) is exactly S, and
(2) the intersection of any two quadrilaterals, µ and ν, of
Q(S) is either empty or a common vertex or edge of µ and
ν. The underlying space, |Q(S)|, of Q(S) is the point set
consisting of all points of R2 that belong to the quadrilaterals
of Q(S). Hereafter, we will use quad as an abbreviation for
quadrilateral.

A Delaunay triangulation, DT (S), of S is a triangulation
of S such that (1) the underlying space, |DT (S)|, of DT (S)
is the convex hull of S (i.e., the smallest convex set that
contains S), and (2) the interior of the circumcircle of every
triangle of DT (S) does not contain any vertex of DT (S).
Given a planar straight-line graph (PSLG), G = (V,E),
where V is a set of points of R2 and E is a set of line
segments in R2 with endpoints in V , we define a conforming
Delaunay triangulation of G as any Delaunay triangulation,
DT (S), for some S ⊂ R2, such that (1) V ⊆ S and (2) each
edge e of E is an edge of DT (S) or a union of edges of
DT (S). We say that DT (S) conforms to the vertices in V
and edges in E (edges in E are called constrained edges).

As customary in Digital Topology, we call each p ∈ Z2 a
grid point, and we regard p as the center of a grid square,
denoted by �(p), with edges of unit length and oriented
parallel to the Cartesian coordinate axes. We commonly refer



to �(p) as a pixel. A 2D digital (multivalued) image is a
function I : Gn1,n2 → C from a nonempty and finite subset
of Z2, Gn1,n2 = {(g1, g2) ∈ Z2 | gi ∈ [1, ni], i = 1, 2} ,
to a nonempty and finite subset, C, of R, where n1 and n2

are positive integers. The domain Gn1,n2 of I is called a
2D grid of size n1 × n2. The elements of the co-domain
C of I are called colors. So, the image I is a function
that assigns a color I(p) from C to each p ∈ Gn1,n2 . The
union set,

⋃
p∈Gn1,n2

�(p), of all pixels whose centers are in
Gn1,n2 is the continuous analog of Gn1,n2 , which is denoted
by �(Gn1,n2). By definition, we have that �(Gn1,n2) is a
rectangle.

Given a 2D digital image, I : Gn1,n2 → C, we define
a triangle mesh of I as any triangulation, T (S), for some
finite subset S of R2, such that |T (S)| = �(Gn1,n2). We can
define a quad mesh of I in a similar way. In the following
section we describe the Imesh algorithm for computing a
triangulation T (S) from a given image.

IV. IMESH OVERVIEW

This section presents an overview of Imesh, an algorithm
for directly generating triangle meshes from 2D digital
images (see [2] and [1] for a more complete and detailed
description).

Imesh is comprised of three main steps: mesh generation,
mesh partition, and mesh improvement, as illustrated in
Figure 1. It takes in a 2D digital image, I : Gn1,n2 → C,
a threshold te, with te ∈ [0, 1] ⊂ R, and a classifier, which
is defined as a function, g : Gn1,n2 → L, where L is a
set of “labels”. For any p ∈ Gn1,n2 , the value of g at p is
in general determined by I(p) and the values of I in the
neighborhood of p.
Mesh Generation: In the mesh generation step Imesh builds
a Delaunay triangulation, DT (S), by successively adding
vertices so as to match features of the input image I. More
precisely, suppose that a Delaunay triangulation DT (Si−1)
has already been generated from a previously computed
point set Si−1 ⊆ �(Gn1,n2) (S0 contains the four corners of
�(Gn1,n2), as shown in Figure 1(a)). For each triangle σ in
DT (Si−1), let e(σ) be an error measure defined in terms of
the classifier g and all image pixels intersected by the three
medians, mσ

1 , mσ
2 , and mσ

3 , of
σ. In mathematical terms, the
error e(σ) is defined as fol-
lows: denote by Pmσj the set
of pixels where the classifier
g changes its value when one
traverses mσ

j (gray squares in
the illustration on the right) and
let ασ(p) be the smallest barycentric coordinate of point p
with respect to σ. The error e(σ) is given by:

e(σ) = max

ασ(p) ∈ R+|�(p) ∈
3⋃
j=1

Pmσj

 ,

Note that the value of e(σ) is related to how far the pixels in
Pmσj are from the edges of σ, the farther they are the larger
the value of e(σ). So, a large value of e(σ) means that σ
is not well fitted in a single region of the image, and thus
it should be subdivided. In fact, if e(σ) > te then the point
p such that e(σ) = ασ(p) (red square in the illustration) is
added to Si−1, producing Si = Si−1∪{p}, and the Delaunay
triangulation DT (Si) is generated. The above process is
repeated until the error e(σ) < te, for all σ in DT (Si).
Since Gn1,n2 is a finite set and the same point from Gn1,n2

is never considered for insertion twice, the termination of
the refinement stage is assured. Figure 1(b) shows a typical
mesh generated by the mesh generation step of Imesh. From
now on, we omit the set S, and denote DT (S) by simply
DT .

Mesh Partitioning The mesh partitioning step generates a
partition, P , of the set of triangles, DT t, of the Delaunay
triangulation, DT , produced by the mesh generation step.
To build P , the Imesh algorithm makes use of a function,
h : DT t → L, which assigns a label from L to each triangle
σ ∈ DT t. Two triangles, σ and τ , of DT t belong to the
same element set of P iff h(σ) = h(τ). The label h(σ) is
defined as the most frequent one among the labels (given
by the classifier g) of the pixels in the medians mσ

j of σ.
Figure 1(c) shows the partitioning obtained from the mesh
in Figure 1(b).

Mesh Improvement The mesh generated by the first two
steps of Imesh is in general a mesh with poor quality trian-
gles, i.e., triangles with very small and/or very large angles.
This kind of triangle is extremely unsuitable for many mesh-
based applications [24]. To overcome the poor quality mesh
problem, Imesh further refines the Delaunay triangulation,
DT , using an adaptation of Ruppert’s algorithm [4]. In other
words, the improvement algorithm inserts the circumcenter
of every poor quality triangle (i.e., angle smaller than 26.4o)
into DT . However, if the circumcenter of a poor quality
triangle σ lies in a triangle τ such that h(σ) 6= h(τ) (or
outside the image domain), then such a circumcenter is
called invalid and is not inserted into DT . In this case, the
invalid circumcenter will be inside the diametral circle of
one or more edges of DT , which are in the boundary of
two distinctly labeled partitions (or in the boundary of the
image domain). The midpoint of such edges are computed
and inserted in the Delaunay triangulation. Termination and
quality guarantee can be ensured under certain conditions,
which are discussed in [2]. Figure 1(d) shows the result
of executing the mesh improvement step on the mesh in
Figure 1(c).

V. REMESHING

We now describe the new remeshing mechanism for
Imesh, which enables us to generate good quality quad
meshes. This extension can be regarded as a replacement



(a) (b) (c) (d) (e) (f)
Figure 2. C-edges of DT before (a) and after (b) simplification (red colored circles represent end points of the polygonal curves generated by our
preprocessing). (c) A Delaunay triangulation that conforms to the PSLG in (b). (d) A better quality Delaunay triangulation that also conforms to the PSLG
in (b). (e) A template-based quad mesh that conforms to the PSLG in (b). (f) A template-based quad mesh that approximates the edges of the PSLG in (a).

for the mesh improvement step, and it is carried out in
two stages, namely: template mapping and optimization. The
template mapping stage converts the triangle mesh into a
quad one and it consists of three main steps: boundary and
mesh simplification, triangle pairing, and the template-based
subdivision. The optimization stage aims at improving the
quality of quad elements and it comprises two main steps:
boundary adaptation and relaxation. In what follows we
detail those steps.

A. Boundary and Mesh Simplification

Consider the PSLG G = (V,E) given as input for the
remeshing step, that is, edges and vertices in G are shared
by triangles from different regions of the partitioned mesh
(or they are incident to image boundary edges). Each edge
in E is a constrained edge, which we call c-edge. The
goal of the boundary simplification step is to simplify the
polygonal curves defined by the set of all c-edges and their
vertices. To do that we use a well-known line-simplification
algorithm, which can only handle simple, open polygonal
curves [25]. Unfortunately, the set of all c-edges defines
polygonal “curves” that are not necessarily simple nor open
(i.e., they are closed and may form T-junctions). So, we
preprocess the set of all c-edges in order to define a set
of maximally longer simple open polygonal curves (see
Figure 2(a)), and then execute the aforementioned line-
simplification algorithm on the resulting curves.

Formally, let CG = V ∪ E. We partition CG into a set
of simple curves by first cutting the graph at all vertices
with valence greater than two and then cutting all remaining
closed curves open. Next, the line simplification algorithm
is executed on each open polygonal curve c, producing a
simplified curve c′ from c. Curve c′ approximates c and its
vertex set is a subset of the vertex set of c. It is important to
point out that the simplification algorithm [25] provides error
bounds that allow us to precisely drive the simplification. As
a result we obtain a set of simplified c-edges, which defines
a PSLG, G′ = (V ′, E′), such that V ′ and E′ are the vertex
and edge sets of all simplified curves, respectively. The edges
and vertices of G′ also delimit the image objects, as shown
in Figure 2(b). Finally, a conforming Delaunay triangulation,
DT ′, is generated from G′ (see Figure 2(c)).

B. Triangle Pairing and Template-Based Subdivision

The goal of the template-based subdivision stage is to
generate a quad mesh from the previously computed con-
forming Delaunay triangulation, DT ′. To do that, we first
pair up adjacent triangles of DT ′ using an adaptation of
the triquad procedure in [26] to planar triangulations. The
modified procedure maintains a max-heap H of ordered
pairs, (e, k), where e is an unconstrained edge from DT ′
and k is the length of e. Initially, all edges in H are said
to be unmarked. The procedure removes one pair (e, k) at a
time from the top of the heap. If e is unmarked, then the two
triangles of DT ′ sharing e are paired up to form a quad, and
all unconstrained edges of this quad are marked. However,
if the quad is not strictly convex, the pairing is discarded.
The procedure ends when H is empty. It turns out that our
procedure eventually leaves out several unpaired triangles,
so that DT ′ may not be converted into an all-quad mesh.

It might be the case that DT ′ contains some poor quality
triangles. If so, before executing the modified triquad proce-
dure, we run Ruppert’s algorithm on DT ′ in order to remove
poor quality triangles (see Figures 2(c)-(d)). However, to
avoid creating a dense triangulation (which would cause the
resulting all-quad mesh to be overly dense), we relax the
quality measure threshold of the algorithm and limit the
number of point insertions. Unfortunately, we have currently
no way of setting a value for this threshold that is suitable
for every possible input mesh. So, in our experiments, we
have manually tuned and selected the quality threshold for
each example. It is worth noticing that the insertion of new
vertices is not essential for our algorithm and it is only
employed to improve the quality of the quad elements.

Let M be the collection of triangles and quads resulting
from the pairing procedure. Regardless of whether M con-
sists of quads only, each triangle or quad inM is subdivided
into a small and fixed amount of quads to produce an all-
quad mesh. The subdivision of a triangle (or a quad) into
quads is based on the templates shown in Figures 3(a)-(b).
More specifically, each template is a fixed subdivision of a
canonical triangle or square, which is then mapped by an
affine map or a bilinear map to triangles or quads in M,
respectively. After mapping the canonical templates to the
triangles and quads in M, we obtain a quadrangulation, Q,



that conforms to the edges of G′ and respect the triangle
mesh partition, i.e., every edge of G′ is either an edge or a
union of edges ofQ. Furthermore, we have that |Q| = |DT ′|
and the partition is preserved. Figure 2(e) shows a template-
based mesh.

(a) (b) (c) (d)

Figure 3. Templates for the canonical (a) triangle and (b) square
subdivisions, and the uniform subdivisions of the canonical (c) triangle
and (d) square for defining the control net of triangular and rectangular
Bézier patches.

C. Optimization-Based Smoothing

The final stage of the remeshing step carries out two inter-
related tasks. First, the quad mesh, Q, resulting from the
previous stage is adapted to the image object boundaries, i.e.,
to the original polygonal curves from CG (see Section V-A).
By adapting, we mean to move mesh vertices toward the
original polygonal curves of CG. As a result the quad mesh
of each mesh partition element faithfully approximates its
corresponding region defined by the PSLG G. Second, the
quality of the adapted mesh quads is improved by a new
optimization-based relaxation. Both tasks are related with
each other by the fact that we adapt and optimize the mesh
by moving mesh vertices with the guidance of Bézier surface
patches.

Boundary Adaptation. Recall that every quad of Q belongs
to either a triangle or a quad from the set M resulting
from the triquad procedure (see Section V-B). To move the
vertices of Q, we assign a triangular (rectangular) Bézier
patch bσ (bµ) of total degree 3 (bi-degree (3, 3)) to each
triangle σ (quad µ) fromM. The patch bσ (bµ) is responsible
for guiding the movement of the vertices of the quads inside
triangle σ (quad µ). Since Q is a planar mesh, we set the z
coordinates of all control points of bσ (bµ) to 0. So, vertex
movements are constrained to the plane xy.

To compute the control points of each bσ (bµ), we
distinguish two cases. If σ (µ) does not contain any c-edge
of G′, then we uniformly subdivide the canonical triangle t
(square q) associated with bσ (bµ), as shown in Figures 3(c)-
(d), and let the control points of bσ (bµ) be the image of the
subdivision vertices under the affine (bilinear) map that takes
t (q) onto σ (µ). If σ (µ) contains a c-edge of G′, then we
first proceed as in the previous case, and then consider each
c-edge e of σ (µ) at a time. From the simplification stage,
c-edge e is an edge of a simplified polygonal curve from
CG′ , which corresponds to a chain of one or more edges
of a polygonal curve, say l, from CG. So, we redefine the
control points of bσ (bµ) in e in such a way that the boundary

Bézier curve of bσ (bµ) closely approximates l as shown in
illustration on the right. In what follows we use bτ to denote
both bσ and bµ.

e

l
b
e
0 b

e
1

b
e
2

b
e
3

To position the control points of
the boundary Bézier curve of bτ as-
sociated with c-edge e in CG′ , we
solve a curve fitting problem using a
least squares-based procedure. More
specifically, let beτ : [0, 1] → R2 be
the boundary cubic Bézier curve of
bτ associated with e. Then,

beτ (t) =
3∑
i=0

B3
i (t) · bei ,

for every t ∈ [0, 1], where B3
i (t), i ∈ {0, 1, 2, 3}, is the i-

th Bernstein polynomial of degree 3 and bei are the control
points on the boundary of the Bézier patch bτ . Let (ti)ni=0 be
a list of n+ 1 parameter values in [0, 1], which correspond
to the n + 1 points (pi)ni=0 defining l, where n ≥ 4, t0 =
0, tn = 1, and tj < tj+1, for every j ∈ {0, . . . , n − 1}.
By setting beτ (t0) = be0 = p0 and beτ (tn) = be3 = pn, our
fitting problem boils down to find the control points be1 =
(be1,x, b

e
1,y) and be2 = (be2,x, b

e
2,y) so that beτ (t) is the “best”

fitting (in the least squares sense) to l. To find be1 and be2, we
assemble two systems, Kx = d and Ky = f , of n+1 linear
equations each, where K is a (n+1)×2 matrix such that the
i-th line of K consists of the elements B3

1(ti) and B3
2(ti), x

is the x-coordinate vector [be1,x b
e
2,x]

T, y is the y-coordinate
vector [be1,y b

e
2,y]

T, d is a vector with (n+1) coordinates such
that its i-th coordinate is pi,x−(B3

0(ti) ·be0,x+B3
3(ti) ·be3,x),

and f is a vector with (n + 1) coordinates such that its i-
th coordinate is pi,y − (B3

0(ti) · be0,y + B3
3(ti) · be3,y), with

pi = (pi,x, pi,y), be0 = (be0,x, b
e
0,y), and be3 = (be3,x, b

e
3,y).

Since n ≥ 4, both systems are overdetermined, and thus
we seek the least squares solutions, x and y, that minimize
‖Kx− d‖2 and ‖Ky − f‖2.

For our purposes, the set of parameter values, (ti)ni=0, is
obtained by a chord length parametrization of the vertices
(pi)ni=0 of l over e. Indeed, each polygonal curve c from CG
is the union of one or more polygonal chains, each of which
corresponds to a c-edge e of G′. So, the entire curve c is
approximated by a set of cubic Bézier curves. Figure 2(f)
shows the result of applying the boundary fitting scheme to
the mesh of Figure 2(e).

From the definition of the control points of the Bézier
patch bσ (bµ) associated with each triangle σ (quad µ) ofM,
the boundary Bézier curves of adjacent patches are exactly
the same (i.e., they have the same control points). This is
obviously true for the boundary curves associated with c-
edges. For the curves associated with edges that are not
constrained, our claim follows from the facts that (1) the
curve control points are placed along the edges, and (2) they
are images of canonical triangle (quad) subdivision vertices



under an affine (bilinear) map, both of which preserve
distance ratio along a line.

Optimization. The goal of the optimization task is to
improve the shape quality of the quads of Q. Recall that
each quad of Q is the image of a quad defined in a canonical
triangle or quad in M. Triangular and rectangular Bézier
patches are also defined on the canonical domain. So, each
vertex of Q can be written in terms of the Bézier patches
and by imposing that adjacent Bézier patches share the same
cubic Bézier curve, one can modify the quad mesh Q by
moving the control points of the patches.

To improve the shape quality of the quads of Q, we
judiciously move the control points of all Bézier patches
to improve the shape quality of all quads with respect to
the shape quality measure. In our case, the Shape and Size
quadrilateral quality metric [27]. In general, we can view
the shape measure as a function, s : Qq → [0, 1], where Qq
is the set of quads of Q. Function s is defined in such a way
that for each quad ν ∈ Qq , the larger the value of s(ν) the
better the quality of ν. Therefore, the optimal positioning of
the control points can be found by minimizing the following
energy:

qs =
∑
ν∈Q′

q

(1− s(ν))2 ,

To this end, we used Powell’s method [28] defined
on the space of the coordinates of the control points.
Because the total number of control points is smaller
than the number of vertices in Q, the proposed op-
timization mechanism turns out to be more effective
than directly using the coordinates of the quad vertices.

Figure 4. An optimized template-
based quad mesh.

In order to avoid folding
(inversion of a quad
element), a control
point movement must
be feasible, i.e., every
control point must be
in the interior of the
polygon defined by its
adjacent control points
in the Bézier control
net. This constraint is
imposed when applying
Powell’s method. Our
procedure is iterative and
runs until qs is below a
predefined threshold or
the number of iterations

exceeds another predefined threshold. Figure 4 shows the
result of applying the optimization mechanism to the mesh
of Figure 2(f).

VI. EXPERIMENTAL RESULTS

This section presents the results of some experiments we
carried out with the proposed Imesh extension. To illus-
trate the effectiveness of our extension, we generated quad
meshes from two images from the Berkeley Segmentation
Dataset1 (pyramid and lake) and a range image of a hub
wheel from the Stuttgart Range Image Database2. These
images are considered “real data”. All experiments were
conducted in an AMD Athlon X2 4450B 2.3GHz with
3GB RAM. We used an implementation of the Shape and
Size quadrilateral quality metric available in the VERDICT
library3.

The three images used in our experiments are shown
in Figure 5. Colored squares in Figures 5(a) and 5(b)
correspond to samples used by the built-in texture classifier
of Imesh. Each color represents a region of interest (label).
Five and four distinct regions of interest are defined in
Figures 5(a) and 5(b), respectively. Since the three regions
in Figure 5(c) can easily be identified by thresholding,
we needed not use the texture classifier for this particular
example.

(a) Lake (b) Pyramid (c) Hub wheel

Figure 5. Images used in our experiments. The colored squares in (a) and
(b) correspond to samples used by the texture classifier built in the Imesh
(each color corresponds to a label).

Figure 6 presents the quad meshes resulting from applying
our Imesh extension to the images in Figure 5. Notice that
the segmentation provided by Imesh is naturally preserved
by the proposed remeshing scheme. Moreover, as a con-
sequence of the boundary adaptation mechanism, curves
between distinctly labeled regions are precisely represented.
Furthermore, the “jagged” effect, usually observed in trian-
gle meshes generated by the original version of Imesh, is
now avoided.

The quality histograms for the meshes in Figure 6 are
shown in Figure 7. The vertical dashed line represents the
lower bound (value equal to 0.2) from which a quad element
is considered of bad quality in accordance with the Shape
and Size measure [27]. The “redish” and blue histograms
correspond to mesh quality before and after optimization,
respectively. Notice that the proposed control-point-based
optimization mechanism was able to improve mesh quality
considerably, avoiding bad elements altogether. This fact can

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2http://range.informatik.uni-stuttgart.de/htdocs/html/
3VERDICT – http://cubit.sandia.gov/verdict.html
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Figure 6. Quad meshes resulting from the images in Figure 5. Mesh segmentation is directly obtained, avoiding any pos-processing step.

also be observed from the fifth column of Table I, which
brings the quality of the worst element for the quad meshes
in Figure 4 and Figure 6. Sixth and seventh columns confirm
the effectiveness of the optimization mechanism, showing
that, on average, the quality of quad elements is above 0.8.

Table I
NUMBER OF ELEMENTS, COMPUTATIONAL TIMES, AND QUALITY

MEASURE FOR MESHES SHOWN IN FIGURES 4 AND 6.
# vert # cells Remeshing worst mean variance

(in seconds)
Cashew 865 816 6.1 0.288 0.837 0.011
Pyramid 3197 3112 34.5 0.233 0.874 0.008
Lake 5171 5028 57.6 0.264 0.878 0.006
Hub 7307 7220 78.8 0.210 0.899 0.006

(a) Lake (b) Pyramid (c) Hub wheel

Figure 7. Quality histograms of the meshes in Figure 6. Vertical dashed
lines indicate the lower bound from which a quad element is considered
of bad quality. Red and blue histograms correspond to mesh quality before
and after optimization respectively.

The number of vertices and quads of the meshes presented
in Figures 4 and 6 are in the second and third columns of
Table I. The computational times in the fourth column are
quite acceptable for a quality quadrilateral meshing scheme.
It is worth remarking that the optimization mechanism is
indeed the most time-consuming one, representing 98% of
the total computational time. The capability of representing
boundaries and adapting the mesh locally are important
features of the proposed remeshing method. Such features
can easily been seen in Figure 8, which shows quad meshes
with different refinements for the Hub Wheel image (Fig-
ure 5(c)). Even for the coarser mesh, which contains about
1.2K vertices, the proposed remeshing scheme was able to
satisfactorily represent boundaries. It was also able to adapt
quad sizes to capture the small chink in the lower part of
the hub. It is worth mentioning that finer quad meshes may

be obtained by simply adding new triangles in DT ′ before
triggering the pairing process and the template mapping.

(a) 1.2K (b) 5K (c) 10K

Figure 8. Quad meshes generated from the Hub Wheel image: a) 1.2K
vertices, b) 5K vertices, and c) 10K vertices.

Parameters. The level of boundary simplification needs to
be carefully chosen, in order to preserves the topology of G
in G′. We use as threshold for the Cashew, Lake, Pyramid
and Hub Wheel, the respectively number of pixels: 15, 2.5,
3 and 4. We use the 4-subdivision templates (Figures 3(a)-
(b)) in all examples, except for the Hub Wheel with 1.2K
quads, where we use a 3-subdivision templates. Finally, to
define the density of each mesh, we controlled the number
of templates by setting Ruppert’s refinement quality criterion
to 20.7◦, 20.7◦, 20.7◦, 18◦, 18◦, 26.5◦ and 30◦, respectively
to the Cashew, Lake, Pyramid and Hub Wheel with 1.2K,
5K, 7K and 10K quads.

We end this section showing a comparison between the
proposed Imesh extension and the quad meshing algorithm
described in [21], which generates quad meshes from polyg-
onal curves while employing Laplacian smoothing as a post-
processing step. We used the 1.2K hub wheel quad mesh (see
Figure 8(a)) as a basis for comparison. Since most vertices
in that mesh are constrained by the boundary curves, the
control-point-based optimization step barely affects mesh
quality. Even so, our proposed extension was able to produce
a better quality quad mesh, as one can see in Figure 9.
The computational time, in seconds, to generate each mesh
shown in Figure 8 is described in the second column of
Table II. For the purpose of comparisons, the third column
shows the computation time for the algorithm described
in [21].



(a) (b)

Figure 9. Comparison between the proposed methodology (a) and the
quad meshing scheme described in [21].

Table II
COMPUTATION TIME (IN SECONDS) TO GENERATE EACH QUAD MESH

FROM HUB WHEEL.

# cells Template-based Meshing described in [21]
1.2k 17.2 3.8
5k 53.5 20.7

10k 128.8 43.3

VII. CONCLUSIONS

This paper described a novel quad-based remeshing
scheme, which can be regarded as a replacement for the
triangle-based improvement step of Imesh. Our scheme is
able to generate all-quad meshes, while preserving bound-
aries and partitions defined in the first steps of Imesh. To
produce good quality meshes, our scheme is accompanied by
a new optimization procedure, which moves mesh vertices
around guided by changes of control points of Bézier patches
defined on the mesh domain. By changing the position
of mesh vertices via control points, our procedure reduces
computational effort. Our experiments show evidences that
our optimization procedure is also quite effective. To the best
of our knowledge, no other meshing scheme generates good
quality quad meshes directly from images. We are currently
investigating how to tailor templates so as to reduce the
number of extraordinary vertices (valence other than four) in
the final quad mesh. We are also interested in proving lower
and upper bounds for the internal angles of the resulting
mesh quads. Finally, we are looking into ways of extending
some of the ideas presented here to 3D meshing schemes.
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