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Abstract—Methods for superpixel segmentation have become
very popular in computer vision. Recently, a graph-based frame-
work named ISF (Iterative Spanning Forest) was proposed to ob-
tain connected superpixels (supervoxels in 3D) based on multiple
executions of the Image Foresting Transform (IFT) algorithm
from a given choice of four components: a seed sampling
strategy, an adjacency relation, a connectivity function, and a
seed recomputation procedure. In this paper, we extend ISF to
introduce a unique characteristic among superpixel segmentation
methods. Using the new framework, termed as Recursive Iterative
Spanning Forest (RISF), one can recursively generate multiple
segmentation scales on region adjacency graphs (i.e., a hierarchy
of superpixels) without sacrificing the efficiency and effectiveness
of ISF. In addition to a hierarchical segmentation, RISF allows a
more effective geodesic seed sampling strategy, with no negative
impact in the efficiency of the method. For a fixed number of
scales using 2D and 3D image datasets, we show that RISF can
consistently outperform the most competitive ISF-based methods.

I. INTRODUCTION

The partition of an image into a disjoint set of connected
regions, named superpixel segmentation, has become a very
active research topic in computer vision and image process-
ing [1]. Such a simplified image representation can improve
the performance of higher level image processing methods for
several applications including: medical image segmentation
[2], multi-class object detection and segmentation [3], [4],
spatiotemporal saliency detection [5], target tracking [6], and
depth estimation [7]. The challenge here is to preserve the
object boundaries, such that an object of interest can be
defined by the union of its superpixels, with low computational
time. Due to that, boundary recall [8] and undersegmentation
error [9] are often used as boundary adherence measures.

Many superpixel segmentation methods cannot guaran-
tee connected superpixels without post-processing operations
(e.g., [8], [10]–[13]), which affect the number of desired
superpixels. Recently, a graph-based framework named ISF
(Iterative Spanning Forest) [14], [15] was proposed to obtain
connected superpixels (supervoxels in 3D) based on multiple
executions of the Image Foresting Transform (IFT) algo-
rithm [16], [17] for improved sets of seed pixels. ISF consists
of four components: (a) a seed sampling strategy for the first
execution of the IFT algorithm, (b) an adjacency relation that
usually interprets the image as a 4-connected graph in 2D
and 6-connected graph in 3D, (c) a connectivity function that

defines the costs of the paths from the seed set to any node
(pixel) of the graph, and (d) a seed recomputation procedure
that estimates an improved seed set for each subsequent
execution of the IFT algorithm. ISF essentially represents each
connected superpixel as one optimum-path tree rooted at each
seed pixel. By choice of those four components, the user can
design different superpixel segmentation methods.

In this paper, we add a unique characteristic to ISF —
the ability to construct a hierarchy of superpixels for ex-
ploitation in high-level applications. It can now recursively
generate multiple segmentation scales on Region Adjacency
Graphs (RAGs) with no negative impact in efficiency and
effectiveness. The new framework is termed Recursive Iter-
ative Spanning Forest (RISF). In addition to a hierarchical
segmentation, RISF allows a more effective geodesic seed
sampling strategy, with no negative impact in the efficiency of
the method. The efficiency of ISF with that strategy would not
be viable due to the number of graph nodes. For a fixed number
of scales and using 2D and 3D datasets of natural and medical
images, we show that RISF can consistently outperform the
most competitive ISF-based methods.

II. BASIC DEFINITIONS AND IFT

An n-dimensional image is a pair (I, I) that assigns a finite
set I(t) of physical properties to each pixel (voxel, superpixel,
supervoxel) t ∈ I ⊂ Zn. For a given adjacency relation A ⊂
I × I, an image can be interpreted as a graph G = (I,A, I)
where I is the set of nodes, A is the set of arcs, and I(t)
assigns physical properties to each node t ∈ I. In this work,
for n = 2, A may define a 4-connected pixel graph or a Region
Adjacency Graph (RAG), when the superpixels in I contain
pixels that share one edge. Similarly, for n = 3, A may define
a 6-connected voxel graph or a RAG, when the supervoxels in
I contain voxels that share one face. Given two nodes s, t ∈ I,
we indicate that s is incident on t by (s, t) ∈ A.

A path with terminus t is defined as a sequence of nodes
πt = 〈t1, t2, . . . , tk = t〉, where (ti, ti+1) ∈ A for 1 ≤ i ≤
k − 1, being trivial when k = 1. A path-cost function f(πt)
assigns a value to any path πt. A path πt is said to be optimum
if for any other path π′t we have f(πt) ≤ f(π′t). We cover
specific instances of path-cost functions in Section III.



A predecessor map is a function that assigns each node
t ∈ I to another node s such that (s, t) ∈ A, or to a distinct
marker nil /∈ I. In the latter case, t is said to be a root of the
map. A spanning forest is a predecessor map which contains
no cycles. For any node t ∈ I, a spanning forest P defines a
path πPt recursively as 〈t〉 if P (t) = nil and as the extension
πPs · 〈s, t〉 of πPs by an arc (s, t) ∈ A, if P (t) = s 6= nil.

The Image Foresting Transform (IFT) [16] takes a graph
G = (I,A, I) with path-cost function f and returns an
optimum-path forest — a spanning forest where πPt is an
optimum path for any t ∈ I. The conditions over f to
guarantee that P is optimum are defined in [17]. However,
even when this is not the case, P is still useful in several
applications [14], [18].

In superpixel segmentation, the roots of the spanning forest
are forced to be a seed set S ⊂ I by defining the following
initial condition for the cost values of trivial paths:

f(πt = 〈t〉) =

{
0 if t ∈ S,
+∞ otherwise.

(1)

This definition allows us to control the number |S| of
generated spanning trees, each one being assigned to a distinct
superpixel label.

Here we are interested in executing the IFT multiple times
from the same graph while updating the seed set S in an
efficient way to better capture image information (like other
iterative methods do [8], [10]). For that, we rely on the
differential IFT algorithm (DIFT) proposed in [19] for non-
monotonically incremental path-cost functions. This algorithm
updates the spanning forest for each seed set by processing
only the nodes whose path costs change. We present a slightly
modified version of this algorithm in Section V.

III. ISF AND RISF

In the Iterative Spanning Forest (ISF) framework [15],
superpixel segmentation is formulated within the more general
Image Foresting Transform (IFT) framework together with an
iterative scheme similar to SLIC [8], as first presented in [14].
An ISF-based method consists primarily of: an initial sampling
strategy, an adjacency relation, a path-cost function for the
DIFT computation, and a seed recomputation procedure.

As defined in [15], an ISF-based method can operate over
either pixels or voxels. Here we present a more general
formalization which extends ISF to Region Adjacency Graphs
(RAGs). We call this formalization Recursive Iterative Span-
ning Forest (RISF) as it calls ISF multiple times with a
reducing number of regions (scales), creating a new RAG
from the resulting regions for each subsequent execution, up
to achieving the desired number of regions. The obtained re-
gions (superpixels/supervoxels) per scale define a hierarchical
segmentation for exploitation in a future work.

Given the first execution of ISF over the pixel/voxel graph,
the resulting image partition into simply-connected regions
is used to build the first RAG G = (I,A, I), where each
node si ∈ I now represents one region Ri of the previous

pixel/voxel set I. This process continues as described above,
updating the graph G from region representations that become
coarser after each execution of ISF. Assuming we are working
in the CIELAB color space, each pixel p = (x, y, z) has
color I(p) = [l a b] and we extend it for regions as
I(si) = 1

|Ri|
∑
p∈Ri

I(p) (the mean color in region Ri).
In a similar manner, we define the geometric coordinate of
a region as its centroid. It is possible to incorporate more
complex region features (e.g., color histogram), but here we
only consider the mean color for simplicity.

The summary of each ISF call is as follows. The initial
sampling strategy determines the first seed set S ⊂ I. Given
the path-cost function f , each seed s ∈ S becomes root of a
spanning tree (Equation 1). The DIFT algorithm using G and f
(Equation 2) computes a spanning forest, which is either used
to obtain an improved seed set S ′ (Equations 3-4) or taken as
final segmentation with the desired number of regions.

The standard initial seed sampling strategy consists of se-
lecting seeds on a regular grid, similarly to various superpixel
segmentation methods [8], [10], [20]. An alternative based on
Shannon Entropy was considered in [15]. In this paper we
present a novel seeding method detailed in Section IV.

For non-trivial paths, we consider the same path-cost func-
tion used in both [14] and [15]:

f(πs · 〈s, t〉) = f(πs) + (α‖I(t), I(R(s))‖)β + ‖s, t‖, (2)

where α ≥ 0, β ≥ 1, ‖ · , ·‖ is the Euclidean norm, R(s) is the
root of node s (i.e., the first node in the path πs), and I(R(s))
is the mean color inside the region of the previous iteration that
is now represented by R(s) (or the color of R(s) in the first
iteration). The parameter β balances the regularity imposed
by an additive path-cost function (β = 1) and the boundary
adherence a max-based path-cost function (β →∞). Similarly
to [14] and [15], it is assumed a fixed β = 12. While β
weights the edges along the whole path πs·〈s, t〉, the parameter
α provides a balance between the parametric and geometric
terms of the edge weight, acting as a compactness parameter;
lower α means more compact regions.

The seed recomputation procedure is equivalent to the one
in [15]. Let sj ∈ I be a seed at iteration j defining the region
Rj of a spanning tree on the graph G. The seed sj will be
swapped by a new seed sj+1, which is the node in Rj closest
to its centroid, if:

‖I(sj), I(sj+1)‖ >

√√√√ 1

|Rj |
∑
t∈Rj

‖I(sj), I(t)‖ (3)

or

‖sj , sj+1‖ >

√√√√ 1

|Rj |
∑
t∈Rj

‖sj , t‖. (4)

Otherwise sj is kept for the next iteration.



IV. GEODESIC SEED SAMPLING

An important aspect of any seed-based algorithm is the
initial location of each seed, which is defined by the seed
sampling strategy in RISF. Inspired by the work in [21], which
uses the Eikonal-based framework to iteratively select seeds
with the maximum geodesic distance to the previous ones, we
propose a new seed sampling strategy that explores the IFT
framework in a similar manner.

The seed sampling strategy, which we refer to as geodesic
sampling, is defined by the following recursive procedure:
given a seed set Si ⊂ I, an optimum-path forest P is
computed over the graph G = (I,A, I) for path-cost function
fg ,

fg(〈t〉) =

{
0 if t ∈ Si,
+∞ otherwise,

fg(πs · 〈s, t〉) = fg(πs) + ‖I(R(s)), I(t)‖, (5)

and then the node t = argmaxt∈I{f(πPt )} is selected to build
a new set Si+1 = Si∪{t}. We use I(R(s)) as the color of the
root R(s) in Equation 5. The initial set S0 6= ∅ may consist of
any arbitrary node taken as seed (e.g., we use the node closest
to the center of the image). The procedure is repeated until a
desired number of seeds is reached.

Being additive, the path-cost function fg prioritizes the
selection of seeds that are properly spread over the image
domain. At the same time, having the arc weight defined on
the parametric space, it selects seeds in heterogeneous image
regions, avoiding multiple seeds in regions with no image
borders.

One observed side-effect of choosing seeds based on maxi-
mum cost is an increased chance of placing them over outlier
nodes in the feature space. While the seed recomputation
in RISF naturally fixes part of the problem, we note that
the final segmentation tends to present some small regions
representing those outliers. For that reason we also pair the
geodesic sampling with an extra iteration of RISF where
spanning trees with size below five percent of the average
target region size (in number of underlying elements) are
removed. This parameter was empirically observed to be a
good compromise between capturing those outliers and not
removing actual borders from the superpixel segmentation.

V. THE RISF ALGORITHM

In this section, we present the RISF algorithm using a
slightly modified version of the differential IFT proposed
in [19], also including the algorithm for our geodesic sampling
strategy. While the IFT in Section II is fully described in terms
of building a predecessor map P , additional maps are actually
used to obtain other attributes of the forest. The cost map
C : I → R stores the current best path cost C(s) = f(πPs ).
The root map R : I → I, briefly mentioned in Equations
2 and 5, keeps track of the root of the spanning tree that
contains each node s ∈ I, which means R(s) = r when
πPs = 〈r, . . . , s〉. The RISF algorithm also allows the use of
root-based path-cost functions that do not guarantee optimum
paths, but provide effective region segmentation.

Input: Image (I, I), adjacency relation A, path-cost function
f , sequence 〈n1, n2, . . . , nK〉 with the number nk of
regions per scale, where nk > nk+1, k = 1, 2, . . . ,K − 1
and nK is the desired number of regions in the final
segmentation, number of iterations T for ISF.

Output: Labeled image L with nK regions.
1: for k = 1 to K do
2: if k = 1 then
3: Build graph G = (I,A, I) from (I, I) and A
4: else
5: Build RAG G = (I,A, I) from (I, I) and L
6: L← ISF (G, f, T, nk)
7: return L

Figure 1. RISF algorithm

Input: Graph G = (I,A, I), path-cost function f , number of
iterations T , and number of regions n

Output: Labeled image L with n regions.
1: Create maps C, P and R from G
2: S ← ∅, S ′ ← SeedSamplingStrategy(G,n)
3: K ← ∅
4: for all s ∈ I do
5: C(s)← +∞, P (s)← nil, R(s)← s
6: for iter = 1 to T do
7: (C,P,R,K)← DIFT (G, f,C, P,R,K,S,S ′)
8: S ← S ′
9: Recompute S ′ with Equations 3 and 4

10: Convert root map R to a labeled image L
11: return L

Figure 2. ISF algorithm

The RISF algorithm is presented in Fig. 1. Each iteration of
the loop in Lines 1-7 builds a new segmentation scale using
the ISF algorithm. In Lines 2 and 3 a pixel (voxel) image
graph is built for the first iteration following the standard ISF.
In Lines 4 and 5 the segmentation result from the previous
iteration is used to build a RAG according to RISF. In Line 6
the label map L is generated with ISF, representing the current
segmentation scale.

The ISF algorithm is presented in Fig. 2. Lines 1-5 initialize
the DIFT, ensuring that the first iteration runs the standard IFT
algorithm. In Lines 6-9 the loop of computing a new spanning
forest with DIFT and performing the seed recomputation is
performed. In Line 10 the final segmentation label map is
obtained, noting that each spanning tree can be represented
and labelled according to its root.

In Fig. 3 the actual the DIFT algorithm is covered, which
efficiently calls the IFT described in Section II over multiple
iterations. Lines 1 initializes the priority queue Q. Lines 2 and
3 isolate the set of removed and new seeds as S− and S+,
respectively. The loop in Lines 4 and 5 resets all spanning
trees rooted in S−, while the one in Lines 6-8 initializes the
new seeds in S+ that will form new spanning trees. Lines 9-
21 perform the actual computation of the new spanning forest.



Input: Graph G = (I,A, I), path-cost function f , cost map
C, predecessor map P , root map R, set K, previous seed
set S, updated seed set S ′

Output: Updated maps C, P, R, and set K
1: Q ← ∅
2: S+ ← S ′ \ S
3: S− ← S \ S ′
4: for all s ∈ S− do
5: RemoveSubTree(G,C, P,R,Q,K, s)
6: for all s ∈ S+ do
7: C(s)← 0, P (s)← nil, R(s)← s
8: Insert s into Q
9: while Q is not empty do

10: Remove s from Q such that C(s) is minimum
11: K ← K ∪ {s}
12: for t ∈ I such that (s, t) ∈ A and t /∈ K do
13: tmp← f(πPs · 〈s, t〉)
14: if tmp < C(t) then
15: C(t)← tmp, P (t)← s, R(t)← R(s)
16: if t /∈ Q then
17: Insert t into Q
18: else
19: if P (t) = s then
20: if tmp > C(t) or R(s) 6= R(t) then
21: RemoveSubTree(G,C, P,R,Q,K, t)

Figure 3. DIFT algorithm

Line 10 removes the node with lowest cost from the priority
queue, at which point we know it already has optimum cost for
this DIFT iteration, marked by including it in set K (Line 11).
Lines 12-17 perform the standard IFT behavior of extending
optimum paths to the node’s neighbors when a better cost is
possible. Lines 18-21 perform the test to detect and remove
inconsistent sub-trees [19]. We do not differentiate the special
case of tmp = C(t) ∧ R(s) 6= R(t), as proposed in [19],
since it rarely happens in practice with our defined path-cost
functions, being an unnecessary optimization.

In Fig. 4 the auxiliary procedure RemoveSubTree is
shown, responsible for removing either inconsistent sub-
trees [19] or sub-trees rooted at eliminated seeds from the
previous DIFT execution. Line 1 initializes the auxiliary sets
H and H ′ which will hold the nodes from the removed
sub-tree and the immediate neighboring nodes (frontier set),
respectively. The loop in Lines 2-11 covers all the nodes
from the sub-tree, with Lines 3-6 being responsible for re-
initializing them as never-visited nodes. The loop in Lines 7-
11 updates H and H ′ with the node’s neighbors, similar to a
breadth-first search. Lines 12-15 reinsert finished nodes from
the frontier set into the priority queue Q so they can revisit
nodes from the removed sub-trees.

In Fig. 5 the proposed geodesic sampling procedure is
defined. It follows an operation analogous to the ISF algorithm
but, instead of a fixed seed size that is updated over a fixed
number iterations, it builds an increased seed set by selecting

Input: Graph G = (I,A, I), cost map C, predecessor map P,
root map R, priority queue Q, set K and node u (root of
the sub-tree being removed).

Output: Updated maps C, P, R, set K, and queue Q
1: H ← {u}, H ′ ← ∅
2: while H 6= ∅ do
3: Remove s from H and from K
4: C(s)← +∞, P (s)← nil, R(s)← s
5: if s ∈ Q then
6: Remove s from Q
7: for t ∈ I such that (s, t) ∈ A and t ∈ K do
8: if P (t) = s then
9: H = H ∪ {t}

10: else
11: H ′ = H ′ ∪ {t}
12: while H ′ 6= ∅ do
13: Remove s from H ′

14: if C(s) 6= +∞ and s /∈ Q then
15: Insert s into Q

Figure 4. RemoveSubTree algorithm

Input: Graph G = (I,A, I) and number of seeds n.
Output: Seed set S.

1: S ← ∅, S ′ ← one arbitrary element from I.
2: K ← ∅
3: for all s ∈ I do
4: C(s)← +∞, P (s)← nil, R(s)← s
5: while |S ′| < n do
6: (C,P,R,K)← DIFT (G, fg, C, P,R,K,S,S ′)
7: Remove s from C such that C(s) is maximum
8: S ← S ′
9: S ′ ← S ′ ∪ {s}

10: return S ′

Figure 5. Geodesic seed sampling algorithm

the node with maximum path cost until the desired number of
seeds is reached.

VI. EXPERIMENTAL RESULTS

We evaluate RISF for natural and medical images by using
two seed sampling strategies, including the geodesic one, in
comparison with the best ISF-based methods in [15]. The
instances of ISF and RISF, image datasets, and results are
presented next.

A. Instances of ISF and RISF

In [15], the authors define several ISF-based methods and
the best ones use either grid (GRID) or mixed (MIX) seed
sampling, depending on the dataset, with two possible defini-
tions for I(R(s)) in Equation 2: either it is the color of the
root R(s) (ROOT) or it is the mean color of the region of the
previous iteration that is now represented by R(s) (MEAN).
The mixed sampling is a combination between grid sampling
and an entropy-based approach that generates more seeds



in heterogeneous regions of the image. The combination of
those options results into four ISF-based methods: ISF-GRID-
ROOT, ISF-MIX-ROOT, ISF-MIX-MEAN, and ISF-GRID-
MEAN, the last one being previously presented as IFT-SLIC
in [14]. We used the source code provided by the authors. 1

In RISF, grid sampling selects the closest regions to the
pixels of the grid as seeds, and geodesic sampling is presented
by the algorithm in Fig. 5. This results two RISF-based
methods: RISF-GRID and RISF-GEODESIC. Both start with
ISF-GRID-MEAN for n1 = 10000 superpixels in 2D and
n1 = 25000 supervoxels in 3D, and then reduce the number
n2 of regions to the desired one shown in the resulting graphs.
The parameter α in Equation 2 is set to generate more compact
superpixels in this use of ISF-GRID-MEAN to exploit the
performance benefits of constraining the amount of updates
during the DIFT computation.

B. Datasets

For natural images, we consider two datasets of 2D images:
the Berkeley dataset (BSD300) [22] and the Birds dataset [23].
BSD300 is a standard superpixel segmentation benchmark
which consists of 300 images with a wide variety of outdoor
scenes. Each image has resolution 321×481 and has multiple
hand-labeled segmentation ground truths indicating the borders
perceived by multiple subjects. The Birds dataset has 50 public
domain images of birds which are challenging to segment due
to their thin and elongated parts. Each image has resolution
up to 640 × 640 and a manually generated ground truth
segmentation of a single bird in the scene.

As for medical images, the datasets have been provided by
the authors in [15]: the 2D Liver dataset and the 3D Brain
dataset. The Liver dataset is composed of 40 computed tomog-
raphy (CT) slice images from the abdomen of four patients.
Each image has resolution 512×512 and a manually generated
ground truth segmentation of the liver in each slice. The Brain
dataset comprises of 19 T1-weighted magnetic resonance
(MRT1) brain images from different control patients. Each
volumetric image is isotropic and has an order of ten million
voxels, which poses a challenge in terms of processing time.
The segmentation ground truths were obtained by a hybrid
system of automatic model-based segmentation followed by
interactive correction, separating the brain’s cerebellum and
each hemisphere as different objects.

C. Results

Each method is evaluated in terms of boundary recall (as
implemented in [8]), undersegmentation error (as implemented
in [9]), and execution time. Figs. 6, 7, 8 and 9 show those
evaluation metrics on all datasets based on the target number
of regions. In all datasets, RISF-GEODESIC displays better
boundary adherence than the ISF-based methods, while RISF-
GRID shows comparable performance to its non-recursive
counterpart ISF-GRID-MEAN.

The RISF-based methods also show an improvement in
terms of efficiency. Despite the theoretical complexity of

1www.ic.unicamp.br/∼afalcao/downloads.html

all the ISF and RISF methods being O(|I| log |I|), those
methods get faster in practice when the target number of
regions increases due to a reduced number of tree updates
during the successive DIFT iterations. Moreover, the majority
of the execution time spent on RISF-based methods occurs
when computing the initial segmentation scale with a higher
number of regions using ISF-GRID-MEAN, resulting in the
observed improvement. The behavior of ISF-GRID-MEAN
being faster as we increase the number of regions is clear from
its downward slope in all time plots. We also note that on the
Brain dataset, the efficiency benefit is not as pronounced due
to the computational overhead of storing and handling a big
number of supervoxels2.

Additionally, it is important to consider the overhead intro-
duced by non-trivial seed sampling functions (e.g., geodesic
sampling). The overhead introduced by the proposed geodesic
sampling is observed by comparing the processing time of
RISF-GEODESIC and RISF-GRID. Even with the speed im-
provement of using the DIFT-based implementation, we note
that the cost of executing the geodesic seed sampling method
over pixels would be prohibitive as compared to its use in
RISF. This explains the absence of ISF with geodesic seed
sampling in the experiments.

Besides the quantitative benefits of the RISF-based methods,
we also highlight the fact it does so with the added benefit of
providing a multi-scale segmentation that can be used by other
algorithms.

Finally, the experiments were executed on an Intel Core
i7-7700 3.6GHz processor with 8GB RAM.

VII. CONCLUSION

In this work, we introduce a new recursive version of the
iterative spanning forest (ISF) [15] framework that defines the
use of ISF methods over region adjacency graphs (RAGs) to
generate a multi-scale superpixel segmentation. This version,
called recursive iterative spanning forest (RISF), keeps all
the benefits from the original framework while being able to
exploit the usual reasons for operating over a RAG, namely,
reduced computational cost and being able to work with higher
level superpixel features. We also present a new improved
sampling function based on the Image Foresting Transform
(IFT) that is only viable in the context of RISF.

Our experiments show that a RISF-based method using the
new sampling function can generate a superpixel segmenta-
tion faster and with better boundary adherence than existing
ISF-based methods. The experiments also show that even a
straightforward recursive version of an ISF method can be
used to improve its efficiency while maintaining comparable
segmentation results.

Future work includes exploring more ways to generate
superpixel hierarchies with the RISF framework, such as using
more scales and different superpixel features, and its use for
higher level applications, in particular for active learning,
image classification, and object segmentation.

2Beyond n1 = 10000 regions there is a negligible reduction in the
processing time of ISF.
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Figure 6. Comparison of boundary adherence and execution time for ISF-
GRID-MEAN and the best ISF method against our proposed methods on
the Berkeley dataset. Both RISF methods generate an initial segmentation
scale of n = 10000 superpixels with ISF-GRID-MEAN (α = 0.12), and
then perform the final superpixel segmentation using the indicated sampling
strategy and α = 0.5. Both indicated ISF methods use α = 0.5.
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Figure 7. Comparison of boundary adherence and execution time for ISF-
GRID-MEAN and the best ISF method against our proposed method on the
Birds dataset. Both RISF methods generate an initial segmentation scale of
n = 10000 superpixels with ISF-GRID-MEAN (α = 0.12), and then perform
the final superpixel segmentation using the indicated sampling strategy and
α = 0.5. Both indicated ISF methods use α = 0.5.

the Liver images and Dr. F. Cendes (FCM-UNICAMP) for the
Brain images.
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Figure 8. Comparison of boundary adherence and segmentation time for ISF-
GRID-MEAN and the best ISF method against our proposed method on the
Liver dataset. Both RISF methods generate an initial segmentation scale of
n = 10000 superpixels with ISF-GRID-MEAN (α = 0.12), and then perform
the final superpixel segmentation using the indicated sampling strategy and
α = 0.12. ISF-GRID-MEAN and ISF-MIX-MEAN use α = 0.12 and α =
0.5, respectively.
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