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Abstract—With the increasing number of cameras available in
the cities, video traffic analysis can provide useful insights for the
transportation segment. One of such analysis is the Automatic
License Plate Recognition (ALPR). Previous approaches divided
this task into several cascaded subtasks, i.e., vehicle location,
license plate detection, character segmentation and optical char-
acter recognition. However, since each task has its own accuracy,
the error propagation between each subtask is detrimental to
the final accuracy. Therefore, focusing on the reduction of error
propagation, we propose a technique that is able to perform
ALPR using only two deep networks, the first performs license
plate detection (LPD) and the second performs license plate
recognition (LPR). The latter does not execute explicit character
segmentation, which reduces significantly the error propagation.
As these deep networks need a large number of samples to
converge, we develop new data augmentation techniques that
allow them to reach their full potential as well as a new
dataset to train and evaluate ALPR approaches. According to
experimental results, our approach is able to achieve state-of-the-
art results in the SSIG-SegPlate dataset, reaching improvements
up to 1.4 percentage point when compared to the best baseline.
Furthermore, the approach is also able to perform in real time
even in scenarios where many plates are present at the same
frame, reaching significantly higher frame rates when compared
with previously proposed approaches.

I. INTRODUCTION

In the last two decades, several highway administration
companies started to perform on-track license plate recognition
on their roads. This task is commonly called Automatic License
Plate Recognition (ALPR) and can be applied to achieve
multiple goals, such as stolen vehicles identification, speed
traps and automatic toll collection. The importance of this
task led the research community to propose many techniques
to recognize vehicles in an efficient way [1]–[3].

Most current approaches divide license plate recognition
into multiple subtasks and execute them in sequence. These
subtasks normally are (i) vehicle location; (ii) license plate
detection; (iii) character segmentation; and (iv) optical char-
acter recognition (OCR). This has an important drawback
since errors resulting of each task are propagated to the next
step through the entire ALPR pipeline. Therefore, at the end,
these approaches might have a high error rate, even when
each subtask is nearly-perfect when evaluated separately. For
instance, if a system employing all these subtasks has 0.98
of accuracy for each subtask and the license plates have 7
characters, then the final accuracy is 0.982×0.987×0.987 that

can be expressed as 0.9816 or 0.724, representing an error rate
of 0.276, which is not suitable for real-world applications.

We propose a novel end-to-end approach to perform license
plate recognition that both reduces the impact of the aforemen-
tioned error propagation and is able to execute in real time.
To that end, we only cascade two deep networks that enclose
all ALPR steps (the networks were not trained jointly) . While
the first network is responsible for detecting the license plates
directly on the frames, skipping the need to detect the vehicle,
the second network receives the license plate images given by
the first network and outputs the license plate identification,
i.e., the plain text. Hence, we are able to reduce the four steps
of ALPR to only two.

We develop a specific network to detect license plates
instead of using a general object detector such as Faster-
RCNN [4] or SSD300 [5]. Since many works have provided
promising results in computer vision problems using multi-
task learning [6]–[8], our recognition network employs a
multi-task approach, in which each task represents the recog-
nition of one license plate character. In this network, the
segmentation is not explicit performed, removing one step that
exists when we cascade the ALPR subtasks.

Since deep learning networks require a large amount of data
to learn, we also develop two data augmentation techniques
to increase the number of training samples. This way, we are
able to train our network using only the 3,595 original license
plate samples that have been increased to 800,000 samples
with the data augmentation processes. While the first approach
consists in the permutation of the license plate characters in
the image to generate new license plates images, the second
creates synthetic license plate images to train our recognition
network. There are also minor data augmentation approaches
such translation, rotation, zoom in/out which also increase the
number of samples available to train our two networks.

The datasets currently available do not present much diver-
sity in the images as they are either recorded with moving or
static cameras. Both recording strategies are not reasonable
since datasets with moving cameras have few variation on
license plates sizes and datasets captured with static cameras
have no background variation, which might compromise the
network generalization by creating undesired biases. There-
fore, we also propose a new public dataset, called SSIG-ALPR,
containing 6,775 frames with 8,683 different license plates.
We recorded the dataset with both static and moving cameras



Fig. 1. Architecture of the two proposed CNNs. The detection architecture is on the top and the recognition is on the bottom. Consecutive convolutional
layers are grouped in blue boxes.

to increase the diversity of vehicles positions, license plates
sizes and aspect ratios. More details are given in Section IV.

There are four main contributions in this work: (i) a new
convolutional deep network designed specifically to detect
license plates as it contains a new suitable loss function that
is arguably better than the current ones; (ii) a multi-task
model able to locate, segment and recognize license plates
characters; (iii) a new dataset of traffic surveillance frames that
contains 8,683 license plate images; and (iv) two techniques
to significantly augment the training data.

Our experiments were carried out using Brazilian license
plates1. We evaluate our approach on two datasets available
in literature beyond the one we are proposing. Our approach
is able to achieve state-of-the-art results in one dataset by
outperforming all baselines and achieve comparable results on
another dataset. Furthermore, our networks are also capable to
executing in real time even when multiple vehicles are present
on the scene, different from previous works.

II. RELATED WORK

In this section, we briefly describe some recent works in the
literature that are related to the topics addressed in our work.

Handcrafted approaches were able to achieve satisfactory
results on ALPR in the past. For instance, the sliding-window
approach proposed by Rao [1] recognizes vehicles in multiple
cameras aiming at performing the recognition in several points
to estimate the vehicle path. Another example is the approach
proposed by Gonçalves et al. [2], composed by a cascade
of many HOG-SVM classifiers and was able to achieve
comparable results on some experiments related later on this
paper (Section V. We refer to [9]–[13] for other techniques
applied to the ALPR problem that are not deep learning based.

More recently, deep learning object detectors have been
employed to tackle both license plate detection (LPD) and
license plate recognition (LPR). Hence, to understand previous
approaches, we first need to understand the difference among
object detectors. In this section, we briefly review some recent

1Nonetheless, the approach can be further fine-tuned to work with other
license plate standards.

approaches and then describe how they have been applied to
ALPR problem.

A. Object Detectors based on Deep Learning

Deep learning object detectors can be divided into two cat-
egories: one-stage and two-stage detectors. The key difference
between these two categories is how the networks obtain their
region proposals. While two-stage detectors require a region
proposal network (RPN) to create candidate regions, one-stage
detectors predict scores for a default set of bounding boxes,
eliminating the need for region proposal. Even though the use
of two-stage detectors usually presents higher accuracy, the
required region proposal is very time consuming and prevents
the use of such detectors in real scenarios.

R-CNN [14] was one of the first two-stage object detector
with convolutional neural networks. The approach was de-
signed with three stages: region proposal, feature extraction
and classification. Afterwards, the fast R-CNN [15] improved
R-CNN training and the evaluation time by performing all
three stages in a single network. This also allowed them
to use the region proposal feature map on the classification
step, removing the need of a new convolutional pass for the
feature extraction. Later, Faster R-CNN [4] proposed the idea
of anchors to address scale invariance.

The success of one-stage detectors started with YOLO [16].
It divides the original image into a regular grid and, for each
cell, the bounding-box shape was regressed along with the
confidence for each class. YOLOv2 [17] and SSD [5] im-
proved on the original idea by using multiple grids at different
feature maps in a pyramid shape and assigning multiple boxes
with different aspect ratios and scales for each grid cell. Then,
retinaNet [18] addressed the imbalance between positive and
negative classes with a novel loss function. According to
the authors, the use of lateral connections also present an
improvement on the prediction pyramid.

B. License Plate Pipeline

In this section, we outline other deep learning techniques
applied to ALPR and we also highlight on the main limitations
of previous approaches.



Silva & Jung [19] performed both detection and recognition
with the YOLO framework. The detection task was divided
into car detection followed by license plate detection on each
car region, which compromise its execution time. Then, YOLO
was trained to detect/recognize each character on the license
plate. Recently, Laroca et al. [20] improved the accuracy by
separating the recognition tasks into segmentation and classi-
fication. They use paddings on detections to ensure that the
objects of interest are completely within the detected bounding
boxes. One of their drawbacks is that these two approaches do
not handle the error propagation problem that we stated before,
which means that they can have their accuracy diminished
when the license plates are not easy to detect.

Hsu et al. [21] employed the YOLOv2 architecture to
perform detection. As our approach, they were able to make
these detections directly on the frame image without detecting
a vehicle first by changing the grid and anchor boxes param-
eters for YOLO and YOLOv2. They changed the grid system
of YOLO and the anchor boxes of YOLOv2 to achieve a
significant improvement on their results. Nonetheless, Hsu et
al. do not handle the license plate recognition, which should
be performed afterwards.

As opposite to our work, Dong et al. [22] applies a two-
stage detector for the license plate detection. They regress the
four corner points of the license plate in the same network.
Those corner points are later used to rectify the image, which
is then passed on to the recognition stage. To perform recogni-
tion, parallel spatial transform networks perform unsupervised
character segmentation of the plate.

Li et al. [23] also applied a region proposal network
(RPN) for license plate detection. By unifying detection and
recognition in a single network, they reported an improvement
in accuracy when compared to the same network trained sep-
arately. Due to the nature of RPN models, unifying detection
and recognition also gives increases detection speed, although
it is still far from real-time (3.4 FPS reported).

In Špaňhel et al. [24], the authors perform license plate
recognition holistically, where the network receives the license
plate image as input and is able to output every character
directly without performing segmentation. Their approach is
better suited for low resolution plates, where the segmentation
is hard due to blurry characters. However, the authors do not
handle license plate detection.

In our work, we show that it is possible to achieve accurate
results employing one-stage detectors and detecting the license
plate directly in the frame instead of detecting the vehicle first.
We employed a network that performs character recognition
without explicit segmentation. Moreover, we also handle the
problem of detection misalignment that could lead to bounding
boxes without all visible characters. Finally, our approach
can also run in real time, which considerably improves its
applicability to real-world scenarios.

III. PROPOSED APPROACH

In this section, we detail our proposal. The approach con-
sists of two deep networks that are executed in sequence. Dif-

TABLE I
ARCHITECTURE OF THE LICENSE PLATE DETECTION MODE.

# Layer Filters Size/Stride Connected to

0 input - 480× 300 -
1 conv 32 3× 3/1 0
2 maxpool - 2× 2/2 1
3 conv 32 3× 3/1 2
4 conv 64 3× 3/1 3
5 conv 128 3× 3/1 4
6 maxpool - 2× 2/2 5
7 conv 32 3× 3/1 6
8 conv 64 3× 3/1 7
9 conv 128 3× 3/1 8

10 upsample - 2× 2/− 9
11 merge - - 5, 9
12 conv 12 3× 3/1 11
13 conv 394 3× 3/1 11
14 conv 4×12 3× 3/1 13

ferent from the conventional ALPR techniques that consist of
four steps: vehicle detection, license plate detection, character
segmentation, and optical character recognition, our approach
comprises only two steps. First, we present the detection
network that is used to detect the license plates directly
from the image frame. Second, we present the architecture
of the proposed network used to simultaneously perform
segmentation and recognition of the license plate characters.
We also describe the data augmentation techniques that we
employ for each network.

A. License Plate Detection

Previous approaches have treated license plate detection
(LPD) in a similar manner as a general object detection.
Successful techniques have been fine-tuned to this specific
task yielding good results when evaluated with conventional
metrics such as Receiver Operating Characteristic (ROC)
curves. However, a key difference in the license plate detection
is that the bounding boxes of the license plates can only be
considered correct if it encloses all characters. Some methods
propose some arbitrary border increase on the bounding box
to ensure that all characters are visible [20], but we believe
that is not the best way to handle the problem. Instead,
we penalize these over-segmented license plates during the
network training via a new loss function.

We propose a new model to solve the limitations of general
purpose detectors when applied to the LPD task. Our model
inherits many ideas from previous solutions to object detection
but we also develop our architecture specifically for license
plates. The architecture of the model is described in Table I
and can also be visualized on the top half of Figure 1.

State-of-the-art object detectors usually perform detection
in a feature map pyramid to better detect objects at differ-
ent scales. However, this is not necessary for license plate
detection because their range of sizes is not large enough to
warrant detection at different scales. Thus, in our model, only
the feature maps of layer 11, as identified in Table I, is used
to perform the detection.



Fig. 2. The ground truth bounding boxes are shown in blue and hypothetical
predictions are shown in orange. All three predictions have IOU = 0.7 with the
ground truth, though only the rightmost has all seven characters completely
visible.

Any given anchor can be described by its aspect ratio, scale
and size. We use 12 anchors with aspect ratios {2.1, 2.6, 3.1},
scales {0.65, 1.10, 1.55, 2.0} and size of 16 pixels. These
numbers reflect the plates bounding boxes on 480 × 300
images.

The complete set of anchors is described by associating each
anchor with a feature map. The detection task is a simple
classification of whether each feature map cell contains a
license plate that intersects the respective anchor by some
amount. Since we have 12 anchors, our classification layer
needs 12 feature maps, as can be seen in layer 12 of Table I.

Since the detection feature maps have size 240 × 150, we
have a total of 240×150×12 potential candidates for a license
plate. Each candidate is just one of anchors translated to that
position on the original image.

Even though we use a dense sample of candidates, they can-
not match the exact ground-truth bounding boxes. Therefore,
we regress four values that would adjust the top left and bottom
right corners of the candidate region to match the ground truth.
This is performed by adding a regression task, performed by
layers 13 and 14. These tasks are shown in Figure 1 on the
last layers of the detection network.

During training, each candidate region is assigned as a
positive, negative or neutral example. Positive examples occur
when that anchor has an intersection over union (IOU) rate
with some of the ground truth greater than 0.6, and negatives
when that IOU is below 0.5. Neutral examples are ignored
during training and do not contribute to the loss. We chose a
higher IOU threshold for positives to help the network avoid
bounding boxes that do not contain the entire license plate.

As can be seen in Figure 2, even at a high IOU threshold,
we cannot guarantee that the detection encloses all characters.
Increasing the value of the IOU threshold even further proved
not to be helpful since it becomes too restrictive and even
fewer positive examples are generated for classification. This
might result in some ground-truth bounding boxes not being
assigned to any anchor. An alternative would be to increase the
number of anchors by up-sampling the feature map even more.
Hence, there would have to be some ground truth to match that
anchor. However, this slowed down the computation and did
not show any major improvement.

To address the problem of poor bounding boxes generation
for the LPR task, we propose a new loss function to avoid
detections on the inner side of the plate. We argue that bigger
detections are less detrimental because they ensure that all
characters will be completely visible, eliminating the need for
arbitrary padding on the network detection.

Our loss function penalizes regressions inside the plate by

Fig. 3. The same image can be zoomed in or zoomed out, so that a different
sets of candidate regions are treated as positive examples during training.

some factor α as in Equation 1. This is done separately for
the top left corner and the bottom right corner. For the top left
corner, the predicted coordinate cpred must be smaller or equal
the ground truth, c, for it to lie outside the plate. For the bottom
right, it has to be greater or equal. Using these penalties, we
expect larger bounding boxes, so that a higher proportion of
them enclose all seven characters. We empirically chose α =
2 for our training. For our normalization function, we used
smooth L1.

loss(cpred, c) =

{
‖cpred − c‖, if cpred lies outside the plate

‖cpred − c‖ × α, otherwise
(1)

We employed translation, vertical flip, brightness and con-
trast as data-augmentation procedures to increase the ro-
bustness of the network. We also added annotations from
license plates in the background even if they are very small.
Otherwise, these plates would be treated as false positives
during training and negatively impact our results. Furthermore,
we also used the same frame to train different anchors on the
detection network. As shown in Figure 3, we can zoom-in or
zoom-out on the original 1920 × 1080 image to create crops
without losing quality. This ensures that the heights during
training are uniform among all images, guaranteeing that most
anchors would have a similar number of learning samples.

B. License Plate Recognition
Our recognition network consists of a multi-task deep con-

volutional network. The model receives a license plate image
as input and outputs the seven predicted characters without
any explicit segmentation step.

Multi-tasks networks hypothesize that it is possible to
improve the robustness of the network by learning a joint
representation that is useful to describe more than one task on
the same image [8]. In our case, each task is the classification
of one character in the plate. These tasks are very correlated
since every transformation, such as translation or rotation, on
one character is also applied on the following characters.

Since the final goal is to classify the license plate characters,
the use of shared convolutional layers is employed because
a single feature representation should give good descriptions
of these characters for every image. Moreover, we train
our deep network to recognize all license plate characters
simultaneously, instead of employing two separated techniques
(i.e., a network for segmentation and a network for OCR),
which would enhance the error propagation through the ALPR
pipeline, as discussed earlier.

Our recognition approach shares many characteristics with
the holistic network proposed by Špaňhel et al. [24]. The



TABLE II
ARCHITECTURE OF THE LICENSE PLATE RECOGNITION MODEL.

Layer Filters/Units Size/Stride Rate

0 input - 120× 40 -
1 conv 64 3× 3/1 -
2 maxpool - 2× 2/2 -
3 conv 64 3× 3/1 -
4 conv 64 3× 3/1 -
5 maxpool - 2× 2/2 -
6 conv 64 3× 3/1 -
7 conv 64 3× 3/1 -
8 maxpool - 2× 2/2 -
9 conv 64 3× 3/1 -

10 conv 48 3× 3/1 -
11 shared fc 512 - -
12 dropout - - 0.3
12 non-shared fc[0..7] 64 - -
11 dropout - - 0.3
13 non-shared fc[0..7] 36 - -

Fig. 4. Permutations of the same license plate. The top-left image is the
original and the others were automatically generated.

hyper-parameters of our model are described in Table II. Note
that non-shared layers are replicated for each task, therefore,
since we performed experiments on license plate containing
seven characters, we have seven tasks.

It is worth mentioning that, in the experiments carried out
in this work, the license plate images are always composed of
three letters followed by four numbers (the Brazilian license
plate standard). Hence, we could have used only 26 neurons
(i.e., for A-Z letters) on the first three tasks and 10 (i.e., for 0-
9 digits) on the last four characters. Nonetheless, we decided
to employ 36 neurons on all tasks to allow further fine-tuning
for different license plate standards.

A major challenge to train the proposed network archi-
tecture is that every task has to learn the representation of
every letter or number, e.g., the first output of the network
has to be trained with examples from A to Z. However, it is
exceptionally difficult to collect a Brazilian dataset in which
every letter appears at least once in each of the first three
positions due to the Brazilian license plate allocation policy,
the first letter of the license plate can appear much more often
than others according to the State in which the license plate
has been issued. For instance, while in São Paulo State there
are more license plates starting with letters B and C, license
plates starting with letters L and M are more frequent in Santa
Catarina State. Thus, to overcome this problem, we augment
the training dataset by making different permutations of the
license plate characters.

A sample of the proposed permutations is shown in Figure 4.
In our dataset, the character bounding boxes were manually
annotated in a way that the number of artifacts when the
characters are swapped is minimal. In each permutation,

Fig. 5. Synthetic license plates generated to train the license plate recognition
network.

rotation, translation, brightness and contrast augmentations are
also applied to increase the robustness of our method.

With the employment of the data augmentation based on the
character permutation, we are able to control the frequency
of each character by simply increasing the probability of
swapping an overrepresented letter by an underrepresented
one. Hence, we can construct a balanced training dataset,
in terms of character classes. However, since the permuta-
tions occur only between characters in the same plate (to
avoid illumination inconsistencies), a correlation between the
characters in different positions is created. For instance, if
we assume that letter W is not frequent in our dataset and
that the plate illustrated in Figure 4 is within our dataset, an
undesired correlation between W and O, and between W and
R would appear. In addition, underrepresented letters would
also have a high correlation with themselves since they are
more likely to appear in two or three positions of the same
plate. To eliminate this bias, we retrain the network by freezing
the convolutional layers and using synthetic examples to train
the fully connected layers. Figure 5 illustrates two samples
of synthetic license plate images. These synthetic samples
eliminate the conditional probabilities generated as a result
of the permutation technique.

IV. PROPOSED DATASET

To train the proposed ALPR approach described in the pre-
vious section, we recorded a new dataset of traffic surveillance
images. This was necessary since detection techniques based
on deep learning need a large number of images to converge.
Therefore, the current datasets do not contain a reasonable
number of images to train our detection network. Moreover,
current available datasets do not contain enough diversity on
the captured frames, as they contain multiple frames recorded
from a single position with only a single camera.

The new dataset is, called SSIG-ALPR, contains 6,660
images with 8,683 license plates from 815 different on-track
vehicles. However, 3,368 license plates have no text annotation
as they have very low resolution and it is impossible to visually
determine their characters. These license plates can be used
as samples to detection approaches that only need the ground
truth coordinates as labels. Since it was recorded in Brazil,
the license plate layout is composed by three uppercase letters,
one space followed by four digits, resulting in seven characters
(alphanumeric symbols) which have been manually annotated
with bounding boxes.

To increase the diversity of the dataset, the images were
acquired using two cameras, one static while recording and the
other was placed inside a vehicle and was set to record while
the vehicle was moving. While the static camera provided large



Fig. 6. Sample present in the dataset (the license plates were blurred due to
privacy constraints).

variation of license plate sizes and none background variation,
the moving camera provided license plates with few variation
on size but with large background differences.

We split our dataset into training, validation and testing sets.
The training set contains 3,595 images, the validation set has
705 and the test contains 2,360 images. Besides license plates
with regular sizes, our dataset also contains license plates
which are not human-readable due to low-resolution images.

The license plates have sizes varying from 5× 12 pixels to
86 × 196 pixels. On average, the license plates images have
size of 22 × 57 pixels (aspect ratio of 0.38). All images are
available in the Portable Network Graphics (PNG) format with
size of 1,920× 1,080 pixels. The average size of each file is
2.4 MB. Figure 6 illustrates one sample present in the dataset.

V. EXPERIMENTAL RESULTS

In this section, we describe the experiments carried out
to evaluate our two-step approach to perform ALPR both
in terms of accuracy and efficiency. First, we evaluate how
much each proposed data augmentation technique improves
the model accuracy. For these experiments, we evaluate our
models on the proposed dataset. Then, we evaluate our best
performing models on two other datasets and compare them
to previously published state-of-the-art approaches. All non-
commercial models were executed in a computer equipped
with an Intel Xeon with 16 cores, 64GB of RAM and a
GeForce Titan 1080 TI GPU.

Although being at the beginning of the pipeline, our License
Plate Detection (LPD) approach is evaluated after the License
Plate Recognition (LPR) step because the former evaluation
was based on the latter accuracy.

A. License Plate Recognition Evaluation

In this experiment, we focus the evaluation on our
segmentation-free OCR approach. We compare our own
method with each proposed data-augmentation. Approach A
only applies conventional data augmentations such as random
translations, rotations, brightness, and contrast. Approach B
uses only synthetic license plates to train our network. Ap-
proach C uses only permuted license plates. Finally, the last
experiment, approach D, combines permutations and synthetic
plates to train our network.

TABLE III
LICENSE PLATE RECOGNITION EVALUATION.

Approach Description Accuracy (%)

A no data augmentation 82.96
B synthetic only 49.53
C permutation only 83.72
D permutation + synthetic 85.60

For this evaluation, we eliminate the detection step from
the ALPR pipeline and use the ground-truth bounding box to
determine/detect the license plate such that all characters are
completely visible. Our results are summarized in Table III.

We can see that combining permutations and synthetic
license plates provide the best results. That is because all
biases present in the training dataset that may not be present
in the training dataset are removed when these techniques are
applied. Though the improvement made is only of 2.4 p.p.,
this happens because the training and testing dataset contain
this same bias.

B. License Plate Detection Evaluation

In this experiment, we evaluate our license plate detection
approach. We use our best performing OCR model, that is,
approach D of Table III, and evaluate the accuracy of the
pipeline when we employ different techniques for detection.
Our results are summarized in Table IV.

TABLE IV
LICENSE PLATE DETECTION EVALUATION.

Approach Description Accuracy (%)

A no modification 76.73
B loss only 78.47
C zoom only 78.68
D zoom + loss 79.32

Approach D, which combines our novel loss function and
with balanced license plate heights, achieved the best recog-
nition rate, with an improvement of 2.6 percentage points
when compared to Approach A. In the remaining comparisons,
our method employs the best approaches from Table III and
Table IV (approaches D from both tables).

C. Comparison with State-of-the-Art Approaches

In this section, we present a comparison of our proposed
approach with other techniques available in the literature. The
experiments were performed using two datasets, the SSIG-
SegPlate dataset proposed by Gonçalves et al. [12] and the
UFPR-ALPR dataset proposed by Laroca et al. [20]. We
also removed any motorcycle samples from the UFPR-ALPR
dataset since our networks were not designed to handle other
license plate layouts. Figure 7 shows examples from these
two datasets. It is worth to mention that we also add samples
from our proposed dataset to train our license plate detection
network. This was necessary because our model works directly
on the frames instead of vehicle patches, therefore it needs
more samples to converge.



Fig. 7. Samples extracted SSIG-SegPlate dataset (left) and UFPR-ALPR
dataset (right).

TABLE V
RECOGNITION RATES ACHIEVED BY THE PROPOSED APPROACH

COMPARED TO THE FIVE BASELINES ON THE SSIG-SegPlate DATASET.

Approach Recognition rate (%)

Gonçalves et al. [2] 81.8
Silva & Jung [19] 63.1
Laroca et al. [20] 85.4

Sighthound 73.1
OpenALPR 87.4

Proposed approach 88.8

To evaluate the performance on the SSIG-SegPlate dataset,
we compared our approach with five techniques used as base-
lines. The two first baselines are the techniques proposed by
Silva and Jung [19] and Laroca et al. [20]. Both contain end-
to-end vehicle identification pipelines composed by multiples
deep networks executed in sequence. The third baseline is a
hand-crafted approach proposed by Gonçalves et al. [2] which
employs a HOG-SVM classifier. More details regarding these
baselines are described in Section II. Finally, our fourth and
fifth baselines are commercial systems called OpenALPR2 and
Sighthound3. The results are shown in Table V.

According to the results, the proposed two-steps approach
outperformed all baselines. Silva and Jung [19] achieved
63.1% of recognition rate, the worst result among all five
baselines. This is expected since their paper main proposal
is not on the entire ALPR pipeline but only on the character
segmentation step. Sighthound was the second worst baseline
since the system was only capable of recognizing 73.1% of
vehicles from the SSIG-SegPlate dataset. The other baselines
were capable to achieve comparable results. For instance,
Gonçalves et al. [2] was able to recognize 81.8% of all
vehicles even though it is not based on deep learning. The
approach from Laroca et al. [20] is entirely composed by deep
networks and was one of the best baselines we tested. Finally,
the best baseline result was achieved by commercial system
OpenALPR, recognizing 87.4% of all license plate images
from the test set. Our approach, on the other hand, was able
to outperform the best baseline by 1.4 percentage point. We
believe this result is due to the use of a single step to perform
the license plate recognition instead of two steps (i.e., character
segmentation followed by character recognition).

We also evaluate the frame rate of the approaches on the
SSIG-ALPR dataset. Since the commercial systems Sighthound
and OpenALPR do not report the time consumption, we only

2Available at http://www.openalpr.com
3Available at http://www.sighthound.com/products

Fig. 8. FPS from three baselines and our proposal technique as a function
of the number of vehicles in the frame.

consider the three baselines of the literature in this evaluation.
According to the results in Figure 8, the approach proposed
by Gonçalves et al. [2] was the only one that is not capable
of run in real time. This can be explained by the fact that
sliding window techniques are significantly slower and they
are used on multiple steps of their approach. On the other
hand, the remaining baselines were able to achieve the rate of
30 frames per second when there is single vehicle per frame.
However, the proposed approach is faster than the baselines
since its frame rate decays slower than the others when there
are more vehicles in the scene (e.g., our approach is able to
keep 30 FPS even when six vehicles are present in the scene),
which is common in real-world applications.

The results in the UFPR-ALPR dataset are shown in Ta-
ble VI. For this dataset, we only compared our approach to the
two best baselines on the SSIG-SegPlate experiment (Laroca et
al. [20] and OpenALPR). None of the approaches was able to
achieve satisfactory results since all of them miss-predict more
than 20% of the cars on the dataset. The commercial system
OpenALPR was able to achieve 57.9% of recognition rate on
this dataset. The proposed approach also did not perform well
on this dataset, recognizing only 55.6% of cars.

The UFPR-ALPR dataset was recorded by placing a camera
within an on-track vehicle. Therefore, the dataset becomes
very challenging due to the nature of non-static backgrounds,
which can be very problematic to the detection network since
it works directly on the frames and there are many different
patterns on the scenes that might be confused with a license
plate. To verify this hypothesis, we skip the detection phase by
passing the license plates manually cropped to our recognition
network. We then achieved 76.5% of recognition rate, which
means that 20.9% of license plates were only miss-predicted
by the entire pipeline due to the poor performance of the
detection network. This shows that there are plenty room to
improve the robustness of the license plate detection.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduced a new two-step approach to
detect and recognize Brazilian license plates based on two



TABLE VI
RECOGNITION RATES ACHIEVED BY THE PROPOSED APPROACH

COMPARED TO THE BEST BASELINES ON THE UFPR-ALPR DATASET
WITHOUT MOTORCYCLES.

Approach Recognition rate (%)

Laroca et al. [20] 72.2
OpenALPR 57.9

Proposed approach 55.6

networks. A detection network designed specifically to handle
license plate detection and a multi-task CNN to perform the
segmentation and recognition of the license plate images si-
multaneously. We created a new loss function used to improve
the convergence of our detection network. We also designed
two data augmentation techniques to increase the number of
samples available to train our networks. Finally, our paper also
introduces a new ALPR dataset containing 6,660 images.

Our results demonstrated that our approach was able to
detect 79.3% license plates using our new proposed dataset.
Furthermore, the recognition network was able to recognize
85.6% of all license plates. Note that 85.6% of accuracy for
license plates with seven characters stands for an accuracy of
approximately 97.8% of character recognition accuracy (i.e.,
0.9787 ≈ 85.6%), which is a promising result for characters
that are not easily recognized by human beings.

We also performed experiments to compare our approach
with multiple baselines. We were able to outperform the best
baseline on the SSIG-SegPlate dataset on 1.4 percentage point.
Moreover, our approach was able to run in real time even
when there are multiple vehicles on the frame. Nonetheless,
we achieved a recognition rate of 55.6% on the UFPR-ALPR
dataset, which was not enough to outperform the baselines.
This poor performance is related to the difficulty of the license
plate detection network to work with non-static backgrounds,
which contains much more patterns that can be confused with
a vehicle license plate. Moreover, our approach was able to
run on real time even when there were 6 license plates on the
scene while the best baseline could only run on real time with
3 or fewer license plates.

As future works, we intend to increase the approach robust-
ness by creating a manner to train both networks jointly. We
also intend to evaluate our network with other license plate
standards since most countries in the world have their own
license plate layouts.
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