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Abstract—This work presents the implementation of deep
convolutional networks for action recognition in videos based
on the well-known two-stream architecture, that is composed of
a temporal and a spatial stream. The development was done in
order to replicate the one reported in the original paper using the
Microsoft Cognitive Toolkit (CNTK). Different experiments were
made in order to evaluate the performance of the two-stream
in a public dataset when trained for different base network
architectures and input data modality.

I. INTRODUCTION

Action recognition consists in detecting if an action has
occurred in a video given a predetermined set of options. Being
one of the main challenges in Computer Vision, this task has
been a highly researched topic in the academic community due
to its wide applications in areas like automated surveillance
[1], video indexing [2] and behavior analysis [3].

Unlike the case of image classification, the temporal com-
ponent present in videos provides important additional infor-
mation that considerably improve the recognition. For certain
actions, data such as intensity and duration can be decisive
for the correct classification, collaborating, for example, to
distinguish a person walking from a person running. However,
the spatial component is also fundamental, especially in more
complex actions such as “peeling an apple” or “applying
makeup”, in which the object being interacted with plays a
prominent role. Thus, most current recognition methods make
use of spatio-temporal information when classifying an action.

Research in video recognition was significantly driven by
advances in image recognition methods, often adapting them
to deal with video data. Many approaches performed the ex-
traction of spatio-temporal data features, which were encoded
using representations like bag of visual words or their variants,
in order to be used for classification [2], [4], [5].

With the return of neural networks to the public interest
there were several attempts to develop a deep architecture for
action classification. Many works used as input a stack of static
frames, expecting the network to implicitly learn to identify
spatio-temporal attributes [6]–[8]. Others explored the use of
predefined spatial-temporal filters in its first layers [9].

In recent years, Convolutional Neural Networks have
achieved a remarkable success in image classification and
attempts to expand them for video recognition have emerged
[10]–[12]. Some works [1] have proposed the use of 3D
convolutions to extract simultaneously features from the spatial

and the temporal dimensions. In [11], the use of various
convolutional architectures for action recognition using a stack
of consecutive static frames as input was compared. Almost no
difference was found between the results obtained for a single
or multiple input frames, indicating that the features learned
did not capture the movement well. Based on these findings,
[12] proposes a two-stream architecture in which spatial and
temporal information are explored separately by two distinct
convolutional networks. The results obtained for this method
became the state of the art at the time and many recent works
that have achieved superior performance [13]–[15] are based
on this architecture.

The two-stream, just like most of the action classification
approaches made until recently, considered trimmed videos
datasets [16], [17], in which only one action would happen per
frame. Untrimmed datasets [18], [19] are considerably more
challenging, motivating many of the current efforts made in
this area [20]. This paper will focus solely on trimmed actions
as it is a building block for more complex action classification
tasks.

In this paper, we present a comparison between several deep
networks models when trained for action recognition in the
two-stream architecture. The models were chosen based on
their relevance in the current literature. In this way, we aim to
offer an insight on how some popular network architectures
perform considering their different computational complexity,
parameters, and overall performance trade-offs. After trained,
they can be widely used for fine-tuning in many of the recent
works that are based on the two-stream, accelerating and
improving their training. We also explore the adaptation for
a real-time execution of this architecture [21], in which the
temporal information is captured by the difference between
sequential RGB frames.

II. THE TWO-STREAM ARCHITECTURE

Videos can be naturally decomposed into a spatial and a
temporal component. The spatial part is present in the static
images that carry information about objects and scenes. The
temporal part describes the movement of the camera and the
objects present in the video. Based on this central idea and
having deep convolutional networks [22] established as the
state of the art for image recognition, is proposed in [12]
an architecture formed by two separate streams, spatial and
temporal, that would have their results combined at the end.
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Fig. 1. Two-Stream architecture for video classification.

The two-stream architecture [12] is composed of two inde-
pendent deep convolutional networks, as shown in Figure 1.
The layers organization is the same for both; it corresponds
to the CNN-M-2048 [23] architecture and is similar to the
network presented in [24]. The final result for the two-stream
architecture is obtained simply by averaging the individual
results of each of its networks.

The spatial convolutional network receives individual video
frames as input and performs action recognition based on
still images, acting as an image classification network. The
temporal convolutional network, on the other hand, receives
as input multiple sequential frames with motion information.
By selecting a sequential set of these frames, the motion along
a small duration of the video is captured, thus making the
identification of the action easier. The motion is described as
the dense optical flow vectors [25] between two frames.

Recent works have explored other possible substitute inputs
for the temporal stream since the computation of dense optical
flow fields is impractical in real-time situations. In [21], the use
of the difference of consecutive RGB frames as replacement
for the optical flow is proposed. The RGB difference between
consecutive frames can be considered a noisy estimate of
the flow, indicating the regions where significant change is
happening. A comparison between the different types of input
data for the convolutional networks is shown in Figure 2.

Fig. 2. Comparison between the three different types of input data: RGB
(left), RGB difference (center) and optical flow (right). Source: [21]

III. IMPLEMENTATION

In this section we present the main topics related to this
project implementation, the toolkit used, the base network
architectures selected and the parameters and particularities
of the training procedure.

A. The CNTK Toolkit

The Microsoft Cognitive Toolkit (CNTK), [26], is an open
source toolkit developed by Microsoft for the distributed im-
plementation of deep learning. It is widely applied in problems
involving computer vision, speech recognition and textual
analysis, many of the company’s leading products use models
trained by this tool. Examples include Skype’s simultaneous
translation system and the speech models used by Cortana’s
personal assistant.

The CNTK was used throughout the implementation of this
project, from the definition of the models to their training and
evaluation.

B. Network Base Architectures

Three main networks architectures were selected to be used
as base in this work: VGG [27], Resnet [28] and Densenet
[29]. These architectures are widely used in the current com-
puter vision scenario, being the most usual choices in real
applications. For each, we have considered its most common
versions, totalizing eleven different networks, which are listed
in Table I. The different versions of the same architecture vary
in the number of layers, denoted by the number next to their
name.

C. Training

The training process was similar for all networks, using
minibatch stochastic gradient descent with momentum set to
0.9 and minibatch size of 256 [30]. In all cases, a data augmen-
tation scheme composed of random crop of size 224×224 and
horizontal flip was applied during the training. Particularities
of each case are detailed bellow. The training was done in
parallel using 4 to 8 Tesla P100 GPUs.

Spatial Network. Since the spatial network takes RGB
images as input, pre-trained models on ImageNet [22] were
used to initialize the network weights. The learning rate was
set to 0.1 and decreased to 0.01 after 14000 mini-batches.
The training stops after 3 epochs (approximately 20000 mini-
batches).

Temporal Network with Optical Flow. Since the optical
flow data is considerably different from that used in available
pre-trained models, these networks were trained from scratch.
To avoid over-fitting a dropout rate of 0.9 was applied. The
learning rate was set to 0.1 and decreased to 0.01 and 0.001
after 50000 and 70000 mini-batches, respectively. The training
stops after 24 epochs, that corresponds approximately to 80000
minibatches.

A ‘pre-input’ layer is added to the base network to deal
with the sequence requirement of the multiple optical flow
frames input. This layer is responsible for reading the frames
in the correct order, applying the needed transformations and
stacking then in an appropriate format to the base network.
The mean frame value its subtracted, compensating for the
global camera movement.

Temporal Network with RGB Difference. Pre-trained
models on ImageNet were used to initialize the network
weights, as sugested in [21]. The learning rate was set to 0.1



and decreased to 0.01 after 14000 mini-batches. The training
stops after 3 epochs (approximately 20000 minibatches).

A pre-input layer is also added to the base network in
this case. Its main goal is, besides ensuring the frame order,
subtracting each two sequential frames to obtain the RGB
difference between them.

IV. EVALUATION

In this section we introduce the dataset used for training
and evaluation of the models among with the metrics applied
to measure their performance. We also show and discuss the
results obtained.

A. Dataset and Metrics

The evaluation is performed in the UCF-101 [16] action
dataset that consists of 101 different human actions distributed
over 13320 clips. The clips are trimmed around the action and
have on average 180 frames. This was one of the first datasets
to have a large number of classes and to handle realistic videos,
that usually contains camera movement, lightning change and
partial occlusion. Because of this, it has been widely used for
validation in action recognition research. There are currently
larger and more challenging datasets than the UCF-101, such
as those presented in [18], [19], [31]. However, it remains
a very popular dataset and is widely used to benchmark the
performance of different action recognition algorithms [14],
[15], [21].

The evaluation is done using the first split and the perfor-
mance is measured by the mean average accuracy over the
classes. Following the testing scheme of [12], given a video,
a set of 25 frames equally spaced in time is selected. For each
frame 10 inputs are obtained by cropping a 224×224 area from
its center and each of the four corners from the original and the
flipped image. The final result for the video is then obtained
by averaging the individual results of the sample frames and
their crops.

B. Results

The results obtained for each stream individually and the
combined result for the two-stream architecture are described
in Table I. As expected the joint result of the spatial and
temporal streams considerably increase the final performance.
The use of RGB difference as temporal information was
also validated, showing that this data carries complementary
information relative to the spatial stream.

We can see that the performance of the spatial stream and
the temporal stream with RGB difference increases with the
depth of each network architecture. However, this increment
is not seen in the temporal stream with optical flow, which
had its results almost constant for all cases. This suggests an
important characteristic of these optical flow networks, neither
their architecture nor increasing the number of parameters
influence their final performance.

Using different training methods or modifications in the
two-stream architecture can lead to better results, as shown
in many recent works [13], [15], [21], [32]. However, in the

TABLE I
RESULTS OBTAINED FOR EACH NETWORK IN THE SPATIAL AND

TEMPORAL STREAMS AND THE TWO-STREAM ARCHITECTURE. THE BEST
RESULT FOR EACH STREAM IS IN BOLD.

Spatial Temporal Two-Stream
Architecture

RGB OF Diff
RGB + RGB +

(# parameters) OF Diff
Resnet18 (12M) 76.7% 83.0% 79.4% 89.5% 85.1%

Resnet34 (22M) 78.6% 82.0% 80.2% 89.1% 86.1%

Resnet50 (26M) 80.6% 82.5% 83.5% 90.9% 87.5%

Resnet101 (44M) 82.0% 83.0% 84.8% 91.1% 88.8%

Resnet152 (60M) 82.3% 82.1% 85.7% 91.3% 89.4%

Densenet121 (8M) 78.7% 83.0% 84.2% 90.0% 87.6%

Densenet169 (14M) 80.5% 82.5% 84.4% 90.6% 88.3%

Densenet201 (20M) 82.3% 82.8% 85.8% 90.6% 88.9%

Densenet264 (33M) 82.6% 82.4% 85.9% 90.9% 89.4%

VGG16 (138M) 75.4% 83.7% 75.2% 89.4% 80.9%

VGG19 (144M) 74.5% 83.6% 76.3% 89.0% 81.5%

few works that published the performance of more than one of
these architectures, the optical flow stream behavior remains
quite similar. In Table II are the results obtained for the
temporal stream in [32]. We can see that there is no direct
relation between depth and better performance and that the
results are also very similar for different architectures. Note
that in [32] the training was done following the framework
proposed in [21], which is an evolution of the two-stream
architecture that significantly improves the results.

TABLE II
RESULTS FOR THE TEMPORAL STREAM USING OPTICAL FLOW PUBLISHED

FOR DIFFERENT NETWORK ARCHITECTURES. THE RESULTS IN [32]
EMPLOY THE TEMPORAL SEGMENT NETWORKS (TSN) [21].

Temporal stream (OF)

Architecture [32] with OursTSN [21]
Resnet50 86.8% 82.5%

Resnet101 88.7% 83.0%
Resnet152 87.3% 82.1%

VGG16 85.9% 83.7%

Now looking at the two-stream performance when using
optical flow and RGB difference we note that the gap between
them is around 3 percentage points. This is very significant
considering that the RGB difference is a quite simple way
to execute the two-stream architecture in real-time. Many
applications of action recognition have real-time requirement,
making the RGB difference an acceptable choice for these
cases. In Table III we compare the execution time of some
architectures using a minibatch size of 25. The speed is
measure by frames per second (fps) in a Tesla K80 GPU.

Another important comparison to do, especially when deal-
ing with real-world applications, is the number of learnable
parameters in the network. Basically, the more parameters you
have more expensive will be the training and the execution of
the network. It also requires more attention during training to



avoid over-fitting. In Table I we have the approximate number
of parameters of each network. Taking this into account we
see that the VGG models tend to be the most unsuitable for
real-world applications having an order of magnitude more
parameters than the other models besides achieving the lower
results.

TABLE III
EXECUTION TIME OF TWO-STREAM MODELS IN A K80 GPU.

Architecture RGB + OF RGB + Diff
Resnet18 13.4 fps 126.0 fps
Resnet50 11.8 fps 63.3 fps

Resnet152 10.2 fps 27.2 fps
Densenet121 12.8 fps 67.9 fps
Densenet264 10.7 fps 31.9 fps

VGG16 11.7 fps 41.7 fps
VGG19 11.2 fps 36.8 fps

V. CONCLUSION

In this paper we presented a comparison between several
deep convolutional networks when used in the two-stream ar-
chitecture. We explored the adaptation for the temporal stream
proposed in [21] for a real-time implementation. The use of
RGB difference as motion information leads to performances
only 3% below, on average, to the one of the original optical
flow data. Evaluating each stream individually, we have shown
that there is a performance improvement with the depth of
the networks for both the spatial stream and temporal stream
with RGB difference. However, the network architecture does
not have much effect on the temporal stream with optical
flow, that presented an almost constant performance for all
the networks. This shows a characteristic of the optical flow
data, which indicates that leaning in deeper versions of the
known networks does not lead to performance improvements.

In future works we intend to study some of the recent
research that explores the use of different training procedures,
architecture approaches and forms of representations of mo-
tion data. As we have shown, an approach with a different
perspective of the action recognition task is needed to make
the next big step towards its resolution.

ACKNOWLEDGMENT

This work is supported by CNPq (132979/2018-7) and
Microsoft. This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

REFERENCES

[1] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 221–231, Jan 2013.

[2] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” in 2008 IEEE Conference on
Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[3] A. S. Jahagirdar and M. S. Nagmode, “Video based action recognition
for behavior understanding - a study,” Digital Image Processing, vol. 7,
no. 10, pp. 293–300, 2015.

[4] H. Wang, A. Klser, C. Schmid, and C.-L. Liu, “Action recognition by
dense trajectories,” in CVPR 2011, 2011, pp. 3169–3176.

[5] H. Wang and C. Schmid, “Action recognition with improved trajecto-
ries,” in Proc. ICCV, 2013, pp. 3551–3558.

[6] C. Desai, D. Ramanan, and C. Fowlkes, “Discriminative models for static
human-object interactions,” in 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition - Workshops, June 2010.

[7] V. Delaitre, I. Laptev, and J. Sivic, “Recognizing human actions in still
images: a study of bag-of-features and part-based representations.” in
British Machine Vision Conference 2010, 2010, pp. 1–11.

[8] L. Li and L. Fei-Fei, “What, where and who? classifying events by scene
and object recognition,” in 2007 IEEE 11th International Conference on
Computer Vision, Oct 2007, pp. 1–8.

[9] H. Jhuang, T. Serre, L. Wolf, and T. A. Poggio, “A biologically
inspired system for action recognition,” in 2007 IEEE 11th International
Conference on Computer Vision, 2007, pp. 1–8.

[10] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[11] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proc. CVPR, 2014, pp. 1725–1732.

[12] K. Simonyan and A. Zisserman, “Two-Stream Convolutional Networks
for Action Recognition in Videos,” ArXiv e-prints, Jun. 2014.

[13] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao, “Towards good practices for
very deep two-stream convnets,” ArXiv e-prints, 2015.

[14] B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang, “Real-time Action
Recognition with Enhanced Motion Vector CNNs,” ArXiv e-prints, 2016.

[15] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream
network fusion for video action recognition,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[16] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101
human actions classes from videos in the wild,” CoRR, 2012.

[17] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: a
large video database for human motion recognition,” in Proceedings of
the International Conference on Computer Vision (ICCV), 2011.

[18] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and
A. Zisserman, “The kinetics human action video dataset,” CoRR, vol.
abs/1705.06950, 2017.

[19] C. Gu, C. Sun, S. Vijayanarasimhan, C. Pantofaru, D. A. Ross,
G. Toderici, Y. Li, S. Ricco, R. Sukthankar, C. Schmid, and J. Malik,
“AVA: A video dataset of spatio-temporally localized atomic visual
actions,” CoRR, vol. abs/1705.08421, 2017.

[20] S. Bandla and K. Grauman, “Active learning of an action detector
from untrimmed videos,” in 2013 IEEE International Conference on
Computer Vision, 2013, pp. 1833–1840.

[21] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Val Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in ECCV, 2016.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of Neural
Information Processing Systems (NIPS), 2012, pp. 1106–1114.

[23] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of
the Devil in the Details: Delving Deep into Convolutional Nets,” ArXiv
e-prints, May 2014.

[24] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” CoRR, vol. abs/1311.2901, 2013.

[25] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” in European
Conference on Computer Vision (ECCV), May 2004, pp. 25–36.

[26] Microsoft. The microsoft cognitive toolkit. [Online]. Available:
https://docs.microsoft.com/en-us/cognitive-toolkit/

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[29] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convolu-
tional networks,” CoRR, vol. abs/1608.06993, 2016.

[30] N. Qian, “On the momentum term in gradient descent learning algo-
rithms,” Neural Networks, vol. 12, no. 1, pp. 145–151, 1999.

[31] M. Monfort, B. Zhou, S. A. Bargal, T. Yan, A. Andonian, K. Ramakr-
ishnan, L. Brown, Q. Fan, D. Gutfruend, C. Vondrick et al., “Moments
in time dataset: one million videos for event understanding.”

[32] Z. Liu, X. Zhang, L. Song, Z. Ding, and H. Duan, “More efficient and
effective tricks for deep action recognition,” 11 2017.


