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Universidade Federal de Pernambuco

Recife, Brazil
{kbc, lom, vt}@cin.ufpe.br

João Paulo Lima †∗
† Departamento de Computação

Universidade Federal Rural de Pernambuco
Recife, Brazil

joao.mlima@ufrpe.br

Jonysberg Peixoto Quintino ‡
‡ Projeto de P&D CIn/Samsung

Universidade Federal de Pernambuco
Recife, Brazil

jpq@cin.ufpe.br

Fabio Q. B. da Silva, Andre L M Santos §
§ Centro de Informática
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Abstract—In this work we address the problem of landmark
recognition. We extend PlaNet, a model based on deep neural
networks that approaches the problem of landmark recognition
as a classification problem and performs the recognition of
places around the world. We propose an extension of the PlaNet
technique in which we use a voting scheme to perform the clas-
sification, dividing the image into previously defined regions and
inferring the landmark based on these regions. The prediction
of the model depends not only on the information of the features
learned by the deep convolutional neural network architecture
during training, but also uses local information from each region
in the image for which the classification is made. To validate our
proposal, we performed the training of the original PlaNet model
and our variation using a database built with images from Flickr,
and evaluated the models in the Paris and Oxford Buildings
datasets. It was possible to notice that the addition of image
division and voting structure improves the accuracy result of the
model by 5-11 percentage points on average, reducing the level
of ambiguity found during the inference of the model.

I. INTRODUCTION

Performing the task of landmark recognition using only the
information contained in the pixels of an image is a very
challenging task.

One of the main difficulties for recognition algorithms is
the wide variety of landmarks existing around the world. This
large amount of information increases the difficulty for the
algorithm to learn relevant and distinct characteristics between
classes in order to allow good classification results. Solving
this problem efficiently can affect the complexity and the
runtime performance of the model used.

Another great challenge in the task of recognizing land-
marks is the ambiguity existing between the characteristics
and the visual aspect of some constructions and regions.
For example, there are similar architectural styles among
landmarks from the same country or the same era when they
were built. It can also be considered the cases of natural
structures of certain environments, which independent of their

locality will always have similar characteristics, as shown in
Figure 1.

Human beings are able to overcome these challenges by
using prior knowledge of the main characteristics among
landmarks, such as architectural styles used in a specific region
or country, materials used by certain types of buildings and
so on. When it is not possible to locate the landmark with
certainty using only the pixels information, the human being
is able to estimate an approximate location for the landmark,
giving a list of probable places to which the landmark may
belong.

A recognition algorithm to solve the landmark recognition
task must perform a prediction in order to solve these chal-
lenges. Some techniques propose ways to generate a model for
learning the main characteristics as good as humans in order
to correctly classify existing landmarks [1], [2].

The challenge for computational models is to generate such
characteristics so that they are sufficiently relevant to distin-
guish well all known landmarks [2]–[4]. Some techniques use
the intuition of the human strategy for recognition, developing
an algorithm capable of returning a distribution of probabilities
among the most likely regions to which the input image may
belong, improving its classification performance [5].

Recent studies address these problems of features design
using deep neural network models [6]–[8] to automatically
learn the best set of characteristics and the relation between
existing landmarks for classification and to return a set of
solutions that correspond to the probability distribution of the
most likely places where a given input image was captured.

In this work we use an approach based on [7] that uses
deep convolutional neural networks (DCNNs) to perform the
landmark recognition task by solving a classification problem.

We perform PlaNet model replication (training with our
dataset) and validation in widely used datasets [9], [10] that
contains locations from Paris and Oxford. We use 7 classes
from Paris dataset and 11 classes from the Oxford dataset,



Fig. 1. Comparison between natural landmarks that have similar charac-
teristics but belong to different localities. The top left image corresponds
to the desert between Tehran and Isfahan (Reprinted from Flickr by Jordan
Lundqvist, 2006. Retrieved from https://flic.kr/p/fkV7d), while the top right
one corresponds to a desert in a Jordan highway (Reprinted from Flickr, by
Steven Damron, 2010. Retrieved from https://flic.kr/p/7vuZfZ). In the middle
the left image shows the Ushuaia mountain (Reprinted from Flickr, by Arturo
A. Galn, 2011. Retrieved from https://flic.kr/p/azSjW7) and the right one
depicts the Cader Idris mountain (Reprinted from Flickr, by Robert J. Heath,
2016. Retrieved from https://flic.kr/p/WtEs9j). In bottom left we can see a
photo taken on the Maragogi beach (Reprinted from Flickr, by Guilherme
Jofili, 2009. Retrieved from https://flic.kr/p/7i7Maa) and in bottom right a
photo of the Fernando de Noronha island (Reprinted from Flickr, by Leandro
M. Gonçalves, 2012. Retrieved from https://flic.kr/p/hyJPA1).

training our model with 18 classes. As a contribution, we pro-
vide a technique for image division and voting that improves
the accuracy of the original model. We trained our variation in
the same conditions as the PlaNet model and evaluated with
the same dataset. It is possible to note that this variation is
able to increasing the model perfomance by 4.8 percentage
points.

A major challenge for DCNN-based landmark recognition
algorithms is the availability of data for training. In [7]
millions of images from places around the world were used
for model training during several months. Such images are not
publicly available.

The dataset used directly influences the performance that a
model can have, depending on the amount of data and possible
variations of each class to learn a good representation for
solving the task.

For this reason, we collected and analyzed a new set of
images to enable the training of our PlaNet implementation.

Fig. 2. Comparison between buildings that have similar characteristics but be-
long to different localities. In these examples, humans can easily differentiate
the landmarks by observing features in small regions of the construction or the
surrounding environment. The difficulty for computational vision algorithms
is to capture this ability to distinguish the target from secondary features. The
top left image corresponds to the the Arc de Triomphe de l’toile (Reprinted
from Flickr by Greg Men, 2014. Retrieved from https://flic.kr/p/H7b1SE) that
has an architecture similar to the top right image from the Arc de Triomphe
du Carrousel (Reprinted from Flickr, by Chris Dart, 2013. Retrieved from
https://flic.kr/p/e6NE9h). In bottom left we can see a photo taken of the King
Edward VII statue at Liverpool Pier Head (Reprinted from Flickr, by Ninian
Reid, 2017. Retrieved from https://flic.kr/p/21GHcHi) and in bottom right a
photo of the Robert E. Lee statue at Gettysburg island (Reprinted from Flickr,
by Meghan, 2014. Retrieved from https://flic.kr/p/26imVKw).

Due to the large difference between the dataset scales, we
apply a data augmentation procedure, performing a series
of transformations to the obtained images. With this, we
approximate the data volume used to train and improve our
model performance compared to the original model.

Note that we can not use the same images and classes used
for the original PlaNet training. Due to this, we are validating
our approach using a subcase of the landmark recognition
problem, targeting some classes beloging to the public datasets
[9], [10].

II. RELATED WORK

The task of landmark recognition is a great challenge in
computer vision, due to the wide variety of sites around the
world, the similarities between characteristics of locations in
different regions (such as beaches, mountains, forests, etc.),
ambiguities between similar buildings and several variations
that the environment can have, such as climatic conditions,
changes between day and night, presence of people or objects,
etc. This is shown in Figure 2.

Due to the large scale that the problem can cover and
techniques limitations, many works are limited to solving



parts of the landmark recognition problem, dealing only with
cases of urban areas (buildings) [11], [12], natural areas [13],
specific regions and cities with Google Street View images
available [6] or aerial images [14], [15].

Many works approach the problem of recognizing land-
marks with image retrieval methods [3], [4], [11], [16] using
handcrafted or CNN features as input for a model that com-
putes the similarities between query and training images.

In recent years deep learning was used to develop most of
the currently proposed methods. Methods that use DCNN can
outperform traditional techniques, besides allowing algorithms
to carry out global geolocalization with good performance.
Very few works have addressed the task of localizing any type
of photo taken at any location [1], [5], [7], [8].

IM2GPS [1] was the first method to propose global ge-
olocalization. The IM2GPS algorithm employs handcrafted
features for scene recognition and uses a nearest neighbor
search (NNS) method in a dataset of geotagged images to
perform the classification. An extension of IM2GPS [5] was
proposed using a DCNN to automatically create the features
that will be analyzed for classification. This new method
may be used to generate an intermediate representation to be
classified using the NNS method or be treated as a solution for
a classification problem that generates as response the location
in which the image was classified. This method improves the
previous IM2GPS result, showing that DCNNs can perform
better than handcrafted features in developing filters that
extract characteristics relevant to landmark recognition.

PlaNet [7] treats the task of geolocation as a classification
problem and subdivides the surface of the earth into a set of
geographical cells that make up the target classes. The cells are
divided in relation to the number of examples of the region.
The greater the variety of images of a certain location, the
greater the granularity of the cells in that region. For example,
city areas with large numbers of distinct landmarks contain
more cells than oceanic areas, where the examples are quite
similar.

The model is capable of localizing a large variety of
photos without constraints, recognizing cases of nature scenes,
mountains, street scenes or beaches with high accuracy. In
cases of ambiguity, it will often output a probability distribu-
tion ranking the landmark predictions by similarity with the
examples.

However, the PlaNet response may have a decrease in
performance when the number of classes grows or when the
classes in the dataset have a high correlation of characteristics.
These cases can cause PlaNet to fail, especially when there is
irrelevant information in the input image, or when the data
in certain regions of the image resemble the various known
classes.

For this reason we propose an extension of PlaNet in which
we use DCNN to classify only defined regions within the
image and then vote from the predictions of these regions,
defining which are the most probable classes for a given input
image.

III. METHOD OVERVIEW

The input to our model is an RGB image which is divided
into patches of the same size. The patches are processed
by the network to output a distribution of probability on all
known landmarks. The outputs of each patch are combined
into a voting scheme that returns a ranked list of most likely
landmarks for the input image. We present each part now in
more detail.

A. Landmark Recognition with CNN

The approach employed to recognize landmarks is based
on the PlaNet model [7]. PlaNet is built to determine the
location where a photo was taken using only pixels infor-
mation. Differently from most computer vision methods that
approach photo geolocation using image retrieval techniques
based on geometric features, PlaNet poses the problem as a
classification one by subdividing the surface of the earth into
thousands of multiscale geographic cells and predicting the
photo location across these cells. Then the problem becomes
to associate each region with a particular cell and to predict
the estimated location of that region in relation to the position
on the grid which the cell occupies.

The PlaNet model is composed of a DCNN trained using
geotagged images. At inference time, the model output is a
discrete probability distribution over the earth, assigning a
confidence value to each known cell around the world.

Based on the training examples, the DCNN is able to
automatically learn main features to be extracted from the
image. At each layer the network can generate a set of
associated filters specialized in solving parts of the problem,
where low-level characteristics are extracted in the initial
layers, increasing the complexity of features in each level of
the architecture.

We chose PlaNet as base because it was the first method that
directly takes a classification approach to geolocation and can
perform prediction on a global scale without image constraints
and with good performance.

The architecture employed has less parameters compared
to other DCNN architectures. It has a layered structure that
allows to simultaneously add responses of spatial information
on different scales and does not need fully connected layers
to perform prediction.

B. Patches Classification

We use patches from the input image to enhance the
classification, an approach named Patch PlaNet. By filtering
some parts of the image, we assume that noisy elements could
be removed from the decision making for the DCNN. We have
used three patterns of patch generation:

• Four equal rectangles: Each rectangle covering exactly
one quarter of the image, with a common corner in the
middle of the image. (Figure 3.a)

• Five equal rectangles: Same as ”Four equal rectangles”,
extended with an equal rectangle in size, but centered on
image’s center. (Figure 3.b)



• Six rectangles: Same as ”Five equal rectangles”, extended
with a full image rectangle. (Figure 3.c)

Fig. 3. Patches subdivisions used. Given an image of width w and height h.
In (a) we divide the image in four regions with size w

2
, h

2
. In (b) we divide

the image with the same four regions, adding a new central patch that shares
information among the others. In (c) we use the same patches as (b) and add
the information of the full image.

C. Classification Methods

We use the patches classification values to reclassify the
image, using a voting/ranking method to solve bad guesses
(Figure 4). The patches classification was done with three
methods for voting/ranking:

• Simple Voting (SV): We assume that all the patches have
the same weight in voting, each one having only a single
vote, which is the class with higher probability for the
patch.

• Weighted Voting (WV): We assume that all the patches
have the same weight in voting, but vote with different
weights for the N classes with higher probabilities cal-
culated for the patch, according to each class probability
result normalized by the sum of the classes probabilities.

• Proportional Weighted Ranking (PWR): We assume that
the N classes with higher probabilities are a sample of
the overall classes for each patch. Each patch inserts N
pairs (probability, class id) in the rank, and all the pairs
are then sorted from its probability value.

IV. IMPLEMENTATION DETAILS

The training code was built using the Python programming
language and the TensorFlow machine learning framework
[17].

We use the Inception V3 [18] architecture with batch nor-
malization [19] and an input size of 299x299x3. We initialize
the network using the weights previously trained for the
classification task of the ImageNet dataset [20]. In the training
phase we employ transfer learning by freezing the parameters
for the initial layers and fine-tuning the network in the last
layers (Mixed6a to Mixed7c) to learn new filters that extract
relevant features for representing our locations.

For the model optimization we use the AdaGrad [21]
stochastic gradient descent algorithm with learning rate of
0.045, which is the same as original PlaNet, and set the
output cell to be 1.0 when the training sample belongs to
it and all others cells to be 0.0. The convolutional layers use
ReLU activation while in the last layer the confidence value
is computed using Softmax activation.

We apply data augmentation in the training phase to increase
the quantity and variety of data and reduce overfitting. We

apply the following random image transformations: rotation,
vertical and horizontal flip, histogram equalization, grayscale
conversion, zoom in and changes in hue, exposure and satu-
ration.

To evaluate the model and improve the inference runtime
performance, it was developed a C++ code that loads the
network weights trained with Python and performs image
classification with the CNN architecture using patches clas-
sification.

V. EXPERIMENTS

In this section, we show the experiments performed during
the development of this work. We explain the steps of building
our dataset for training and the data used in the evaluation of
the technique. We also show the quantitative results obtained
for each experiment, and we comment on some cases of
robustness and failures that we can observe visually using
some qualitative results.

We have trained the models on a computer with an Intel
I7-4700MQ @2.4GHz processor and a Nvidia GeForce GTX
950M GPU. The inference was performed on a computer with
an Intel Core I5-5200U CPU @2.2GHz processor.

A. Dataset

Our training dataset was built downloading Flickr [22] im-
ages with licenses that allow free usage and modification. We
got approximately 1,000 samples of each evaluated location
and performed data augmentation, due to the low amount of
data. After this operation the samples size of each location
increased by 10 times. This value was defined based on tests
performed with different values.

We validated our implementation using the public datasets
with landmark locations of Paris [9] and Oxford buildings
[10]. We evaluated 7 landmarks from Paris and 11 landmarks
from Oxford, training the model with all these 18 landmarks.
These datasets are widely used for validation of image retrieval
models [12], [16], [23], [24], [25].

B. Quantitative Results

We compare our results with recent works in image retrieval
that use these datasets to evaluate their models. PlaNet was
originally trained for global landmark recognition and the
original trained model is not publicly available, as well as
the dataset used for training.

For this reason, we conducted PlaNet training with our
dataset and adapted the model for the recognition of Paris and
Oxford Buildings landmarks. With this, we could validate and
compare the performance of the model proposed by PlaNet
with the other works. The model generated by us achieves a
accuracy that is best or comparable to [2], [5], [12] increasing
on average 4 percentage points the result for Paris dataset
and with a less than 3 percentage points of the result of
classification in Oxford dataset.

The results of the validation using Paris and Oxford Build-
ings datasets can be seen in Table I. Our result using PlaNet
for landmark recognition achieved better classification results



Fig. 4. Example of classification with patches using 6 patches subdivision and PWR. The input image is divided in patches (a), (b), (c), (d), (e) and (f). The
PlaNet model will compute a probability distribution for each patch. Then the prediction list is ranked by the highest confidence value. In this example, the
most confident answer is shown with its probability for each patch.

than the [2], [5], [12] for the Paris dataset; it is possible
to see that using the patch based approach can improve the
accuracy of the PlaNet model increasing its accuracy value by
4.8 percentage points.

For the Oxford dataset the performance did not outperform
all approaches. This is due to the large number of indoor
images and high level of occlusion of the dataset. Our archi-
tecture was trained with focus on the recognition of outdoor
landmarks, but in the Oxford dataset there are many images
where the focus is not the landmark, affecting the performance
of our model.

However, it is possible to see that the result obtained for
the Oxford dataset remains comparable to the other works.

TABLE I
CLASSIFICATION ACCURACY RESULTS IN PARIS AND OXFORD BUILDINGS

DATASETS

Model Paris Dataset Oxford Dataset

Patch Planet 90.63% 76.03%
PlaNet [7] 85.83% 64.94%
IM2GPS [5] 87.42% 77.30%
Crow [2] - 74.30%
R-Clean [12] 86.80% 87.30%

TABLE II
RESULTS COMBINING THE VARIATIONS IN VOTING SCHEME AND NUMBER

OF PATCHES EVALUATED USING THE PARIS DATASET

Paris dataset

SV WV PWR
4 Patches 71.72% 79.28% 82.39%
5 Patches 75.83% 81.82% 89.33%
6 Patches 89.19% 84.14% 90.63%

The accuracy for each class in the Paris and Oxford dataset
using PlaNet and PlaNet with patches variations can be seen

TABLE III
RESULTS COMBINING THE VARIATIONS IN VOTING SCHEME AND NUMBER

OF PATCHES EVALUATED USING THE OXFORD DATASET

Oxford dataset

SV WV PWR
4 Patches 47.51% 53.45% 61.65%
5 Patches 55.86% 59.93% 69.85%
6 Patches 63.39% 65.13% 76.03%

in Table II and III. The best results can be seen highlighted
in the table. Patch PlaNet with 6 patches using PWR obtained
the best accuracy results for most of the evaluated landmarks.

With this we can see that the best performance is based
on the choice of the region in which the classifier has the
greatest confidence that the landmark is present. Predicting
directly with the information of the full input image when it
has a high confidence value and using information from the
patches when it is not so sure which landmark is the correct
one.

In Table IV and V, it is possible to see the accuracy for
each class in the Paris dataset and Oxford dataset, respectively.
The second column shows the result of the original Planet
model replicated. The other columns show the performance
of the model using the classification approach with patches. It
is possible to see that using 5 patches with and without the full
image improves the average accuracy by 5 percentage points
in Paris dataset and 11 percentage points in Oxford Dataset of
the model compared to the initial approach in Paris and Oxford
datasets; Using patches strategy allows the classifier to look at
small regions that contain information relevant to classification
rather than trying to aggregate all the information contained
in the image to predict. The regions without relevance will not
have much influence on the final result being classified with
low confidence value.

In all models for the Paris dataset evaluation the best result



TABLE IV
RESULTS OF CLASSIFICATION FOR EACH CLASS IN PARIS DATASET VARYING NUMBER OF PATCHES AND USING PWR VOTE SCHEME

Paris dataset

PlaNet Patch PlaNet (4 Patches) Patch PlaNet (5 Patches) Patch PlaNet (6 Patches)
Eiffel Tower 97.05% 93.13% 96.07% 98.03%
La Dfense 89.58% 95.31% 95.83% 95.85%

Louvre 89.76% 91.73% 95.28% 95.67%
Notre-Dame 94.11% 92.81% 97.00% 97.60%

Panthéon 47.45% 42.35% 52.94% 54.50%
Sacré-Cœur 86.51% 86.04% 93.02% 96.28%

Arc de Triomphe 89.49% 87.89% 95.85% 77.92%

TABLE V
RESULTS OF CLASSIFICATION FOR EACH CLASS IN OXFORD DATASET VARYING NUMBER OF PATCHES AND USING PWR VOTE SCHEME

Oxford dataset

PlaNet Patch PlaNet (4 Patches) Patch PlaNet (5 Patches) Patch PlaNet (6 Patches)
All Souls 68.83% 62.33% 75.32% 77.92%

Ashmolean 86.67% 96.67% 96.67% 96.67%
Balliol 48.00% 68.00% 60.00% 68.00%

Bodleian 75.30% 80.24% 82.71% 80.25%
Christ Church 58.54% 52.57% 65.38% 67.95%
Cornmarket 75.00% 90.00% 90.00% 95.00%

Hertford 78.78% 78.78% 81.81% 81.81%
Keble 79.41% 79.41% 94.11% 91.18%

Magdalen 61.15% 51.80% 60.43% 69.78%
Oriel 38.23% 41.11% 41.20% 41.18%

Worcester 44.44% 52.78% 61.11% 66.67%

was obtained for the Eiffel Tower, where there was great
variety of data in the training set. The worst performance was
relative to the Panthéon. The test set for Panthéon contains
several internal images and specific regions of the location that
training not fully encompasses. The training set contains some
characteristics of the interior region, but it has predominantly
outdoor images of the class, showing that the model can
generalize the classification well for some results, but it is
quite dependent on having large amounts of data from places
with a high variety of examples.

In the Oxford dataset the results are also better when the
number of patches increased. The performance of the model
for Oxford is worse when compared to Paris due to the large
number of indoor examples and where the landmark has a
high level of occlusion, this makes it difficult to evaluate the
dataset for some classes as in the case of Balliol, Oriel and
Worcester.

In the implementation code, the model can be loaded in 1
second. After loaded, each classification spends 300ms per
image on average. The file with the graph and parameters
trained has a storage occupation of 85MB. Using the patch
recognition strategy, the inference time increases proportion-
ally to the number of patches used. It was seen that using this
strategy we can increase the accuracy of the model, but we also
decrease the runtime performance of the inference. To achieve
an accuracy improvement of 5-11 percentage points it may be
necessary to add a running cost up to 6 times, increasing the
runtime from 300ms to 1.8s on CPU.

C. Qualitative Results

We can see in Figure 5 some interesting success cases,
where there are cases of partial occlusion, color and brightness
changes, soft lack of focus and scale variation.

Fig. 5. Success cases. Figure (a) shows the robustness of the model for
generalizing knowledge to similar parts of similar regions in the landmarks.
In (b) we have the correct recognition in a case of landmark partial occlusion.
In (c) the landmark is correctly recognized in the background. In (d) the model
recognizes the landmark with high illumination change. (e) shows a case of
robustness to moderate scale variation and (f) shows a sample with strong
occlusion, illumination and brightness changes that was correctly classified
as Arc de Triomphe.

The examples in which PlaNet can classify correctly are also
classified correctly by the PlaNet Patch. But using patches we
can get more cases with correct predictions.

The patch approach can handle better cases of partial
occlusion. When dividing the image, the region that overlap
the landmark will be classified with low confidence value and
consequently will not influence much in the final decision,



whereas the area in which the landmark appears will have
greater weight in the classification with high confidence value.

Another advantage in using patches is when we deal with
landmarks that have very similar characteristics. The model
can better distinguish these cases by looking at regions where
they contain small features that differ one landmark to another.

Patches also help in cases where the landmark is on a
small scale in relation to the entire image. In cases where is
possible to divide the landmark so that it is present partially
in a patch, the classifier can recognize the learned features
without much information of distraction. The problem in this
case is when landmark information has a small scale and
the landmark features is split between several patches, which
worsens the model’s accuracy. The overlap (5 patches and 6
patches) approach can circumvent this problem by preserving
key features sharing the information between adjacent patches
and minimizing the effect of division.

Figures 6 and 7 show some cases of model failures. The
cases shown are: lack of focus on the landmark, very small
regions, new information in the context of the image, very low
lighting conditions and correlation between classes features.

Fig. 6. Failures cases. In (a) the model may misclassify cases where the
landmark is too distant (scale problem) and out of focus in the image. In (b)
the model cannot recognize the landmark when the area of the landmark in
the input image is very different from the samples in the training set (the
indoor test sample does not have the same features of outdoor images used
in training). (c) shows the dependence of the model in relation to the context
of the image. The model can usually handle this problem but fails in cases
where the context information is very different from the known ones. In (d)
it is seen a failure with very low illumination conditions.

The patches approach does not help in cases where we
have several different information in the context around the
landmark and the landmark dimensions are rather small in
relation to the image. When the division is made, we will
have a lot of irrelevant information not included in the training
and little information learned about the landmark that will be
divided between the defined regions. In these cases the use of
original PlaNet and 5 patches + full image performs better on
using only the patches.

VI. CONCLUSION

We propose a new classification strategy for the PlaNet
landmark recognition algorithm, in which we could train the

Fig. 7. Other failure cases occur when there is a great correlation between the
features of different classes. This failure causes confusion for the model to
make a decision. The images on the left correspond to ground truth landmarks
and the images on the right correspond to the landmark class predicted by
the model.

original model, modify it under the same conditions and
compare its results. We obtain improvements in the accuracy
performance increasing on average 5 to 11 percentage points
in the classification result .

The strategy of using patches reduces ambiguity by having
the classifier look at small overlapping regions to retrieve the
information, allowing regions with non-relevant information or
noises to be avoided, being classified with low confidence.The
best configuration could be obtained by using the patch
information and the full image. When the input image contains
a lot of noise (objects of distraction, change of lighting,
people) the use of the patches allows an improvement in the
performance making these noisy areas have low confidence
and handling the predictions separately. When the classifier has
high confidence that the landmark is present, it can ignore the
patch information and return the prediction directly. However,
to achieve this improvement, the model loses in computational
performance, which can increase its execution time by up to
6 times.

We were also able to create a dataset and validate the
procedure to perform data augmentation and model training
when using a small dataset. We achieved good acuracy when
compared to [5], [12] classifying outdoor and landmark-
focused images; Cases that represent the training set used.

For the cases of indoor images, low illumination or small
scale our model tends to fail. We have seen that there is a
great dependence of the DCNNs models with respect to the
data used in the learning phase, being necessary a large set
of relevant images in order to generate a good set of features.
To improve our accuracy in these cases, we can increase the
training set by inserting these types of data and others images
transformations. Another possible approach is to test model
performance for new DCNN architectures.
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