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Abstract—Map charts are used in diverse domains to show
geographic data (e.g., climate research, oceanography, business
analysis, etc.). These charts can be found in news articles,
scientific papers, and on the Web. However, many map charts
are available only as bitmap images, hindering machine interpre-
tation of the visualized data for indexing and reuse. We propose
a pipeline to recover both the visual encodings and underlying
data from bitmap images of geographic maps with color-encoded
scalar values. We evaluate our results using map images from
scientific documents, achieving high accuracy along each step
of our proposal. In addition, we present two applications:
data extraction and map reprojection to enable improved visual
representations of map charts.

I. INTRODUCTION

Geographic maps are a popular form of data visualization,
used to convey information within a geo-spatial context. The
use of maps is not limited to experts such as geographers
or cartographers: millions of maps are produced and used
by scientists, students, governments, and companies for a
variety of analytical purposes. A well-designed map encodes
information so as to be interpretable by human viewers;
however, these maps are often published as bitmap images,
without access to the original data. Having access only to
pixel-level information impedes automatic processing for tasks
such as indexing, searching, and analysis [1], [2]. For that
reason, it is difficult to find and reuse map data using either
spatial queries (e.g., find all maps involving a specific country)
or semantic queries (e.g., find all maps with temperature values
in a particular range) [3]. We need computational solutions to
automatically process maps due to the existence of millions of
maps that have been digitally scanned or digitally created [4].

Existing methods for automatic chart interpretation focus on
analyzing common statistical graphics such as bar, line, area,
or pie charts. Some projects attempt to recover the underlying
data [1], [2], [5]–[9], while others focus on recovering the
visual encodings [10], [11]. However, these systems do not
support analysis of geographic maps. In this paper, we extend
these prior approaches to recover both visual encodings and
underlying data for map images with color-encoded scalar
values.

Our primary contribution is a map image analysis pipeline
that automatically extracts spatial information from map region
and color information from legend region to recover a visual

encoding specification in a declarative grammar similar to
Vega-Lite [12], a high-level grammar of graphics. We also
present two applications of our map image analysis pipeline:
extraction of color-encoded data values to generate alternative
visualizations, such as bar charts of aggregate values by
continent, and a reprojection method to generate redesigned
map images conveying the same original data.

II. RELATED WORK

Our work draws on prior research in the areas of map
interpretation and automatic chart interpretation.

A. Map Interpretation
The literature shows a varied collection of methods to per-

form automatic map interpretation [13] to extract information
from maps and analyze their content. For instance, Dhar and
Chanda [14] analyze scanned topographic maps to extract and
recognize symbols (e.g., trees, forests, rivers, huts, etc.) and
text contained within the map. One of the steps is to separate
the image into four layers: (i) green elements (trees, forests),
(ii) red elements (streets), (iii) blue elements (rivers, lakes)
and (iv) black elements (text). The map scale and range of
latitude/longitude coordinates are entered by the user in order
to locate points on the map given their geographical coor-
dinates. Pezeshk and Tutwiler [15] also worked on scanned
topographic maps to automatically extract each component of
the map in separate layers and recognize the text contained.
They propose an algorithm for extracting linear features to
generate a layer containing map lines (streets, roads, etc.);
they then use the RANSAC algorithm to improve the text
preprocessing and a hidden Markov model to recognize texts
and generate a text output layer.

These previous works focus mainly on topographic maps
(i.e., maps characterized by contour lines and road lines [15])
and recognizing their symbols. Our approach automatically
extracts spatial information from the geographical map con-
tained in a map chart; this information includes the type of
geographic projection used by the map and the range latitude
and longitude values of the displayed region.

B. Automatic Chart Interpretation
A growing number of techniques focus on the “inverse

problem” of data visualization: given a visualization, recover



the underlying visual encoding and its corresponding data
values [16]. Some of these approaches have focused on data
extraction, for instance, ReVision [5], VIEW [6] and Chart-
Sense [1] classify previously the chart images. ReVision [5]
and VIEW [6] use Support Vector Machine (SVM) [17] as
classifier and ChartSense [1] uses GoogLeNet [18]. Depending
on the chart type, they applied a different approach to extract
data, generating as output a data table. Al-Zaidy et al. [8]
proposed a system that extracts data values from bitmap
images of bar charts and using the label roles (e.g., x-title,
x-labels, y-title, etc.) generates a semantic graph to create
a summary which describes the input image. The above
mentioned approaches extract data from charts that contain
discrete legends (e.g., bar, pie, area, line, or radar charts);
however, our work is focused on data extraction from map
charts that contain continuous and quantized color legends,
which have not been addressed so far.

On the other hand, some methods have been focused
on recovering visual encodings from charts. Harper and
Agrawala [10] present a tool to decompose and redesign
visualizations created by the D3 library [19] (e.g., bar charts,
line charts, scatter plots, donut charts, and choropleth) analyz-
ing the SVG elements of the chart via JavaScript. Poco and
Heer [11] trained a Convolutional Neural Network (CNN) for
classifying ten chart types, achieving an accuracy of 96% for
classifying maps. Their pipeline identifies textual elements in
the bitmap image to recover a visual encoding specification.
However, their work does not include extraction of color
encodings or geographic projections.

The most related work is the method presented by Poco
et al. [16]. They proposed a technique to extract the color
encoding from discrete and continuous legends of chart im-
ages, including geographic maps. Their work identifies the
colors used and the legend text, then recovers the full color
mapping (i.e., associating value labels with their corresponding
colors); however, their system classifies quantized legends
as continuous and does not work when each color of the
quantized legend represents a range of values. We build
upon this approach in our current work, particularly for color
extraction. Nevertheless, our work is focused on map charts,
thus, we have to tackle different challenges such as identifying
map projections.

III. DATA COLLECTION AND ANNOTATION

In order to train the Machine Learning (ML) techniques
used in our work, we collected images and manually annotated
them to build a ground-truth corpus of map charts.

A. Image Collection

We collected 474 documents from three well-known geo-
science journals in the field of climate change — Nature, the
Journal of Climate, and Geophysical Research Letters. Then,
the pdffigures tool [20] was used to extract 2,018 figures. To
select only map charts, we applied chart type classifier by Poco
and Heer [11]; obtaining 1,351 map images. We then manually
applied two constraints: map images must have a color legend,
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Fig. 1. Examples of map chart images from our corpus, covering three
projections and two color legend types. We extracted map images from
geoscience journals in the field of climate change.

TABLE I
COUNTS OF MAP CHARTS PER PROJECTION AND PER COLOR LEGEND

TYPE, TAKEN FROM OUR CORPUS OF MAP IMAGES.

Equirectangular Miller Robinson Total
Continuous 29 45 37 111
Quantized 71 50 63 189
Total 100 100 100 300

and the map region must have text labels indicating the latitude
and longitude values.

A preliminary analysis shows that the most common pro-
jections are Equirectangular 46%, Robinson 16%, and Miller
13% (see columns in Figure 1). In addition, we identified three
color legend types: discrete, continuous and quantized (which
maps a continuous quantitative domain to a discrete set of
colors). We noticed that a few percent of the collected map
images contain discrete color legends. Given these results, we
decided to focus on these three projections, as well as the con-
tinuous and quantized legends (see rows in Figure 1). Finally,
we used uniform random selection of 100 map images for each
projection, including both quantized and continuous legends.
Table I shows a summary of our map image corpus. Figure 1
shows map images from our corpus that span the world or a
specific region using different projections and legend types.
After selecting the 300 map images, we annotated each of
them, following the process below.

B. Image Annotation

The annotation for map regions includes: (i) the map projec-
tion type (i.e., Equirectangular, Miller or Robinson), (ii) map
location inside the image as represented by a pixel-coordinate
bounding box (orange rectangle in Figure 2a), and (iii) the
location, content, and role of textual elements (i.e., latitude,
longitude or other). In Figure 2a, we can see textual elements
indicated with red (latitudes) and blue boxes (longitudes).

For legend regions, we annotate the color bar location (green
rectangle in Figure 2b and Figure 2c) and the textual elements
including their image location, content and role (i.e., label,
other). For continuous color legends, we also annotate the
minimum and maximum pixel coordinates (yellow circles in
Figure 2b). For quantized color legends, we mark a represen-
tative pixel inside each bin (yellow circles in Figure 2c).



(a) Annotation in map region.

(b) Annotation in continuous le-
gend.

(c) Annotation in quantized legend.

Fig. 2. For each map chart we annotate the map and legend regions. (a)
A map region has the map location (orange rectangle) and textual elements
representing latitude (red boxes), longitude (blue boxes), or other text. (b) A
continuous color legend has the color bar location (green rectangle), textual
elements such as labels (red boxes) or other texts, and the minimum and
maximum pixel coordinates (yellow circles); the red line represents all the
colors inside the color bar. (c) A quantized color legend also has the color
bar location and textual elements; yellow circles indicate representative pixels
for each bin.

In the following sections, we explain how the annotated
corpus is used to train our techniques in order to recover the
visual encoding for each map image.

IV. METHOD OVERVIEW

Our map image interpretation pipeline is comprised of four
main steps (see Figure 3). We first segment the input map
image into two main regions (Section V). Second, we extract
spatial information for the map region, based on recovered
latitude and longitude labels (map analysis, Section VI). Third,
given the legend region, we extract color encoding information
(legend analysis, Section VII). Finally, we perform encoding
inference to generate a visual encoding specification using the
information extracted in the two previous steps (Section VIII).
In the following four sections, we explain and validate each
step in detail.

V. MAP AND LEGEND SEGMENTATION

Given a map chart image as input, we seek to decompose
it into two main regions: map and legend, because each one
requires a different approach to extract information.

The intuition is that the two largest components correspond
to the map and the color bar, as we can clearly see in
Figure 3a. We convert the input image to grayscale, apply
simple binarization, flood fill the holes, erode the binary
image, and then run the connected components algorithm [21].
Next, we sort the connected components by area and select the
two largest components.

At this point, we have a map/legend region without textual
information. To attach this information, we first analyze the
aspect ratio of the color bar to determine the legend orienta-
tion. We consider four cases: when the legend is vertical, the
map may be on the left or right side of the legend; when the
legend is horizontal, the map may be on the bottom or top
side of the legend. When the legend is vertical and the map is
on the left side of the legend, we compute the center (cx, cy)
of each component and compare the distance from the cx to
the right of the map region and the left of the color bar. The
lowest distance indicates if the component belongs to the map
region or the legend region. We use an analogous approach

for the other three cases. In Figure 3b we see the result of
applying our approach to recover the map (orange rectangle)
and the legend (green rectangle) regions.
Validation. To evaluate this method, we apply the matching
score between two rectangles defined by Lucas et al. [22].
For each image in our corpus (§III), we compute the matching
score between the ground truth and the estimated rectangles
(map and legend regions); then, the accuracy is defined as
the average of the matching scores by region. Our region
identification technique achieves an accuracy of 97.96% for
map regions and 92.35% for legend regions. The strong
prevalence of the legends placed outside the plotting area
contributes to this high performance.

VI. MAP ANALYSIS

Given the map region as input, our pipeline automatically
extracts the spatial information, including textual elements and
projection type, following these steps: (a) text bounding box
identification, (b) text bounding box classification, (c) text
extraction, (d) value inference, and (e) projection inference.

A. Text Bounding Box Identification

Our first goal is to identify the bounding boxes of text
elements. To improve text localization performance, we first
remove the largest connected component that in this case
corresponds to the map (orange region in Figure 4b). Once
the image is clean, we apply the text localization method of
Poco and Heer [11].
Validation. We compute the F1-score in the same way as
Poco and Heer [11]. They showed that even if all text boxes
are correctly identified, the F1-score can still vary from 80%-
100% by adjusting the box size by 1–2 pixels. Here, we
achieve an F1-score of 80.09%, which indicates that this
technique is acceptable to identify bounding boxes within the
map region.

B. Text Bounding Box Classification

Once the text bounding boxes are identified, we classify
each one according to its role. Our classifier is based on the
text role classifier of Poco and Heer [11] and was trained to
distinguish between three text roles, as illustrated in Figure 4b:
latitude (red boxes), longitude (blue boxes) and other (i.e., any
other text inside the map region).
Validation. We evaluate our classifier using our ground-truth
corpus (§III). We use 5-fold cross validation with stratified
sampling to ensure an equal proportion of the classes in each
fold. Table IIA shows the total number of boxes for each
text role within a map region and our corresponding F1-score,
which ranges from 95% to 100%.

C. Text Extraction

We apply the Tesseract OCR engine [23] to extract text
from the bounding boxes. For the other class we apply the
default Tesseract OCR configuration; however, to improve the
text extraction for latitudes and longitudes, we created our
own dictionary for Tesseract OCR to reduce the number of



(c) Map Analysis

(d) Legend Analysis

(e) Encoding Inference
{

"mark": "rect",

"projection": {...},

"encoding": {

"x": {...},

"y": {...},

"color": {...}

}

(b) Map and Legend Identification(a) Input Image

Fig. 3. Our approach to analyzing an (a) input map chart is comprised of four main steps: (b) We segment the image into map and legend regions. (c)
The map region is analyzed to extract spatial encoding information. (d) The legend region is processed to extract color encoding information. (e) Finally, we
combine the information extracted in the previous steps to infer a visual encoding specification.

Text Bounding Box 
(b) Identification and (c) Classification

(d) Text Extraction and (e) Value 
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Inference

(a) Map Region

Fig. 4. Map analysis pipeline for extracting spatial information. (a) The map
region is given as input. (b) We identify the text bounding boxes and (c) they
are classified depending on their text role. Next, (d) we extract the text content
and (e) infer the label values. Finally, (f) we infer the map projection type.

TABLE II
EVALUATION PER TEXT ROLE. (A) F1-SCORE OF OUR CLASSIFIER OF

TEXT BOUNDING BOXES COMPUTED USING 5-FOLD CROSS VALIDATION.
(B) ACCURACY OF OUR TEXT EXTRACTION TECHNIQUE COMPUTED

USING EXACT MATCHING OF TEXT STRINGS.

Text role # boxes F1-score
latitude 2168 99%
longitude 2309 100%
other 254 95%
Total / Avg 4731 99%

(A) Text bounding box classification.

Text role # boxes Accuracy
latitude 2168 79.38%
longitude 2309 81.90%
other 254 12.60%
Total / Avg 4731 57.96%

(B) Text extraction.

characters. For each bounding box, we convert the subimage
to grayscale, resize it using Lanczos interpolation [24], and
binarize the output using Otsu’s method [25]. We then apply
the Tesseract OCR configuration corresponding to the text role.
Validation. To evaluate OCR performance, we use the
similarity function simexact that seeks an exact matching be-
tween ground-truth and estimated text strings, simexact(si, sj)
returns “1” if the strings are equal and “0” if they are not.

For each bounding box within map regions in our ground-
truth corpus (§III), we extract the text using our technique
and compare with the real text. Table IIB shows the accuracy
for each text role in the map region. The other class has the
lowest accuracy due to some map regions have superindices,
subindices or Greek symbols as part of their titles.

D. Value Inference

In this step, we infer numeric values from the extracted
texts; latitude values will range from −90 to 90 and longitude

values will range from −180 to 180. To infer the value, we
extract the numeric part of the text and sort latitude bounding
boxes by their center y-coordinates to determine the sign:
when the number decreases it means the values are positive.
However, if the number increases the value is negative. We
use a similar approach to determine longitude values.
Validation. For each image of our corpus (§III), we select
the latitudes and longitudes from the ground-truth bounding
boxes, then, we infer the values from the ground-truth texts.
Finally, we compare the ground-truth values with the inferred
values. Our method achieves an accuracy of 100% for both
latitude and longitude ground-truth texts; this result indicates
that as long as the text is correct, the value will be inferred
correctly.

E. Projection Inference

Once we have inferred latitude and longitude values, we use
these values and their bounding box centers ci = (cix, ciy) to
infer the projection type. As we show in Figure 4c, longitudes
(blue boxes) are located on the x-axis and latitudes (red boxes)
along the y-axis. Moreover, they are mutually independent and
their positions depend on the geo projection used by the map.
As we see in Section III, the selected geo projections have
constant distance between longitude texts, for that reason we
focus here on analyzing latitude texts.

As first step, we identify the first latitude (i.e., located on the
top-left or top-right side of the map region) with center c0, then
we compute the distribution of latitude labels along the y-axis
by computing the vertical distance in pixels between latitude
label i and c0. The relationship between those distances and
latitude values generates a distribution of points that can be
fitted to a curve. The second row in Figure 5 shows examples
of distributions (red points) and curve fitting (blue curve) of
these points: the x-axis represents latitude values and the y-
axis represents distances (normalized) to the first latitude.

We define a map template of the whole world for each
projection (see the first row of Figure 5). For each map
template, we fit a curve that will be used to infer the projection
type for any map region. After testing different functions, our
final curves are: linear function for Equirectangular projection



Curve: ax3 + bx2 + cx + d 
MSE: 3.15e-05

 

RobinsonMiller

Curve: ax3 + bx2 + cx + d 
MSE: 2.91e-05

Curve: mx + b 
MSE: 1.52e-07

Equirectangular

Fig. 5. Map templates for each geo projection and their corresponding fit
curves. The curve fits points of the relationship between latitude values and
their position into the map region; red points represent the distribution of
latitudes and the blue curve represents the fit.

and cubic function for Miller and Robinson projections; we
can see that mean squared errors (MSE) are very small which
means a good fit.

After applying the prior steps to the input image, we first
compute the distribution of distances between its latitudes. Let
li and li+1 be the values of two consecutive latitude labels,
posi and posi+1 the corresponding values in the y-axis of their
distribution, pos′i and pos′i+1 are the estimated values for li
and li+1 using the fit curve, respectively. We compute a scale
ratio ri = posi+1−posi

pos′i+1−pos′i
for each pair of consecutive latitude

labels.
A distribution of latitude labels can be fitted to an existing

curve (template) when their scale ratios have the same or near
values for all latitude labels. We verify latitude alignment, if
they are vertically aligned, we select as possible geo projec-
tions Equirectangular and Miller; as otherwise it should be
Robinson. For each curve that represents a possible projection
type, we compute pos′i and the scale ratio ri, then we obtain
the standard deviation for that set of ri values. Finally, we
choose as output the projection with the smallest standard
deviation.
Validation. For each image in our corpus (§III), we select
the latitudes from the ground-truth bounding boxes, then we
infer the projection type and compare with the annotated
projection type. The accuracies are Equirectangular projection
99%, Miller 97% and Robinson 100%. Robinson projection
achieves a 100% because it is the only projection in our corpus
which does not have latitude labels aligned vertically.

VII. LEGEND ANALYSIS

Given the legend region as input, our pipeline extracts the
color information, including textual elements and represen-
tative pixels for color extraction. To recover this information,
we apply the following steps: (a) legend classification, (b) text
bounding box identification, (c) text bounding box classifica-
tion, (d) text extraction using OCR, and (e) color extraction.

(a) Legend Region (e) Text 
Extraction

(f) Color 
Extraction

(b) Legend Classification
Text Bounding Box 

(c) Identification and 
(d) Classification

Fig. 6. Legend analysis pipeline for extracting color information. (a) The
legend region is given as input and (b) it is classified by type. Then (c) we
identify the text bounding boxes, (d) classify them, (e) extract their text using
OCR, and finally (f) extract colors from the color bar.

TABLE III
LEGEND CLASSIFICATION PERFORMANCE FOR TEST SET.

Legend type Precision Recall F1-score # Images
Continuous 92% 82% 86% 93
Quantized 85% 92% 88% 99
Discrete 98% 100% 99% 107
Other 96% 96% 96% 101
Avg / Total 93% 93% 93% 400

A. Legend Classification

First, we classify the color legend to apply an appropriate
method in the color extraction. This classifier takes a legend
region as input and classifies it into one of four color legend
types: continuous, quantized, discrete or other (i.e., legend
images that are not supported by our proposal). Color legends
can vary in terms of number of colors, color scales, orientation,
and size. For that reason, our classifier is based on the CNN
AlexNet [26], because the features and weights for classifying
are all learned from end-to-end.

We obtained the legend corpus of Poco et al. [16], then
legend region subimages were extracted from our corpus to
add the quantized class. In total, our legend corpus has 2,000
images across 4 categories (80% for training and 20% for
testing). Next, to train with our small corpus of legends,
we fine-tune the Caffe [27] implementation of AlexNet [26],
modifying the number of classes in the last layer [28] to
specify our four classes.
Validation. We evaluate our classifier using 20% of images
from the legend corpus presented previously. Table III shows
the resulting precision, recall and F1-score measures for test
set classification. Across all classes, we find that our classifier
exhibits an average F1-score of 93%.

B. Text Bounding Box Identification

In this step, we apply the same procedure of §VI-A. First,
removing the color bar in the legend region (green rectangle
in Figure 6c); then, we identify text bounding boxes.
Validation. We evaluate this technique against the ground-
truth bounding boxes of legend regions in our corpus (§III) in
the manner as §VI-A. In this case, for our corpus the F1-score
is 78.30%.



C. Text Bounding Box Classification

Our classifier is based on text role classifier of Poco and
Heer [11] and was trained to distinguish two text roles inside
legend region (see Figure 6d): label (e.g., red boxes) and other
(i.e., any other text into legend region).
Validation. We applied the same validation process as in
§VI-B, using the ground-truth bounding boxes of legend
regions of our corpus (§III). Our classifier achieves an average
F1-score of 99%, with an F1-score of 100% (2589/2589) for
label role and 98% (178/182) for other role.

D. Text Extraction

We extract their text content. For each bounding box, we
apply the same image processing explained in §VI-C, and then
apply the Tesseract OCR engine [23].
Validation. To evaluate OCR performance, we perform exact
matching of extracted text with the ground-truth text from our
corpus. The accuracy using exact matching is 91.59%.

E. Color Extraction

Given the color legend region and its type, we extract colors
using different approaches for each color legend type.

1) Continuous Legends: We identify the color bar end
points pmin and pmax (yellow circles in Figure 6f) and record
their pixel locations. By scanning the line between these
points, we can recover all colors.
Validation. We evaluate this technique using the same
evaluation process of Poco et al. [16] on the 111 images that
contain continuous color legend in our corpus (see Table I).
This technique achieves an accuracy of 90.99% (101/111).

2) Quantized Legends: We identify pmin and pmax for
extracting the line between these points. For a horizontal color
bar, a Sobel filter of size 3 is applied to compute the horizontal
derivative and identify strong changes along the x-axis. Then,
we compute the absolute values of the horizontal derivative
(i.e., the sum of r, g, and b color channel derivatives) and
extract the peaks. If we identify k peaks, we will have k + 1
colors We use a similar approach to extract colors from a
vertical color bar.
Validation. We evaluate color extraction of quantized legends
on the 189 images that contain this legend type (see Table I).
For each image we estimate pixel locations of peaks and com-
pare the pixel colors in those locations with the pixel colors of
ground-truth points using CIEDE2000 color difference [29] as
distance measure between colors, where distcolor < 2.5 [30].
Our technique achieves an F1-score of 93.59%.

VIII. VISUAL ENCODING GENERATION

We obtain different information of the image after analyz-
ing the map and legend regions (see Figure 7). Using that
information, we can generate a visual encoding specification,
setting values directly for some entries and inferring others.

Legend Analyzer Output

{

"type": "continuous",

"labels": [

{

"text": "4",

"type": "label",

"bbox": {...}

},

...

],

"colors": [

{"x": x1, "y": y1},

{"x": x2, "y": y2}

]

}

Map Analyzer Output

{

"projection": "Miller",

"labels": [

{

"text": "80ºN",

"value": 80

"type": "latitude",

"bbox": {...}

},

...,

{

"text": "180ºW",

"value": -180

"type": "longitude",

"bbox": {...}

}

]

}

{

"width": 693,

"height": 384,

"mark": "rect",

"projection": {

"type": "Miller",

"center": [0, 0],

"lucorner": [-180, 82.5],

"rlcorner": [-180, -82.18]

},

"encoding": {

"x": {

"field": "longitude",

"type": "longitude",

"scale": {

"type": "projection",

"labels": ["180ºW", "120ºW", "60ºW", 

"0º", "60ºE", "120ºE", "180ºW"],

"domain": [-180, -180],

"range": [77, 522]

}

},

"y": {

"field": "latitude",

"type": "latitude",

"scale": {

"type": "projection",

"labels": ["80ºN", "40ºN", "0º",

"40ºS", "80ºS"],

"domain": [-82.18, 82.5],

"range": [338, 12]

}

},

"color": {

"field": "value",

"type": "quantitative",

"scale": {

"type": "linear",

"labels": ["4","2","0","-2","-4"],

"values": [4,2,0,-2,-4],

"domain": [-4,4],

"range": ["#3a4587","#840403"],

"bin": "false"

},

"legend": {

"orientation": "vertical",

"type": "gradient"

}

}

}

Infer color scale

Infer color 
domain/range

Infer y 
domain/range

Infer x 
domain/range

Infer 
projection data

Fig. 7. Recovery of visual encoding using data extracted by map analyzer
and legend analyzer in a declarative grammar similar to Vega-Lite [12]. Some
values need to be inferred and others are assigned directly (colored).

Direct specification: We see in Figure 7 that labels are
assigned directly in the visual encoding to x/y-channel (map
analysis output) or color channel (legend analysis output). The
projection type also is assigned directly. We noticed that while
some information is not used directly, we need it to infer other
fields required in our visual encoding.

Inferring color scale type: We infer the color scale type
(i.e., linear, logarithmic, power, or sqrt) using the centers of
text bounding boxes (x-coordinate for horizontal legends and
y-coordinate for vertical legends). We use non-linear least
squares regression to fit multiple functions to these values and
pick the model with the minimum mean squared error.

Inferring domain and range of color channel: The
legend.type entry in our visual encoding (see Figure 7)
depends directly on the legend type, i.e., if the legend type is
continuous, the entry value is gradient and if it is quantized,
the entry value is binned. For both legend types, range is
an array of hexadecimal colors extracted from representative
pixel positions.

For a continuous legend, the domain is defined as
[vmin, vmax] that represent extreme values of the legend. The
inverse function S−1 of scale type is used to estimate them,
having as input the representative pixel positions (attribute
colors in the legend analysis output).

For quantized legends we have two situations, when each



Input image Distribution of extracted data

Fig. 8. Analysis of extracted encoded data on map charts. User can know
how distribution of legend values is inside map area.

color represents a value or it represents a range of values.
In the first case, representative pixels should be aligned with
a legend label; however, it does not always happen and we
use the S−1 function to estimate the values for the missing
legend labels. The domain will be an array with all values (i.e.,
estimated and label values). For the second case, we verify that
a legend label exists between two representative pixels, if it
does not exist, we estimate its value using S−1. The domain
will be an array of tuples (mini,maxi) where mini and maxi

represent the minimum and maximum values of the range.
Inferring domain and range of x/y-channel: Some maps

show their minimum and maximum longitudes and latitudes,
but it is not always the case. For that reason, we infer those
values using the inverse function of the current projection type.

For latitudes (y-channel), let {y1, y2, . . . , yn} denote the
center of latitude bounding boxes in the y-axis, and let
{lat1, lat2, . . . , latn} denote the latitude values on each box.
Then, P−1(yi) = lati denotes the inverse function of latitudes
to the current projection type used to infer the minimum
latmin and maximum latmax latitudes given ymax = by and
ymin = by + bh, where b is bounding box of the map region.
We then infer the y-channel domain as [latmin, latmax] and its
range as [ymin, ymax] (see y-channel in Figure 7). A similar
procedure, using x-coordinates, is applicable for longitudes
(x-channel).

Inferring projection data: As we see in Figure 7,
lucorner will be [lonmin, latmax] and rlcorner will
be [lonmax, latmin]. center is defined as [lonc, latc] that
represents the geographical coordinate of the middle point of
map bounding box.

IX. APPLICATIONS

Our method can be used to support a variety of applications.
In this section, we present how to use our inferred visual
encoding to extract data encoded in a map chart and to
reproject a map image maintaining its original data.

A. Data Extraction

Visual encoding can be used to extract data encoded on a
map chart, which can then be used to redesign the visualization
itself [5]. We have a domain D = {d1, ..., dn} and a range
R = {c1, ..., cn} from the color channel entry in our visual
encoding. First, we create a colormap CM = {(ci, di)}
mapping a color (ci) to a data value (di). Then, for each pixel

Original Reprojected map

Fig. 9. An example of map reprojection: given a bitmap image and a target
map projection, we generate a new image that contains the reprojected map
which maintains original data.

p in the map area, we infer the latitude lat and longitude
lon values using the inverse projection function. After that,
we get the color pc and find the nearest color in CM such
that distcolor(pc, ci) < 2.5 [30]. If a nearest color exists, we
recover its value di as val. Finally, we export those values
into a CSV file, where each row contains a (lat, lon, val)
tuple. This file can be used by the analyst to create other
visualizations and to extract trends in data. For instance, the
input image in Figure 8 contains a quantized legend where
each legend value is a tuple and the bar chart shows the
distribution of pixels for each legend value.

B. Map Reprojection

Our second application performs map reprojection: given a
bitmap image of a map chart as input, we produce a new image
which uses a different projection, maintaining the original
data (colors). Figure 9 shows an example, using a map with
the Equirectangular projection as input, our tool automatically
create a new map chart with the Robinson projection.

This application uses the projection field from the
inferred visual encoding and a target geo projection. For each
pixel pi in the map area, we infer its latitude lati and longitude
loni using the inverse function of the geo projection. Then, we
create a color map CM that given a pixel position posi (the
position in the vectorized version of the image), returns the
pixel color ci. In addition, we create a list with the elements
(lati, loni, posi).

Once the coordinates, positions, and CM have been gener-
ated, we can reproject a map chart. To create this new map, we
use the list with (lati, loni, posi) and the color map CM to
plot the same colors as the original image. The center and
parameters of map projection are specified using the field
projection of the visual encoding, and the projection type
is the only parameter we change to create the new map.

X. LIMITATIONS

Multiple geographic coordinates: Our approach assumes
that map charts contain latitudes and longitudes. However, we
found that other coordinates systems exist such as the Univer-
sal Transverse Mercator (UTM) and Military Grid Reference
System. Our technique does not support those systems because
we did not find enough map images in the selected geoscience
journals; however, we intend to explore new data sources and,
if necessary, generalize our techniques to handle those cases.



Maps without coordinates: It is also common to render
geographic maps without coordinates, i.e., without textual in-
formation indicating latitude and longitude values. Analyzing
our image corpus, we did not find many of these cases;
however, we know that we can find many of them on the
Internet. A possible solution would be to apply techniques
from shape analysis and match the map boundaries with pre-
built maps in order to identify spatial locations and map
projection types.

Automatic chart interpretation: This work is part of a
more ambitious objective. The goal is to create an automatic
chart interpretation system that, given any chart image, can
automatically infer the visual encodings and, as is feasible, ex-
tract the underlying data or approximate distributions thereof.
If we accomplish this goal, we could create more impactful
applications such as improving figure indexing & search, make
chart images more accessible for people with disabilities, and
perform large-scale analysis of visualization practices.

XI. CONCLUSION

In this paper, we present a novel approach to extract the
visual encodings from map chart images. Given a bitmap map
image as input, we generate a visual encoding specification
in a format similar to Vega-Lite. We trained and validated
each component of our pipeline using real data collected from
scientific documents, and our results show high accuracies
on each task. Moreover, we describe two useful applications:
data extraction from map charts, and reprojection to change
the design of the map using the inferred visual encoding
specification.
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