
Hybrid Cloud Rendering System for
Massive CAD Models

André Moreira, Paulo Ivson, Waldemar Celes
Tecgraf Institute and Computer Science Department

Pontifical Catholic University of Rio de Janeiro - PUC-Rio
Rio de Janeiro, Brazil

Email: {asouza, psantos, celes}@tecgraf.puc-rio.br

Abstract—The recent advances in cloud services enable an
increasing number of applications to offload their intensive tasks
to remote computers. Cloud rendering comprises a set of services
capable of rendering a 3D scene on a remote workstation. Notable
progress in this field has been made by cloud gaming services.
However, a gap remains between existing cloud rendering systems
and other graphics-intensive applications, such as visualization
of Computer-Aided Design (CAD) models. Existing cloud gaming
services are not suitable to efficiently render these particular 3D
scenes. CAD models contain many more objects than a regular
game scene, requiring specific assumptions and optimizations to
deliver an interactive user experience. In this work, we discuss
and propose a novel hybrid cloud rendering system for massive
3D CAD models of industrial plants. The obtained results show
that our technique can achieve high frame rates with satisfactory
image quality even in a constrained environment, such as a high
latency network or obsolete computer hardware.

I. INTRODUCTION

Cloud rendering, also known as remote rendering, comprises
a set of services for graphical content generation provided
by remote computers. Once this service is requested, the
resulting image or video is transmitted to the client and finally
displayed. Some remote rendering systems also send others
types of data, for instance, proxy geometries to be rendered
on the client side [1]. Recent advances in both hardware
capabilities and cloud solutions are continually pushing the
boundaries of cloud rendering systems. Cloud gaming [2], for
example, has gained much attention in the last years due to
growing market demand. These services allow the latest games
to be played without the need for last generation hardware.

On the other hand, when looking beyond the game domain,
there is a lack of studies about how to employ cloud ren-
dering services effectively for other visualization applications.
For example, the Architecture, Engineering & Construction
(AEC) industry mainly uses Computer-Aided Design (CAD)
in different phases of the life-cycle of engineering projects.
These models play several roles, such as virtual construction
planning, in order to reduce costs and shorten deadlines. As a
result, they must contain a high level of detail to represent the
real world accurately. This amount of fine-grained geometries
demand cutting-edge computers for efficient rendering.

In order to render massive 3D models in thin clients (low-
cost devices), it is necessary to offload this burden to a
powerful remote computer. Cloud rendering services can be

employed to mitigate this limitation. Besides, employing cloud
rendering on CAD models brings the following benefits:
• The models are stored in a central repository on the

server. Hence the users do not need to gain direct access
to these files, reducing the cases of confidential data
misappropriation. In addition, this centralization reduces
problems related to model versioning and updating. This
is a fundamental benefit since it is very common the
occurrence of inconsistent information from different
teams in large-scale engineering projects.

• Cloud rendering makes use of mobile devices feasible. In
addition, power consumption is lower than it would be if
the whole rendering was done on the client side.

• Since a cloud rendering engine runs on a well-known
device, the engine can provide state-of-the-art rendering
algorithms and optimizations to the users.

Existing cloud rendering systems are not ready to support
3D CAD models since these services lack the ability to handle
large-scale interactive scenes. In this paper, we propose a novel
hybrid cloud rendering service that fills this gap. The hybrid
approach consists in performing most of graphics processing
on the server side, while the client addresses lightweight
rendering commands, ensuring an interactive application even
on a constrained network. Our new technique paves the way
for many research opportunities related to predictive rendering
and automated load balancing that could further improve
Quality of Experience (QoE) of cloud rendering systems in
general.

A. Contributions

Our hybrid approach brings the following advantages:
1) Final image with better quality: the image produced

on the server is compressed before transmission. This
process reduces the image quality. On the other hand,
the image produced by the client is not compressed,
preserving its high fidelity. Hence, the combination of
these two images results in a more pleasant looking
image than if it was fully rendered on the server side.

2) Lightweight geometry representation: instead of using
the traditional triangular meshes for all scene repre-
sentation, we represent CAD objects by their implicit
forms as much as possible. This representation is much



more compact than triangular meshes, enabling efficient
transmission and storage, especially on the client side.

3) Less dependency on network condition: since some parts
of the 3D model are stored and rendered locally, the
proposed framework maintains application responsive-
ness even when facing a constrained network scenario.
This responsiveness is achieved by displaying the partial
image produced on the client side as soon as it is ready.
In this case, the user can still orient himself, making it
possible to continue navigating through the scene.

4) Greater scalability: although one of the major con-
tributions of cloud rendering systems is enabling thin
devices to handle massive models, high-end computers
can also take advantage of our solution. In this case,
the hybrid approach can fully take advantage of the
available processing power by assigning more jobs to be
performed on the client side. Consequently, the burden
on the server is reduced, allowing it to handle larger
scenes and/or more users.

The rest of the paper is organized as follows. We discuss
related works in Section II. In Section III we present an
overview about Cloud Rendering Systems and talk specially
about their latency and robustness analysis. In Section IV-A,
we discuss efficiency in CAD Model rendering. Our proposed
method is presented in details in Section IV and our results are
evaluated in Section V. Finally, in Section VI we summarize
our method and point out further improvements.

II. RELATED WORK

Cloud rendering systems have been widely used in different
fields, ranging from scientific visualization to game industry.
In this section, we discuss some of the most notable works.

The earliest remote rendering systems focused on 2D graph-
ics, for example the X Window System [3]. Research focused
mainly on reducing the refresh rate of the windowing system
[4]–[7]. More recently, distributed rendering systems have
emerged [8]–[10]. In these approaches, the screen is divided
into tiles, which are dispatched to a remote computer to
be drawn. Once all tiles have been processed, the resulting
images are stitched together and the final result is displayed
to the user. It is important to note that these works are only
concerned about how to divide, distribute and process the tasks
effectively.

The recent proliferation of high-end cloud services, as
well as the massive adoption of high-bandwidth network,
enabled the creation of powerful 3D remote rendering systems.
WireGL [11] is a scalable graphics system that allows users
to send graphics commands to graphics servers. Inspired by
the WireGL system, the Chromium project [12] have emerged
providing an interface to control the graphics commands on
clusters. This framework lead to a mobile-devices-oriented so-
lution which was used on server side to manage the rendering
commands [13].

Remote rendering has also been employed for scientific data
(volume rendering) [14]. The authors made use of a hybrid
rendering approach where the schedule was determined by

data processing and transfer times. The proposed solution
kept several versions of the same volume data, varying the
level-of-detail (LOD) of each. When the network condition
changed, the server sent gross-resolution models, and more
refined versions were delivered progressively to the client
when the network improved. The drawback of this approach
is the constant transmission of the 3D models, congesting the
network.

Cloud gaming is a field that is recently experiencing a
significant expansion. In this category, we can list OnLive [15]
and GamingAnywhere [16] services. The GamingAnywhere is
an open-source cloud gaming service that adopts the H.264
standard for encoding and decoding the transferred images.
The server is responsible for all graphics processing, including
the game execution. The rendered images are encoded by
the server and then streamed to the client. The client simply
decodes and displays the received images.

The aforementioned solutions are not well suited for 3D
CAD scenes since they are mostly general-purpose services,
lacking specific algorithms and optimizations to handle mas-
sive models made of many fine-grained geometries. Since our
solution targets a specific domain, we can take advantage of
additional rendering optimizations.

III. CLOUD RENDERING SYSTEMS

A. Overview

Considering a generic cloud rendering system, the client is
responsible for listening to and interpreting user inputs. Once
a user interaction happens, the client processes this interaction
and requests a new frame to the server. The server addresses
the requisition, updates its internal state and finally produces
an image to send back. The client receives this image, decodes
it and displays the final result onto the screen. Depending on
the type of data that is transmitted from the server to the
client, the system can be classified into two major categories:
model-based or image-based.

Model-based systems send geometric information to the
client, typically as triangular meshes. The size of the trans-
mitted data is proportional to how complex or detailed the
underlying representations are. In contrast, image-based sys-
tems render the scene entirely on the server side and only send
resulting images to the client. Unlike model-based systems, the
size of transmitted data mostly depends on screen resolution,
regardless of the complexity of the scene. This property made
image-based systems popular, since they are more robust to
the variation on the network quality. A typical image-based
rendering workflow is depicted in Fig. 1.

Both image-based and model-based approaches comprise
many other different techniques. Among image-based tech-
niques, the Depth-Image-Based Rendering (DIBR) [17] is
the most commonly implemented on modern cloud rendering
systems, since it can produce satisfactory results with low
processing cost. Basically, the server generates and transmits
both depth and color images. These two images can be used
by the client to promptly generate new images from other
viewpoints. However, the drawback of this approach is the



N
et

w
o

rk

Thin Client Cloud Rendering Server

User
Interactions

Decoder

Update
Server State

GPU
Rendering

EncoderStreamer

Fig. 1. The phases involved in a typical cloud rendering system

presence of holes in the final image. These holes are inevitable
and they arise from occluded surfaces on the reference image
or when the reference image is undersampled. Nonetheless,
DIBR techniques are very useful to significantly reduce the
latency perceived by the user.

B. Latency Analysis

The ultimate challenge of any cloud rendering system
consists in reducing Response Delay (RD). It is defined as
the elapsed time from the user interaction to the display of
the resulting image on the screen. The cloud system must
ensure low latency rates, preventing the degradation of the
Quality of Experience (QoE) [18]. According to [19], the
tolerable delay for first-person shooter games is around 100ms,
or approximately ten frames per second (fps). The reduction
of system latency is achieved by shortening the delay of each
step involved in the production of the final image. When
considering the system expressed in Fig. 1, the RD is defined
as the sum of three components:

RD = ND + SD + CD, (1)

where:
• Network Delay (ND): time required by the client to trans-

mit user events and by the server to send the produced
image. It is also known as network round-trip time.

• Server Delay (SD): time from when a user event arrives
at the server to when its corresponding image is produced.

• Client Delay (CD): difference between the time when the
client receives a server response and the time the remote
image is displayed to the user.

Cloud rendering systems are very susceptible to the network
performance since the response delay depends on the network
delay. In these situations, a hybrid approach enables the client
to display intermediary results, regardless of whether the
remote frame is available. A small part of the scene is rendered
locally, while the remainder is computed on the remote server.
While the server is busy, the client renders its partial image
and combines it with the DIBR of the last available remote
frame. As soon as the client receives the remote image, it
updates the final results to the user. This way, the client need
not wait for the server’s response to provide a feedback to the
user’s input. Clearly, this approach can be very useful when
the system faces a network with limited bandwidth.

TABLE I
DESCRIPTIONS OF THE NOTATIONS USED FOR LATENCY ANALYSIS

Symbol Description

v
The viewpoint. vs and vc are the server and client viewpoint,
respectively.

Rvi The rendered image for a given viewpoint vi.

rdr(vi)
The rendering time to draw a frame from viewpoint vi. rdrs
and rdrc are the server rendering time and client rendering
time, respectively.

enc(Rvi ) The elapsed time for encoding an image Rvi .
dec(Rvi ) The elapsed time for decoding an image Rvi .

W vs→vc DIBR on the viewpoint c using a reference image from
viewpoint s.

cmb
The time to produce the final image combining the local and
remote images.

Because of this behavior, the response delay with hybrid
rendering only depends on the processing time on the client
side. The SD and ND only affect the image quality. Therefore,
considering the notation defined in Table I, the response delay
(RD) and the remote frame delay (RF) can be expressed as:

RF = rdrs(vs) + enc(Rvs
s ) + dec(Rvs

s ) +ND (2)

RD = CD = rdrc(vc) +W vs→vc + cmb(Rvc
c , Rvc

s ) (3)

C. Requirements for Robust Cloud Rendering Systems

In order to achieve a robust cloud rendering system, we
established the following requirements:

1) Lightweight data transmission: The data exchanged
over the network must be as compact as possible,
avoiding network congestion and preventing the client
from being idle while waiting for the necessary data.

2) Efficient rendering: massive 3D CAD models demand
large graphics memory (VRAM) and high processing
power. Despite being a critical step, the rendering is one
of the most controllable steps. Therefore, it is important
to ensure an efficient rendering mechanism, such as
reducing synchronization points between CPU and GPU.
These synchronizations are usually the bottleneck in
rendering applications.

3) Controlled workload on the client side: The client’s
workload must be proportional to its processing power.
The server’s capabilities are useless if the client is
constantly busy processing its tasks and can barely
consume the remote data.

4) Low response delay, even on a constrained network:
The rendering system must not rely upon network
conditions in order to provide some feedback to the
user. Otherwise, the system can suffer with high latency
changes. Partial scene rendering results are allowed, as
they convey a spatial notion to the user.

In the next sections, we present in detail our proposal for a
cloud rendering system for CAD models, which was designed
taking into account each one of these requirements.



TABLE II
LIST OF SUPPORTED IMPLICIT GEOMETRIES

Geometry Type Geometry Description Total Size
(bytes)1

• Parallelograms
• Spheroids
• Ellipsoids

M 36

• Cylinders M + 2 offsets + radius + height 52
• Sloped Cylinders M + radius + height + 4 slopes 60
• Truncated Cone M + 2 offsets + 2 radii 52
• Square Frustum M + 2 offsets + 4 side lengths 60
• Rectangular Torus
• Circular Torus M + 2 radii + sweep angle 48

IV. PROPOSED HYBRID CLOUD RENDERING SYSTEM

Our goal was to design a system that matches all re-
quirements established in Subsection III-C. We discuss the
details of our methodology from four different points of view:
the CAD rendering algorithm, the communication model, the
client architecture and the server architecture.

A. Efficient CAD Model Rendering

As stated before, CAD models provide a unique challenge
for interactive cloud rendering systems due to their massive
number of objects. A striking feature is their repetition, that
is, many objects are instanced multiple times. Typical CAD
scenes can be mostly described by a collection of simple
solids: spheres, parallelograms, cones and others. Moreover,
these solids can be stored in memory using their implicit
representation instead of their triangular meshes. These pecu-
liarities play a central role in our cloud rendering methodology.
The implicit representation is much more lightweight when
compared to triangular meshes.

If we consider a non-indexed triangular mesh, each triangle
is composed by three vertices. Each vertex has two attributes:
position and normal, each one represented by three floating
point scalars. A mesh with k triangles would occupy k × 72
bytes1. Moreover, at least 9 additional floats (36 bytes) may be
necessary to represent the mesh transformations: translation,
rotation, scale (36 bytes). For the sake of simplicity, we denote
these transformations as M. In contrast, those same 36 bytes
(M values) can store the entire implicit representation of an
ellipsoid, regardless of its resolution.

Our system supports nine different implicit representations.
Some of them are defined only by their M transformations,
such as the ellipsoid, but other geometries need some addi-
tional parameters. All implicit geometries supported by our
system and their respective attributes are listed in Table II.

The developed hybrid cloud rendering system uses these
compact representations to meet the requirement of a
lightweight transmission mechanism. This format remains
compatible with outdated GPUs, since the system only needs
a regular grid on VRAM to draw any of these implicit
geometries. Custom vertex shaders arrange this grid according
to the current geometry type, as depicted in Fig. 2.

1Considering IEEE 754 single-precision binary floating-point format.

(a) (b)

Fig. 2. The process executed on vertex shader in order to deform the regular
grid to obtain an implicit surface. (a) the regular grid shared between all
implicit surfaces. (b) The resulting sphere after deforming (a).

Server Client

Ti
m
e

Rendering DMA Transfer (D)Encoding

Fig. 3. The communication model between the server and the client. The first
frames are displayed after the first geometries arrive on the client side.

We take advantage of hardware-accelerated geometry in-
stancing to render these implicit geometries. Therefore, the
system only issues one draw call for each geometry type.
This approach vastly reduces the latency on the rendering
step, since the issue of too many draw calls is a commonly
known bottleneck on drawing large scenes. Previous research
has shown that rendering performance can be improved from
6x to 10x by using this approach [20].

B. Client-Server Communication

The first step is to establish a connection between the client
and server. At this step, the client informs the server of its
hardware capabilities together with the CAD model requisi-
tion. If the connection succeeds, the server starts sending the
geometries which will be drawn on the client side. In our
prototype, the server does a naive geometry selection, sending
a fixed amount of geometries to the client depending on the
client’s capabilities. The first frames are displayed to the user
as soon as the first geometries arrive at the client side (Fig.
3). Lastly, the server sends the metadata of individual CAD
components. These metadata are contain critical engineering
specifications for diverse analysis.

In order to reduce the response delay, the server does
not wait for the client to request a new frame at a specific
viewpoint to start rendering it. Instead, both client and server



O
ff
sc
re
e
n
R
en

d
er
in
g

C
o
m
p
o
si
ti
o
n

+
HUD

Remote Image

Local Image

Final Image

Fig. 4. Schematic representation of the two framebuffers on the client side:
one for local rendering and the other for remote rendering. This separation
prevents the client to redraw the local scene when a new remote image is
available. Instead, the client only combines the local image with the remote
image according to their respective depth values. After, the client draws the
HUD elements over this combined image.

engines run independently, drawing the scene as long as the
user is performing any interaction. The client sends to the
server all the user interactions, skipping the repeated ones,
along with the world position at which the event took place.
The server, on its turn, streams depth-augmented color images
to the client along with the corresponding view and projection
matrices.

C. Client Architecture

The client has two threads: the render thread and the
resource thread. The render thread is primarily responsible for
performing the local rendering. The role of the resource thread
is to receive the remote frames, decompress and upload them
to the VRAM as textures. In order to obtain a system that
is robust to network latency, both threads run independently.
The only communication point is when a new remote frame
is available, so the resource thread notifies the render thread
about it.

In order to prevent redrawing the local scene unnecessarily,
the client draws it on a texture. This way, the client has
two framebuffers: one for the scene rendered locally and the
other for the scene rendered remotely. These two images
are combined according to their depth values. Lastly, the
client draws the HUD (Heads-up display) elements over this
composed image, resulting in the final image to be displayed
to the user (Fig. 4). The HUD consists of textual elements,
especially the model’s engineering metadata. It is necessary
for the rendering of these textual elements to take place on the
client side, since a lossy compression from the server would
severely compromise their readability.

If the viewpoint of the available remote image is different
from the client’s current viewpoint, a DIBR operation is
performed in order to transform the remote image to the
current camera position. In this case, when the user stops
interacting with the scene, a final remote image will arrive,
in which the local and remote viewpoint match. Thereby, the
DIBR can be avoided, producing a better-looking final image
and preventing the artifacts that arise from the DIBR usage.

The DIBR operation re-projects each point to the world-
coordinate system and then projects them back to screen
space, but now considering the client’s viewpoint. GPGPU
technologies, e.g. OpenCL or Compute Shaders, enable this
process to be done efficiently. However, the DIBR is done on
the client side and our goal is to design a system compatible
with outdated and/or limited hardware. Therefore, we devised
a method to execute the DIBR operation within the traditional
OpenGL pipeline. Our approach creates a point cloud from the
remote image. Equation 4 is evaluated for each of these points
on the vertex shader, where the V and P are the view and
projection matrices and the subscript letter indicates the client
(c) or server (s). We then compute the final position of each
point using the correct matrix transformations. We perform a
pixel splat [21] to attenuate any DIBR artifacts.

Pointpos = Pc ·Vc ·V−1s ·P−1s · PointNDC (4)

D. Server Architecture

For each incoming connection, the server launches a new
render engine thread. A shared bus is responsible for the com-
munication between the clients and their underlying engine
instance.

Considering a single engine thread, a new frame is generated
as long as its user event list is not empty. As soon as a
frame is rendered, the server starts a Direct Memory Access
(DMA) transfer in order to capture the frame from VRAM
and, afterwards, the rendering of the next frame is started.
The DMA transfer prevents locking the engine thread waiting
for the synchronization between the CPU and GPU, reducing
the latency.

Once the rendered frame is captured, we encode the color
and depth buffers. The depth buffer is compressed using the
lz4 algorithm [22] because it offers high compression ratio in
real time. The color image is encoded with H.264 codec [23].
This codec supports three different types of frames: i-frame,
b-frame, p-frame. Among these frames, the b-frames are the
ones that increases latency on the system, because they can
only be decoded after accessing future frames. Moreover, in
our tests they did not reduce the file size significantly. Thus, we
do not make use of this type of frame. After the compression
of both depth and color image, the server transmits them to
the client together with the transformation matrices.

As discussed before, both client and server run indepen-
dently in order to reduce the system’s response delay. Hence,
they do not halt their execution waiting the other part to receive
a transmitted message. However, this creates a new challenge
since now the server must predict where the client viewpoint
will be in the next frame. We overcome this shortcoming using
two approaches depicted in Fig. 5: lag compensation and path
correction.

Lag compensation attempts to predict where the client
camera will be when the remote image arrives on the client
side. We use this estimate to displace the server camera in
a future position. This way, when the client uses this frame
on DIBR operation, more points can be used to produce the



Ct0c

St0s

St1s

C

Fig. 5. Schematic representation of the lag compensation and path correction.
At t0 the server camera (the blue) is displaced relative to the client one (the
green). This displacement in time as being the moving average (ma) of the
response delay, i.e. t0s = ma(RD) + t0c . At t0c , the user rotates the camera
to the right and, after this moment, the server camera will be on invalid path
(red path). The server is notified only at t1s due to the uplink latency, i.e.
upl = t1s − t0s . So, it’s necessary to move the server camera back to the
position at the event took place, next we execute the user event and lastly we
displace the server camera again.

final image, reducing the artifact from the DIBR operation
and, consequently, improving the image quality.

However, when the user moves the camera to another
direction, the server camera will be at an invalid position
until it is notified about the user’s event. That is when path
correction comes into play: When the event arrives, the server
first repositions its camera to the location where the event
took place before processing the new user event. That is why
the client needs to send the user events along with its current
world position.

V. RESULTS

We evaluated our hybrid rendering system with a prototype
developed in C++ and OpenGL. Overall system performance
was measured using a controlled test environment. Two com-
puters, one for the server and the other for the client, were
connected to the same 10 Gb/s local area network (LAN). The
server ran on a desktop PC with an Intel Core i7 2.7GHz quad-
core processor, 8GB of RAM and a Nvidia GeForce GTX 580
2GB graphics card. The client consisted of a laptop with Intel
Core i7 2.6 GHz, 8 GB of RAM and Intel HD Graphics 4000.

The following subsections describe the conducted exper-
iments. First, we measure the advantages of the implicit
geometry representations in terms of storage and rendering
efficiency. Second, we evaluate overall system performance
and discuss the latency involved in each step in both client and
server. Third, we analyze the quality of the image produced
by our approach.

A. Network Transmission and Rendering Efficiency

We used two CAD models to make evident possible ad-
vantages of using the implicit representation with regard to
rendering performance and storage. These two models differ in
size and complexity, thus we denote them as small model and
large model (see Fig. 6). Considering only triangular meshes,
the small model has 144,262 objects and requires 259.4 MB

(a)

(b)

Fig. 6. Two industrial plant models used during our tests: (a) is the small
model and the (b) is the large model.

of VRAM, and the large model has 1,105,507 objects and
requires 1.9 GB of VRAM.

The implicit representation vastly reduces storage require-
ments. Considering the implicit representation of these two
models, their original size is reduced by 58.1% and 69.7% for
the small and large model, respectively. For the small model,
only 16% objects remain represented as triangular meshes,
since these objects could not be represented by any type
described in Table II. For the large model, 15.2% of the objects
remained as meshes.

The main advantage of this reduction for our system is
to transmit object data to the client efficiently. For example,
to send all 78,438 parallelograms from the small model
to the client, we need to transfer 2.69 MB approximately.
Considering the IEEE 802.11g Wi-Fi standard, this can be
accomplished in less than a second.

When it comes to rendering performance, we compared
the OpenGL instanced rendering commands to its traditional
rendering commands (glDrawElements). For this, we rendered
150,000 implicitly represented objects in our server. The
instanced API sped up the rendering to 8.1x, reaching 81 fps.

B. Overall System Performance

To evaluate our system performance in terms of fps, we
performed rendering tests using three different scenarios:
• 150,000 implicit objects rendered only on the server;
• 150,000 implicit objects rendered only on the client;
• Our hybrid approach, rendering 135,000 implicit objects

on the server and 15,000 implicit objects on the client.
Figure 7 shows the obtained fps values in each scenario over

time. As expected, best fps rates (around 80) were obtained



0

10

20

30

40

50

60

70

80

90

FP
S

Time

Server only Client only Hybrid

Fig. 7. Fps rate obtained using three different approaches: server only; client
only and a client-server hybrid rendering. The total execution time in each
test is 50 seconds.

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00

Remote
Frame

Local
Frame

Latency (ms)

Latency Analysis

Rendering H.264 Compression LZ4 Compression Network

DIBR H.264 Decompression LZ4 Decompression Upload VRAM

RD = CD

RF = SD + ND

Fig. 8. The latency involved in each step of our methodology. The difference
in time between the acquisition of local image and remote image clearly shows
the advantage of the hybrid approach. Hence, the user has a faster response
even on limited bandwidth.

when we rendered the objects only on the server side, while
we had the worst rendering performance on the client-only test
(around 13 fps). The number of objects rendered on the server
or on the client represents a trade-off between performance
and final image quality, since locally rendered images suffer
no compression. In our hybrid approach test we left 15,000
objects to be rendered on the client, which still resulted in
high-quality images being rendered at around 40 fps. We
evaluate image quality in the next subsection.

Figure 8 demonstrates the advantage of our hybrid method-
ology over streaming-based remote rendering approaches. Due
to the local rendering, our system response delay is about
one third of what it would be if the client waited for the
server response. In other words, the approach successfully
decouples the response delay (RD) from the remote frame
delay (RF), delivering interactive rates even when the network
is not performing well (a critical factor for enhancing QoE).

C. Image Quality

Fig. 6 makes evident the high quality images produced by
our rendering system. Nevertheless, we wish to conduct a
detailed analysis of any limitations in our approach. To this

(a) (b)

(c) (d)

Fig. 9. Image quality comparison during the navigation on the scene. (a) is
the initial view. (b) and (c) are the results while navigating through the scene.
(d) is the image completion when the user stop interacting with the scene.

end, we isolated the two equipments depicted in Figure 9.
The left equipment is rendered on the server whereas the right
object is locally rendered. At the client, we captured the image
9a. In this image it is possible to note that the left equipment
is blurred when compared to the equipment on the right due
to the compression on the server side. The equipment on the
left has its details preserved since it was locally rendered.

The Figures 9b and 9c were captured while the user was
moving and no new remote frame was available. This figures
illustrates the worst scenario, where the network is suffering
from high latency. Since we have an outdated remote image,
we need to perform DIBR operation on this image. This is
why some artifacts emerge in this equipment, on both images,
especially on the object’s boundaries because the depth values
of these regions vary abruptly. In the translational movement
(Figure 9b), the remote image still has satisfactory quality.
If the user moves away from the object, the image will
require less samples than the previous one. However, if the
user approaches the object, despite we need more samples to
reconstruct the image, the pixel splatting prevents holes on the
surface, although the image becomes more blurry.

Nonetheless, in Figure 9c, the remote object becomes in-
complete since occluded parts become visible. Despite this, the
system preserves the user’s spatial notion due to the locally
rendered objects and the DIBR rendered objects. Therefore,
the user can continue navigating through the scene. As new
remote images become available, these regions will become
visible and the artifacts disappear over time. When the user
finally stops interacting with the system, the client will receive
a remote image in which both local and remote viewpoints
match. Thus, the final image will contain no artifacts since it



is not necessary to perform a DIBR in this case.

VI. CONCLUSION

In this paper, we have presented a novel cloud rendering
system that successfully bridged the gap between existing
approaches and the specific requirements of massive 3D CAD
models. The obtained results showed that our technique can
achieve high frame rates with satisfactory image quality even
in a constrained environment, such as a high latency network
or obsolete computer hardware.

The two key aspects of our work are: (i) the use of
implicit geometry representations and (ii) the hybrid rendering
mechanism. The proposed architecture matched all require-
ments established in Section III-C for building a robust and
efficient cloud rendering system. The first two requirements,
lightweight data transmission and efficient rendering, were
accomplished by using implicit representations and instanced
rendering. The implicit representation is much more compact
than the triangular mesh, reducing the required network band-
width and the amount of VRAM needed. The final require-
ment, low response delay, was met by the hybrid approach,
since the system is capable of displaying a provisional image
while remote rendering results are not available.

The proposed solution paves the way for many research
opportunities to improve Quality of Experience (QoE) of cloud
rendering systems. First, we wish to develop a prediction
model to increase the accuracy of the lag compensation on the
server. Predictive techniques could also take advantage of our
hybrid rendering approach to improve load balancing between
the server and its clients. Different strategies could prioritize
which geometries should be rendered locally on the client,
depending on observed hardware and network performance.
Eventually, a mesh network could fully decentralize graphics
processing among servers and clients, akin to a peer-to-peer
(P2P) architecture.

ACKNOWLEDGEMENTS

This research was supported by CNPq, Conselho Na-
cional de Desenvolvimento Cientı́fico e Tecnológico, grant
#154032/2015-8. We thank the reviewers for their helpful
comments and suggestions.

REFERENCES

[1] B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, and H. P. Seidel,
“Proxy-guided Image-based Rendering for Mobile Devices,” Computer
Graphics Forum, vol. 35, no. 7, pp. 353–362, 2016.

[2] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: architecture
and performance,” IEEE network, vol. 27, no. 4, pp. 16–21, 2013.

[3] L. Mui and E. Pearce, X Window system administrator’s guide: for X
version 11. O’Reilly & Associates, Inc., 1992.

[4] B. C. Cumberland, G. Carius, and A. Muir, Microsoft Windows NT
Server 4.0, Terminal Server Edition: Technical Reference. Microsoft
Press Redmond, WA, 1999, vol. 121.

[5] R. A. Baratto, L. N. Kim, and J. Nieh, “Thinc: a virtual display
architecture for thin-client computing,” in ACM SIGOPS Operating
Systems Review, vol. 39, no. 5. ACM, 2005, pp. 277–290.

[6] B. K. Schmidt, M. S. Lam, and J. D. Northcutt, “The interactive
performance of slim: a stateless, thin-client architecture,” in ACM
SIGOPS Operating Systems Review, vol. 33, no. 5. ACM, 1999, pp.
32–47.

[7] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual
network computing,” IEEE Internet Computing, vol. 2, no. 1, pp. 33–38,
1998.

[8] F. Abraham, W. Celes, R. Cerqueira, and J. L. Campos, “A load-
balancing strategy for sort-first distributed rendering,” in Computer
Graphics and Image Processing, 2004. Proceedings. 17th Brazilian
Symposium on. IEEE, 2004, pp. 292–299.

[9] T. DeFanti, D. Acevedo, R. Ainsworth, M. Brown, S. Cutchin, G. Dawe,
K.-U. Doerr, A. Johnson, C. Knox, R. Kooima et al., “The future of the
cave,” Open Engineering, vol. 1, no. 1, pp. 16–37, 2011.

[10] L. Renambot, A. Rao, R. Singh, B. Jeong, N. Krishnaprasad, V. Vish-
wanath, V. Chandrasekhar, N. Schwarz, A. Spale, C. Zhang et al., “Sage:
the scalable adaptive graphics environment,” in Proceedings of WACE,
vol. 9, no. 23, 2004, pp. 2004–09.

[11] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Han-
rahan, “Wiregl: a scalable graphics system for clusters,” in Proceedings
of the 28th annual conference on Computer graphics and interactive
techniques. ACM, 2001, pp. 129–140.

[12] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner,
and J. T. Klosowski, “Chromium: a stream-processing framework for
interactive rendering on clusters,” ACM transactions on graphics (TOG),
vol. 21, no. 3, pp. 693–702, 2002.

[13] F. Lamberti and A. Sanna, “A streaming-based solution for remote
visualization of 3d graphics on mobile devices,” IEEE transactions on
visualization and computer graphics, vol. 13, no. 2, 2007.

[14] G. Tamm and J. Krüger, “Hybrid rendering with scheduling under
uncertainty,” IEEE transactions on visualization and computer graphics,
vol. 20, no. 5, pp. 767–780, 2014.

[15] X. Liao, L. Lin, G. Tan, H. Jin, X. Yang, W. Zhang, and B. Li,
“Liverender: A cloud gaming system based on compressed graphics
streaming,” IEEE/ACM Transactions on Networking, vol. 24, no. 4, pp.
2128–2139, 2016.

[16] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-H. Hsu,
“Gaminganywhere: The first open source cloud gaming system,” ACM
Transactions on Multimedia Computing, Communications, and Applica-
tions (TOMM), vol. 10, no. 1s, p. 10, 2014.

[17] G. P. Fickel and C. R. Jung, “Disparity map estimation and view
synthesis using temporally adaptive triangular meshes,” Computers &
Graphics, vol. 68, pp. 43–52, 2017.

[18] S. Wang and S. Dey, “Modeling and characterizing user experience in a
cloud server based mobile gaming approach,” in Global Telecommuni-
cations Conference, 2009. GLOBECOM 2009. IEEE. IEEE, 2009, pp.
1–7.

[19] M. Claypool and K. Claypool, “Latency and player actions in online
games,” Communications of the ACM, vol. 49, no. 11, pp. 40–45, 2006.

[20] P. I. N. Santos and W. Celes Filho, “Instanced rendering of massive
cad models using shape matching,” in Graphics, Patterns and Images
(SIBGRAPI), 2014 27th SIBGRAPI Conference on. IEEE, 2014, pp.
335–342.

[21] W. R. Mark and G. Bishop, “Post-rendering 3 d image warping:
visibility, reconstruction, and performance for depth-image warping,”
Ph.D. dissertation, University of North Carolina at Chapel Hill, 1999.

[22] M. Bartı́k, S. Ubik, and P. Kubalik, “Lz4 compression algorithm
on fpga,” in Electronics, Circuits, and Systems (ICECS), 2015 IEEE
International Conference on. IEEE, 2015, pp. 179–182.

[23] A. Luthra, G. J. Sullivan, and T. Wiegand, “Introduction to the special
issue on the h. 264/avc video coding standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 557–559,
2003.


