
Synthesizing Periodic Tilings of Regular Polygons
Asla Medeiros e Sá

FGV EMAp, Rio de Janeiro, Brazil
Luiz Henrique de Figueiredo

IMPA, Rio de Janeiro, Brazil
José Ezequiel Soto Sánchez
IMPA, Rio de Janeiro, Brazil

Abstract—We present a simple representation for periodic
tilings of the plane by regular polygons. Our approach is to
represent explicitly a minimal subset of the vertices from which
we systematically generate all vertices in the tiling by translations.
We then deduce the edges and the faces using the constraint that
all edges have the same length. Our representation can be used
to synthesize tilings manually and automatically from images.

Index Terms—tilings, tessellations, generative model

I. INTRODUCTION

Tiling the plane with regular polygons is a fascinating subject,
both mathematically and graphically [1], [2], [3], with a long
history [4]. It is now almost exactly 400 years since the
mathematics of tilings were first discussed in Kepler’s book
“Harmonices Mundi” of 1619.

A tiling of the plane by polygons is a subdivision of the
plane into bounded polygonal regions that either are disjoint,
share a vertex, or share an edge. Restricting the faces of the
tiling to be regular polygons brings lots of rigidity while still
allowing much interesting variety. For instance, there are 21
possibilities to arrange regular polygons around a vertex [4].
Of those, only the 15 types shown in Fig. 1 can actually occur
as the neighborhood of a vertex in a tiling by regular polygons.
If all vertices have the same type, then the tiling is uniform
or Archimedean and only 11 such tilings are possible (Fig. 2).
Besides other symmetries, these tilings are periodic, in the
sense that they are invariant under two independent translations.

In this paper, we present a simple method to represent and
compute periodic tilings of the plane by regular polygons. Our
approach is to represent explicitly a minimal subset of the
vertices from which we systematically generate all vertices in
the tiling by translations. We then deduce the edges and the
faces using the constraint that all edges have the same length.
Our approach is reminiscent of the regular systems of points
discussed in the classic book by Hilbert and Cohn-Vossen [5].

II. TRANSLATION CELLS

A periodic tiling is invariant under two independent transla-
tions. The corresponding translation vectors t1 and t2 divide
the plane into an infinite grid of parallelograms, called the
translation cells (Fig. 3). Invariance means that everything in
one cell of the grid is repeated exactly in all cells. A translation
cell is also called a fundamental domain for the tiling.

The basic translation cell is the one containing the origin:

T0,0 = {λ1t1 +λ2t2 : λ1,λ2 ∈ [0,1)}

As illustrated in Fig. 3, this cell is half-open, that is, open at
the sides not containing the origin.

Nós Arquimedianos

Fig. 1. The 15 vertex neighborhoods in tilings by regular polygons [6].
4.2. LAVES TILINGS 31

(36) (44) (63) (34.6)

(33.42) (32.4.3.4) (3.4.6.4) (3.6.3.6)

(3.122) (4.6.12) (4.8.8)

Figure 4.2: The eleven uniform Euclidean tilings, also known as Archimedean tilings. The tiling (34.6)

occurs in left-handed and right-handed forms.

4.2 LAVES TILINGS
Every Archimedean tiling has a well-defined geometric dual, obtained by placing a tiling vertex in the
centre of every regular n-sided tile, and connecting two vertices if their corresponding tiles share an edge.
When the original tiling is removed, we are left with a monohedral, edge-to-edge tiling of the plane.
Each tile of the dual surrounds a vertex of the original Archimedean tiling, and each vertex of the dual is
regular in the sense that the edges adjacent to it are evenly spaced around it. These dual tilings are called
the Laves tilings, and they are given labels analogous to their Archimedean progenitors. The Laves tilings
are depicted in Figure 4.3.They will prove useful in the next section where they serve as a set of “defaults”
upon which to describe the more elaborate structure of the isohedral tilings.

Fig. 2. The 11 uniform tilings of the plane (from [3]).

Fig. 3. Grid of translation cells, translation vectors at the origin (in black),
and the basic translation cell (in gray).

Each translation cell T is a translation of the basic cell by
integer multiples of t1 and t2 and so can be written

T = Tn1,n2 = T0,0 +n1t1 +n2t2

with n1,n2 ∈ Z. Different translation cells are disjoint, because
they are half-open like T0,0. Thus, the plane is the disjoint union
of the translation cells, and each point in the plane belongs to
exactly one translation cell.

Two points p and q in the plane are equivalent if they
coincide when their translation cells are moved one on top of
the other. This happens exactly when p = q+n1t1 +n2t2 for
some n1,n2 ∈ Z. In algebraic terms, p and q are equivalent
exactly when they are in the same coset of the translation
lattice Zt1 +Zt2, which is a discrete additive subgroup of R2.

Since the translation cells are bounded, there is only a
finite number of vertices of the tiling in each translation cell.
Moreover, no two vertices in a translation cell are equivalent.
In fact, each translation cell contains exactly one representative
of each equivalence class of vertices. We shall see how to
reconstruct the whole tiling from the vertices in the basic cell.

III. BASIC DIRECTIONS

Our representation of a tiling starts with an analysis of a
sketch or an image of the tiling, like the ones in Fig. 2. Since
the polygons are regular, all edges have the same length, which
we may assume to be 1. We normalize the position and the
orientation of the tiling by choosing one of its vertices to be
the origin and one of its edges to be horizontal.

The first observation is that the edges are aligned with a
small number of directions, because the angles between the
edges around a vertex are limited to the internal angles of a
regular polygon of 3, 4, 6, 8, or 12 sides, given the restrictions
shown in Fig. 1. Since the edges have length 1 and there
is a horizontal edge, it turns out that these directions are
conveniently represented by complex numbers, more precisely
by the roots of unity ±ωn and ±ωn for n ∈ {1,2,3,4,6,8,12},
where ωn = exp(2πi

n). These are called the basic directions. Of
course, ω1,ω2,ω4 are more familiarly known as 1,−1, i.

The next observation is that any two vertices in the tiling
are connected by a path along the edges. Following the edges
in the path expresses the path as an integer linear combination

of the positive basic directions ωn, ωn for n ∈ {1,3,4,6,8,12}.
Note that ω2 = −1 = −ω1 is not needed since we have ω1.
(Henceforth, all basic directions are assumed positive.) The
expression of a path as an integer linear combination of the
basic directions is not always unique because some of the basic
directions are linearly dependent over the integers. Here is a
complete list of the integer linear dependence relations among
the basic directions, up to negation and complex conjugation:

ω3 +ω6 = 0, −1+ω6 +ω6 = 0, i−ω12 +ω12 = 0

These relations simplify the expression of a path to use a
subset of non-redundant basic directions, that is, those that are
linearly independent over the integers.

IV. DATA FOR REPRESENTING TILINGS

The first ingredient in our representation of a tiling is a set
of non-redundant basic directions. To find such a set, we list
the basic directions that appear in the tiling and we use the
relations above to eliminate redundant directions, if any. There
is room for choice here. We always eliminate ω3 =−ω6 and
ω6 = 1−ω6, and we typically eliminate i = ω12−ω12. After
choosing and fixing a set of non-redundant basic directions,
the paths connecting two vertices of the tiling have a unique
representation as an integer linear combination of the basic
directions. Since there is a vertex at the origin, every vertex
is connected by a path to the origin and so has a unique
representation as an integer linear combination of the basic
directions in the tiling. This is the basis of our representation.

The next ingredient are the translation vectors t1 and t2. To
find these vectors, we look for the two nearest vertices that
are equivalent to the origin. The paths from the origin to these
two vertices define the two translation vectors and so the basic
cell. Like the vertices, the translation vectors have a unique
representation as an integer linear combination of the basic
directions in the tiling. Since ±t1 and ±t2 define the same grid
of translation cells as t1 and t2, we may and shall assume that
the x coordinates of t1 and t2 are non-negative. Thus, t1 and t2
always point to the right of the origin, as in Fig. 3. Even with
this restriction, there may be room for choice here as well, as
we shall see in the examples below.

The last ingredient is the set of vertices inside the basic
cell. We call them seeds because all vertices in the tiling
are translations of the seeds. Like every vertex in the tiling,
each seed has a unique representation as an integer linear
combination of the basic directions. This representation is
found by following a path from the origin to each seed, but
the representation does not depend on the actual path chosen.
Unlike the previous ingredients, there is no room for choosing
the seeds: they are exactly vertices inside the basic cell, which
is determined by the translation vectors.

To summarize, each tiling is represented by three pieces of
data: a set of non-redundant basic directions, two translation
vectors, and a set of seeds in the basic cell. The translation
vectors and the seeds are given as integer linear combinations
of the basic directions. Let us now see some concrete examples
of this data in action.

V. TWO EXAMPLES

Consider the hexagonal tiling in Fig. 4. The basic directions
that appear in this tiling as vectors emanating from a vertex are
±ω1, ±ω6, ±ω6. Choose the non-redundant basic directions
to be ω1 = 1 and ω6. Place the bottom-right vertex of a
hexagon at the origin. Then, the paths from the origin to
the two nearest equivalent vertices are ω6 + 1 and ω6−ω6.
After eliminating ω6 = 1−ω6, we get the translation vectors
t1 = ω1 +ω6 (in blue) and t2 =−ω1 +2ω6 (in red). The seeds
are the vertices inside the basic cell: the origin and the point ω6
(in black). We express the translation vectors and the seeds as
integer linear combinations of the basic directions. Thus, the
data for representing the hexagonal tiling is:

basic directions: ω1, ω6
translation vectors: [1,1], [−1,2]

seeds: [0,0], [0,1]

This data is unique once we fix the basic directions, the
origin, and the translation vectors, but variations are possible.
For instance, we can choose the translation vector t1 =ω6+1=
[2,−1] and keep the same seeds. Or we can keep the translation
vectors but place the bottom-left vertex of a hexagon at the
origin; the second seed then becomes 2ω6 = [0,2].

The hexagonal tiling is simple to understand because it has
only two basic directions, which form a basis for the plane.
This simplicity may be misleading. The tiling with triangles
and squares in Fig. 5 uses three non-redundant basic directions:
ω1 = 1, ω4 = i, and ω6. These basic directions are not linearly
independent over R, but they are linearly independent over Z.
We place the bottom-left vertex of a square at the origin. The
translation vectors are ω1 (in blue) and ω4 +ω6 (in red). The
seeds are the origin and ω1 +ω4 (in black). Thus, the data for
representing this tiling is:

basic directions: ω1, ω4, ω6
translation vectors: [1,0,0], [0,1,1]

seeds: [0,0,0], [1,1,0]

Alternatively, if we place the top-right vertex of a square at
the origin, then the second seed becomes ω6 = [0,0,1].

Fig. 9 at the end of the paper shows more complex and
more interesting examples of our representation of tilings.

VI. SYNTHESIZING TILINGS

Given a set of non-redundant basic directions, the two
translation vectors, and the seeds, all expressed as integer linear
combinations of the basic directions, we can systematically
generate all vertices of the tiling without repetition. Indeed,
every vertex v has a unique representation as v= s+n1t1+n2t2,
where s is a seed and n1,n2 ∈ Z. The set of all vertices is a
regular system of points in the sense of Hilbert and Cohn-
Vossen [5], the regularity coming from the two translations.

The key idea in our approach to synthesizing tilings is that
we can find the edges and the faces automatically from the
vertices (Fig. 6). Indeed, the edges emanating from a given
vertex v go to the vertices lying at distance 1 from v. Moreover,
these vertices are the nearest ones to v. Therefore, it is only

Fig. 4. Translation vectors (in color), basic translation cell (in gray), and
seeds (in black) for the hexagonal tiling.

Fig. 5. Translation vectors (in color), basic translation cell (in gray), and
seeds (in black) for the triangle-square tiling.

necessary to search for these vertices in the cell c containing v
and in the immediate neighborhood of c, that is, the eight
adjacent cells c± t1, c± t2, c± t1± t2. Thus, all vertices that
can define an edge with v can be generated and checked in
time that is linear in the number of seeds. Indeed, if there
are n seeds in the tiling, then there are 9n candidate vertices,
because every cell contains exactly n vertices. The candidate
vertices are generated once per cell c and used to define all
edges emanating from vertices in c (Fig. 6).

Finding the edges suffices for creating line renderings of the
tiling (but note that the procedure above finds edges twice). For
more interesting renderings and further processing, we need to
find the faces of the tiling.

To generate the faces without repetition, we assign to each
face its lowest leftmost vertex, which we call the anchor of
the face (Fig. 7). Then, for each cell c, we generate the faces
whose anchors are in c. Not all vertices in c are anchors. Some
vertices are anchors to two faces.

To find the faces having a vertex v as anchor, first take the
edges that emanate from v to the right, thus making angles
with the horizontal in the interval (−90◦,90◦]. There are at
most three such edges, because the internal angles of the faces
are at least 60◦. If there is only one edge, then v is not an

Fig. 6. Synthesizing a tiling near a cell: candidate vertices, edges, faces, patch.

anchor. Otherwise, there are two or three edges. Order the edges
circularly around v, simply by comparing the y coordinates of
their endpoints. Each pair of consecutive edges corresponds
to a face having v as anchor, and so there are one or two
such faces (Fig. 7). Each face is a regular polygon whose
center o is found by intersecting the bisectors of the two edges
corresponding to the face. The vertices of the face are those
whose distance to o is the same as the distance from v to o.
The same 9n candidate vertices are tested here. Finally, order
the vertices of the face circularly around o, so that it can be
drawn or further processed.

Repeating this procedure for each potential anchor v finds
all faces anchored inside a cell c, which we call the patch of
the tiling in c (Fig. 6). The complete tiling is the union of all
patches. The patches are translated copies of each other and
do not overlap. Patches are also called translational units [3].

To synthesize the tiling inside a given rectangular window
in the plane, we first systematically visit the cells that intersect
the window generating and storing its vertices. We also visit
the immediate neighborhood of these cells. Cells are marked
when visited to ensure being visited exactly once. Then we
visit each cell again, finding the edges emanating from its
vertices and the faces anchored in the cell, thus generating the
patch in each cell. Both tasks use the vertices in the adjacent
cells, which were generated in the first step.

Alternatively, we can process only the basic cell and translate
the resulting patch to the other cells. If we store the result
in terms of the basic directions, then the translation only
involves integers, except perhaps for a final conversion to
Cartesian coordinates for rendering. However, since the faces
share vertices, care must be taken to avoid duplicating vertices.
This may be relevant for modeling and further processing but
probably not for rendering.

Fig. 7. Faces and anchors. A thin line joins the center of a face to its anchor.

VII. EXTRACTING DATA FROM IMAGES

The analysis described in §IV to extract a representation
from a sketch of the tiling can be automated to extract a
representation from an image of the tiling. A fully automatic
solution starts with image acquisition, noise removal, and
corner detection to find the vertices. In the semi-automatic
solution which we have implemented, the user selects the
vertices directly on the image. In both cases, the coordinates
of the vertices are acquired only approximately. As we explain
below, these approximate coordinates suffice to find the basic
directions, the translation vectors, and the seeds.

We start by choosing the vertex closest to their barycenter
as the origin. We place this vertex in a queue. We process each
vertex v in the queue as follows. We find the vertex not in the
queue that is closest to v. Let d be its distance to v. Then we
find all vertices not in the queue whose distance to v is at most
to 1.15d. This handles imprecisions in vertex acquisition and

mild distortions in images. For each selected vertex w, we find
the basic direction ω that is closest to the direction vw and
correct vw to be ω . Then we add w to the queue and repeat.
After the queue is exhausted, we have built a tree connecting
all vertices whose edges are aligned with the basic directions.
Every vertex then has a unique path to the origin and so is
given as an integer linear combination of the basic directions.
Finally, we remove redundant directions as before.

The next step is finding the translation vectors. We simply
test all possibilities. For each vertex v not the origin o such
that the vector ov points to the right, we compute a score for
the translation vector ov as the number of vertices that are
(nearly) translated by ov to other vertices. The two translations
with the highest scores are the translation vectors for the tiling.
Since the translations move the origin to a vertex, they are also
given by integer linear combinations of the basic directions.

Having found the translation vectors, we have the basic cell,
and the seeds are the vertices inside the basic cell, as before.
Thus, the data for representing the tiling is complete.

Fig. 10 shows three examples of this process in action. In
Fig. 10a, the user selected all vertices in an image of one
of our synthesized tilings, but the user did not do it very
carefully. Nevertheless, the tiling is correctly reconstructed.
Fig. 10b shows that the tiling can be reconstructed by selecting
a small, representative fraction of vertices. Fig. 10c shows that
a tiling can be reconstructed from a photograph even if it has
perspective distortion, which affects edge lengths.

VIII. DISCUSSION

Since the only symmetries represented in our data are the
translations, our data may be longer than if rotations and
reflections were incorporated, as in the database given by
Kaplan [3]. In particular, our basic translation cell is typically
larger than the fundamental domains that can be replicated by
rotations and reflections. Also, complex tilings may need a
large number of seeds. On the other hand, our data is by design
simpler to understand, extract, and code. It is just symbolic
and integer data. The only numerical data are the Cartesian
coordinates of the basic directions, which are known exactly
to any precision required. They are known a priori and are not
explicitly part of the data.

The simplicity of our data makes it feasible to extract it
automatically from an image, as described in §VII. Having to
represent other symmetries, such as rotations around certain
vertices and reflections about certain edges, would make this
task harder to automate. Moreover, having other symmetries
complicates generating vertices and faces without repetition.

Our representation is robust: any data that is correct but
does not strictly conform to our constraints can be easily fixed.
Indeed, we can eliminate redundant directions and redundant
seeds, we can invert any translation vector that does not point
to the right, and can ensure that the seeds are inside the basic
cell by moving seeds that are outside using translations. These
tasks are all essentially symbolic, not numerical.

The uniqueness of the representation of vertices in terms of
the basic directions has the numerical benefit that the Cartesian

coordinates of vertices are always computed using the same
expression and so always yield the same floating-point numbers.

Unfortunately, the geometric computations required in our
method use the Cartesian coordinates of vertices, not their in-
teger representation in terms of basic directions. The Cartesian
coordinates are not exact because the Cartesian coordinates of
basic directions are typically irrational numbers. Nevertheless,
the discrete nature of tilings allows us to set comfortable
numerical tolerances for these geometric computations. For
instance, the vertices at distance 1 from a given point are
those whose numerical distances are in a wide interval, such
as [0.9,1.1]. This tolerance more than suffices: the actual
numerical errors are in the last few bits.

The use of complex numbers to represent basic directions
is mostly a convenience, but it does allow us to use symbolic
names for the basic directions, and more importantly, to find
and express integer dependence relations between them.

Although we haven’t explored this yet, our representation
and synthesis method allows high-quality direct rendering of
tilings with shaders. First, we compute the patches for the
basic cell and for its immediate neighbors once, offline even.
Then, given a point p which we need to color in a shader,
we find the translation cell that contains p and move p to its
equivalent point q in the basic cell. Finally, we find which face
in the stored patches contains q and return its color or texture
value. To draw edges of a given width w, just check whether
q is within w of an edge and return an appropriate edge color.
There is room for endless artistic variation [7].

IX. RELATED WORK

The general approach given by Kaplan [3] is well suited
for representing all the varieties of isohedral tilings, given
a parametrization of the tile borders and its own adjacency.
However, that approach becomes too complex when we try to
generalize it for periodic tilings having more than one tile.

Delgado-Friedrichs [8] describes a general data structure
for representing any periodic tiling accurately with a graph
symbol and a pair of adjacency functions between “chambers”,
a triangulation of the original tiles such that each triangle
includes exactly one edge of the tiling. Again, the graph symbol
and the chamber labeling gives all the symmetries of the
tiling. However, the rendering of such symbols in large scale is
costly, since the classification of each point relies only in the
neighboring chambers. Our translation-only approach gives a
fast method for classifying an arbitrary point and for drawing
the tiling inside arbitrarily large regions of the plane.

Our approach is closer in spirit to that of Ostromoukhov [9].
He explains how to produce a representation of a plane
ornamental pattern, such as an Islamic pattern, by manually
analyzing its structure starting from a sketch or an image of the
pattern. He also shows how to use the analytical representation
to synthesize a drawing. A key point in Ostromoukhov’s ap-
proach is strand analysis, which represents how the symmetries
of the pattern behave in a fundamental region. Our approach
with seeds is similar, but much simpler, since it only requires
translational symmetry.

X. CONCLUSION

No complete classification exists for periodic tilings of the
plane by regular polygons. We believe that a simple data
representation, such as the one presented here, will enable
the comparison and classification of existing tilings and a
systematic search for new tilings. This is our long-term goal.

A first step in this program is an algorithm for deciding
whether two representations define the same tiling. This
involves normalizing the set of basic directions (a symbolic
task), deciding whether two pairs of translations vectors define
the same grid (a numerical task), and deciding whether the
two sets of seeds are equivalent (a matching task). A robust
solution for this problem will be the theme of our future work.

Our initial motivation for this work and our short-term
goal is to convert all the drawings in the catalog [6] to our
representation. There are over 200 drawings, all made manually
using precise geometric constructions with a CAD program.
Fortunately, the materials for the book already include images
of vertex constellations as dots, like the ones shown in Fig. 8.
These images can be processed fully automatically as described
in §VII, because it is simple to process such images to find the
centers of the dots as approximate positions for the vertices.
This conversion is already under way.

ACKNOWLEDGMENT

The second author is partially supported by a CNPq research
grant. The third author is partially supported by a CNPq
doctoral scholarship.

REFERENCES

[1] B. Grünbaum and G. C. Shephard, Tilings and patterns. W. H. Freeman,
1989.

[2] J. H. Conway, H. Burgiel, and C. Goodman-Strauss, The symmetries of
things. AK Peters, 2008.

[3] C. Kaplan, Introductory tiling theory for computer graphics. Morgan and
Claypool, 2009.

[4] B. Grünbaum and G. C. Shephard, “Tilings by regular polygon,” Mathe-
matics Magazine, vol. 50, no. 5, pp. 227–247, 1977.

[5] D. Hilbert and S. Cohn-Vossen, Geometry and the imagination. Chelsea,
1952.

[6] R. Sá and A. Medeiros e Sá, Sobre malhas arquimedianas. Editora Olhares,
2017.

[7] J. M. Sullivan, “Conformal tiling on a torus,” in Proceedings of Bridges
2011: Mathematics, Music, Art, Architecture, Culture, R. Sarhangi and
C. H. Séquin, Eds. Tessellations Publishing, 2011, pp. 593–596.

[8] O. Delgado-Friedrichs, “Data structures and algorithms for tilings I,”
Theoretical Computer Science, vol. 303, no. 2, pp. 431–445, 2003.

[9] V. Ostromoukhov, “Mathematical tools for computer-generated ornamental
patterns,” in Electronic Publishing, Artistic Imaging, and Digital Typogra-
phy, ser. Lecture Notes in Computer Science, vol. 1375. Springer, 1998,
pp. 193–223.

Fig. 8. Vertex constellations [6].

basic directions:
ω1, ω6, ω12, ω12

translations vectors:
[1,1,1,0], [−1,2,1,−1]

seeds:
[0,0,0,0], [0,1,0,0], [0,1,1,0], [−1,2,0,0],
[−1,3,1,0], [−1,2,1,0]

basic directions:
ω1, ω4, ω6, ω12

translations vectors:
[1,0,0,1], [−1,1,1,0]

seeds:
[0,0,0,0], [0,1,0,0], [0,0,0,1], [0,1,0,1]

basic directions:
ω1, ω6, ω12, ω12

translations vectors:
[1,1,2,0], [−1,2,2,−2]

seeds:
[0,0,0,0], [0,1,0,0], [0,1,2,0], [−1,2,0,0],
[−1,3,2,0], [−1,2,2,0], [−1,2,1,−1],
[−1,3,3,−1], [0,1,1,0], [−1,2,1,0], [−1,2,2,−1],
[−1,3,2,−1]

basic directions:
ω1, ω6, ω12, ω12

translations vectors:
[−1,2,3,−3], [2,−1,0,3]

seeds:
[0,0,0,0], [0,0,1,0], [0,1,1,0], [0,1,2,−1],
[−1,2,2,−1], [−1,2,2,−2], [0,1,1,1], [0,1,2,1],
[0,0,1,1], [0,0,0,2], [0,1,3,−1], [0,1,3,0]

Fig. 9. Some examples: tiling, seeds, representation data. The origin is the lowest leftmost seed.

(a) A synthesized tiling; user selected all vertices, but not very carefully.

(b) A tiling from an image; user selected only a fraction of vertices.

(c) A tiling from a photograph, with perspective distortion.

Fig. 10. Tiling data extracted from a image: vertices selected by user on image, corrected vertices and tree, basic cell and seeds.

	Introduction
	Translation cells
	Basic directions
	Data for representing tilings
	Two examples
	Synthesizing tilings
	Extracting data from images
	Discussion
	Related work
	Conclusion
	References

