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Abstract—Adversarial examples have raised ques-
tions regarding the robustness and security of deep neu-
ral networks. In this work we formalize the problem of
adversarial images given a pre-trained classifier, show-
ing that even in the linear case the resulting optimiza-
tion problem is nonconvex. We generate adversarial
images using deep classifiers on the ImageNet dataset.
We probe the pixel space of adversarial images using
noise of varying intensity and distribution. We bring
novel visualizations that showcase the phenomenon and
its high variability. We show that adversarial images
appear in large regions in the pixel space, and that it
is hard to leave those regions by adding noise to the
images, even with high intensity.

I. Introduction

After the huge empirical success of deep neural net-
works, Szegedy et al. surprised the community, showing
that small but purposeful pixel distortions can easily fool
the best convolutional networks for image classification [1].
Szegedy et al. used the gradient of the network output with
respect to its input to find the minimal pixel distortion
that leads to misclassification — small distortions which
are hardly visible to humans. We present some examples in
Figure 2 for two different datasets (MNIST and ImageNet)
and three different network architectures.

Adversarial images even generalize across different net-
work architectures [2]. Nguyen et al. showed how adver-
sarial images can be generated using evolutionary ap-
proaches [3]. Goodfellow et al. demonstrated that only one
gradient evaluation is necessary to arrive at an adversarial
image [4]. Papernot et al. showed that even a black-boxes
can be adversarially attacked, given an oracle to provide
labels for input images by training a local substitute model
[5]. That black-box attack can be used in a more general
manner to steal machine learning models that are available
as prediction APIs [6]. Sara Sabour et al. [7] show that
adversarial attacks can not only lead to mislabeling, but
also manipulate the internal representations of the net-
work. Adversarial examples can also attack neural network
policies in the context of reinforcement learning [8].

The problem of adversarial images has divided the
Machine Learning community, with some hailing it as a
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“deep flaw” of deep neural networks [9]; and others pro-
moting a more cautious interpretation, and showing, for
example, that most classifiers are susceptible to adversarial
examples [4], [10].

Despite the controversy, adversarial images surely sug-
gest a lack of robustness, since they are (for humans)
essentially equal to correctly classified images. Immunizing
a network against those perturbations increases its ability
to generalize, a form of regularization [4] whose statistical
nature deserves further investigation. Even the traditional
backpropagation training procedure can be improved with
adversarial gradient [11]. The idea behind adversarial
regularization is to make the input space smooth, therefore
small changes in the input will not lead to large changes
on the output, which is one explanation of the existence of
adversarial images. This idea is formalized in the Virtual
Adversarial Training, where a regularization term of input
space smoothness is added to the training procedure,
allowing even unsupervised networks to benefit from this
concept [12].

Initial skepticism about the relevance of adversarial
images suggested they existed as isolated points in the
pixel space, reachable only by a guided procedure with
complete access to the model. More recent works [4], [13]
claim that they inhabit large and contiguous regions in
the space. The correct answer has practical implications:
if adversarial images are isolated or inhabit very thin
pockets, they deserve much less worry than if they form
large, compact regions. In this work we intend to shed light
to the issue with an in-depth analysis of adversarial image
space. We propose a framework (Figure 1) that allows us
to ask interesting questions about adversarial images.
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Fig. 1. Fixed-sized images occupy a high-dimensional space spanned
by their pixels (one pixel = one dimension), here depicted as a 2D
colormap. Left: classifiers associate points of the input pixel space to
output class labels, here ‘banana’ (blue) and ‘mushroom’ (red). From
a correctly classified original image (a), an optimization procedure
(dashed arrows) can find adversarial examples that are, for humans,
essentially equal to the original, but that will fool the classifier.
Right: we probe the pixel space by taking a departing image (white
diamond), adding random noise to it (black stars), and asking the
classifier for the label. In compact, stable regions, the classifier will be
consistent (even if wrong). In isolated, unstable regions, as depicted,
the classifier will be erratic.

II. Creating Adversarial Images
Assume we have a pre-trained classifier 𝑝 = 𝑓(𝑥)

that, for each input 𝑥 ∈ ℐ, corresponding to the pixels
of a fixed-sized image, outputs a vector of probabilities
𝑝 = [𝑝1 · · · 𝑝𝑖 · · · 𝑝𝑛] of the image belonging to the class
label 𝑖. We will be rather lax in what we accept as
output: most uncertainties behaving like probabilities will
do (i.e., ranging from 0 to 1, additive, normalized, etc.).
We can assign ℎ to the label corresponding to the highest
probability 𝑝ℎ. Assume further that ℐ = [𝐿 − 𝑈 ], for
grayscale images, or ℐ = [𝐿−𝑈 ]3 for RGB images, where
𝐿 and 𝑈 are the lower and upper limits of the pixel scale.
In most cases 𝐿 is 0, and 𝑈 is either 1 or 255.

Assume that 𝑐 is the correct label and that we start
with ℎ = 𝑐, otherwise there is no point in fooling the
classifier. We want to add the smallest distortion 𝑑 to 𝑥,
such that the highest probability will no longer be assigned
to ℎ. The distortions must keep the input inside its space,
i.e., we must ensure that 𝑥 + 𝑑 ∈ ℐ. In other words,
the input is box-constrained. Thus, we have the following
optimization:

minimize
𝑑

⃦⃦
𝑑

⃦⃦
subject to 𝐿 ≤ 𝑥 + 𝑑 ≤ 𝑈

𝑝 = 𝑓(𝑥 + 𝑑)
max(𝑝1 − 𝑝𝑐, ..., 𝑝𝑛 − 𝑝𝑐) > 0

(1)

That formulation is more general than the one presented
by [1], for it ignores non-essential details, such as the
choice of the adversarial label. It also showcases the non-
convexity: since max(𝑥) < 0 is convex, the inequality
is clearly concave [14], making the problem non-trivial
even if the model 𝑝 = 𝑓(𝑥) were linear in 𝑥. Deep
networks, of course, exacerbate the non-convexity due
to their highly non-linear model. For example, a simple
multi-layer perceptron for binary classification could have
𝑓(𝑥) = logit−1(𝑊2 ·tanh(𝑊1 ·𝑥+𝑏1)+𝑏2), which is neither
convex nor concave due to the hyperbolic tangent.

A. Procedure

Training a classifier usually means minimizing the clas-
sification error by changing the model weights. To generate
adversarial images, however, we hold the weights fixed, and
find the minimal distortion that still fools the network.
Because any two images can be directly switched with a
large-enough distortion, the problem is only interesting
for small distortions, preferably those imperceptible to
humans.

We can simplify the optimization problem of equation 1
by exchanging the max inequality for a term in the loss
function that measures how adversarial the probability
output is:

minimize
𝑑

⃦⃦
𝑑

⃦⃦2
2 + 𝐶 ·H(𝑝, 𝑝𝐴)

subject to 𝐿 ≤ 𝑥 + 𝑑 ≤ 𝑈

𝑝 = 𝑓(𝑥 + 𝑑)

(2)

where we introduce the adversarial probability target
𝑝𝐴 = [1𝑖=𝑎], which assigns zero probability to all but a
chosen adversarial label 𝑎. We use the square of the ℓ2-
distance as the penalty term to the adversarial distortion.
We experimented with the ℓ1-distance penalty, but we
did not find any improvements in the adversarial attack.
The formulation in equation 2 is essentially the same of
1, picking an explicit (but arbitrary) adversary label. We
stipulate the loss function: the cross-entropy (H) between
the probability assignments; while 1 keep that choice open.

The constant 𝐶 balances the importance of the two
objectives. The lower the constant, the more we will
minimize the distortion norm. Values too low, however,
may turn the optimization unfeasible. We want the lowest,
but still feasible, value for 𝐶.

We can solve the new formulation with any local search
compatible with box-constraints. Since the optimization
variables are the pixel distortions, the problem size is ex-
actly the size of the network input, in our case 221×221×
3 = 146 523 for the OverFeat network [15]. Such input
sizes make numeric differentiation (e.g. finite differences)
impractical to compute the huge number of gradients
required to find an adversarial image: a single gradient of
the output with respect to the input of a 256×256 pixels×3
channels image requires almost 200 thousand feedforward
evaluations. We must, thus, resort to backpropagation,
just as if we were training the network.

In contrast to current neural network training, that
reaches hundreds of millions of weights, those sizes are
small enough to allow second-order procedures, which
converge faster and with better guarantees [16]. We chose
L-BFGS-B, a box-constrained version of the popular L-
BFGS second-order optimizer [17]. We set the number of
corrections in the limited-memory matrix to 15, and the
maximum number of iterations to 150. We used Torch7 to
model the networks and extract their gradient with respect
to the inputs [18].



Fig. 2. Original images on the top row, adversarial images on the bottom row, distortions (difference between original and adversarial
images) on the middle row. OverFeat on ImageNet. From left to right, correct labels: ‘Abaya’, ‘Ambulance’, ‘Banana’, ‘Kit Fox’, ‘Volcano’.
Adversarial labels for all: ‘Bolete’ (a type of mushroom).

Finally, we implemented a bisection search to determine
the optimal value for 𝐶 [19]. The algorithm is explained
in detail in the next section.
B. Algorithm

Algorithm 1 implements the optimization procedure
used to find the adversarial images. The algorithm is essen-
tially a bisection search for the constant 𝐶, where in each
step we solve a problem equivalent to equation 2. Bisection
requires initial lower and upper bounds for 𝐶, such that
the upper bound succeeds in finding an adversarial image,
and the lower bound fails. It will then search the transition
point from failure to success (the “zero” in a root-finding
sense): that will be the best 𝐶. We can use 𝐶 = 0 as lower
bound, as it always leads to failure (the distortion will go
to zero). To find an upper bound leading to success, we
start from a very low value, and exponentially increase it
until we succeed. During the search for the optimal 𝐶 we
use warm-starting in L-BFGS-B to speed up convergence:
the previous optimal value found for 𝑑 is used as initial
value for the next attempt.

To achieve the general formalism of equation 1 we would
have to find the adversarial label leading to minimal dis-
tortion. However, in datasets like ImageNet [20], with hun-
dreds of classes, that search would be too costly. Instead, in
our experiments, we opt to consider the adversarial label
as one of the sources of random variability. As we will
show, that does not upset the analyses.

Algorithm 1 Adversarial image generation algorithm
Require: A small positive value 𝜖
Ensure: 𝐿-𝐵𝐹𝐺𝑆-𝐵(𝑥, 𝑝𝐴, 𝐶) solves optimization 2

1: {Finding initial 𝐶}
2: 𝐶 ← 𝜖
3: repeat
4: 𝐶 ← 2× 𝐶
5: 𝑑, 𝑝← 𝐿-𝐵𝐹𝐺𝑆-𝐵(𝑥, 𝑝𝐴, 𝐶)
6: until max(𝑝𝑖) in 𝑝 is 𝑝𝑎

7: {Bisection search}
8: 𝐶𝑙𝑜𝑤 ← 0, 𝐶ℎ𝑖𝑔ℎ ← 𝐶
9: repeat

10: 𝐶ℎ𝑎𝑙𝑓 ← (𝐶ℎ𝑖𝑔ℎ + 𝐶𝑙𝑜𝑤)/2
11: 𝑑′, 𝑝← 𝐿-𝐵𝐹𝐺𝑆-𝐵(𝑥, 𝑝𝐴, 𝐶ℎ𝑎𝑙𝑓 )
12: if max(𝑝𝑖) in 𝑝 is 𝑝𝑎 then
13: 𝑑← 𝑑′

14: 𝐶ℎ𝑖𝑔ℎ ← 𝐶ℎ𝑎𝑙𝑓

15: else
16: 𝐶𝑙𝑜𝑤 ← 𝐶ℎ𝑎𝑙𝑓

17: end if
18: until (𝐶ℎ𝑖𝑔ℎ − 𝐶𝑙𝑜𝑤) < 𝜖
19: return 𝑑



III. Adversarial Space Exploration
In this section we explore the vector space spanned by

the pixels of the images to investigate the “geometry” of
adversarial images: are they isolated, or do they exist in
dense, compact regions? Most researchers currently believe
that images of a certain appearance (and even meaning)
are contained into relatively low-dimensional manifolds
inside the whole space [21]. However, those manifolds
are exceedingly convoluted, discouraging direct geometric
approaches to investigate the pixel space.

Thus, our approach is indirect, probing the space around
the images with small random perturbations. In regions
where the manifold is nice — round, compact, occupying
most of the space — the classifier will be consistent (even
if wrong). In the regions where the manifold is problem-
atic — sparse, discontinuous, occupying small fluctuating
subspaces — the classifier will be erratic.

A. Datasets and Models
We used the pre-trained OverFeat network [15], which

achieved 4th place at the ImageNet competition in 2013,
with 14.2% top-5 error in the classification task, and won
the localization competition the same year. [1] employed
AlexNet [22], which achieved 1st place at the ImageNet
competition in 2012, with 15.3% top-5 error.

We preprocess the inputs by standardizing each pixel
with the global mean and standard deviation of all pixels
in the training set images. We used Torch7 [18] for the
implementation1.

Figure 2 illustrates examples generated by the proce-
dure above. Original and adversarial images are virtually
indistinguishable. The pixel differences (middle row) do
not show any obvious form.

B. Methods
We sampled 5 classes (Abaya, Ambulance, Banana, Kit

Fox, and Volcano), 5 correctly classified examples from
each class, and sampled 5 adversarial labels (Schooner, Bo-
lete, Hook, Lemur, Safe), totaling 125 adversarial images.
All random sampling was made with uniform probability.
To sample only correctly classified examples, we rejected
the misclassified ones until we accumulated the needed
amount. We call, in the following sections, those correctly
classified images originals, since the adversarial images are
created from them.

The probing procedure consisted in picking an image
pair (an adversarial image and its original), adding vary-
ing levels of noise to their pixels, resubmitting both to
the classifier, and observing if the newly assigned labels
corresponded to the original class, to the adversarial class,
or to some other class.

We measured the levels of noise (𝜆) relative to the
difference between each image pair. We initially tested a

1The source code for adversarial image generation and pixel space
analysis can be found at https://github.com/tabacof/adversarial.

5 4 3 2 1 0 1 2 3 4 5
Noise level (log2λ)

0

20

40

60

80

100

Fr
ac

tio
n 

of
 im

ag
es

 (%
)

ImageNet from Adversarial

Swiches to correct original class
Stays in same adversarial class

5 4 3 2 1 0 1 2 3 4 5
Noise level (log2λ)

0

20

40

60

80

100

Fr
ac

tio
n 

of
 im

ag
es

 (%
)

ImageNet from Original

Stays in same correct original class

Fig. 3. Adding Gaussian noise to the images. We perform the
probing procedure explained in Section III-B to measure the stability
of the classifier boundaries at different points of the pixel space.
To escape the adversarial pockets completely we have to add a
noise considerably stronger than the original distortion used to reach
them in the first place: adversarial regions are not isolated. That is
especially true for ImageNet/OverFeat. Still, the region around the
correctly classified original image is much more stable. This graph
is heavily averaged: each stacked column along the horizontal axis
summarizes 125 experiments × 100 random probes.

Gaussian i.i.d. model for the noise. For each image 𝑥 =
{𝑥𝑖}, our procedure creates an image 𝑥′ = {clamp(𝑥𝑖 +𝜖)}
where 𝜖 ∼ 𝒩 (𝜇, 𝜆𝜎2), and 𝜇 and 𝜎2 are the sample mean
and variance of the distortion pixels. In the experiments
we ranged 𝜆 from 2−5 to 25. To keep the pixel values of 𝑥′

within the original range [𝐿 − 𝑈 ] we employ clamp(𝑥) =
min(max(𝑥, 𝐿), 𝑈). In practice, we observed that clamping
has little effect on the noise statistics.

C. Results
Figure 3 shows that adversarial images do not appear

isolated. On the contrary, to completely escape the adver-
sarial pocket we need to add a noise with much higher
variance — notice that the horizontal axis is logarithmic
— than the distortion used to reach the adversarial image
in the first place.

The original images display a remarkable robustness
against Gaussian noise (Figure 3(b)), confirming that
robustness to random noise does not imply robustness to

https://github.com/tabacof/adversarial
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Fig. 4. Adding Gaussian noise to the images. Another view of
the probing procedure explained in Section III-B. Contrarily to the
averaged view of Figure 3, here each one of the 125 experiments
appears as an independent curve along the Experiments axis (their
order is arbitrary, chosen to reduce occlusions). Each point of the
curve is the fraction of probes (out of a hundred performed) that
keeps their class label.

adversarial examples [10]. That shows that while the ad-
versarial pockets are not exactly isolated, neither are they
as well-behaved as the zones that contain the correctly
classified samples.

The results in Figure 3 are strongly averaged, each data
point summarizing, for a given level of noise, the result
of 125 experiments: the fraction of images that fall in
each label for all five original class labels, all five original
samples from each label, and all five adversarial class
labels. In reality there is a lot of variability that can be
better appreciated in Figure 4. Here each curve alongside
the axis experiments represents a single choice of original
class label, original sample, and adversarial class label,
thus there are 125 curves. (The order of the curves along
that axis is arbitrary and chosen to minimize occlusions
and make the visualization easier). The graphs show that
depending on a specific configuration, the label may be
very stable and hard to switch (curves that fall later

or do not fall at all), or very unstable (curves that fall
early). Those 3D graphs also reinforce the point about the
stability of the correctly classified original images.

IV. Conclusion
Our analysis reinforces previous claims found in the

literature [4], [13]: adversarial images are not necessarily
isolated, spurious points: many of them inhabit relatively
dense regions of the pixel space. That helps to explain
why adversarial images tend to stay adversarial across
classifiers of different architectures, or trained on different
sets [1]: slightly different classification boundaries stay
confounded by the dense adversarial regions.

Are adversarial images an inevitable Achilles’ heel of
powerful complex classifiers? Speculative analogies with
the illusions of the Human Visual System are tempting,
but the most honest answer is that we still know too little.
Our hope is that this article will keep the conversation
about adversarial images ongoing and help further explore
those intriguing properties.

V. Publications
During his Master studies, the author has participated

in four scholarly publications:
∙ First author of 23, published at the IJCNN 2016. The

author received a Travel Grant from IEEE-CIS to
attend the conference. The article was the subject of
two media pieces 24], [25.

∙ First author of 26, presented at the Workshop on
Adversarial Training at the NIPS 2016 conference.
The paper was selected as one of the spotlight pre-
sentations.

∙ Second author (with equal contribution to the first)
of 27, presented at the Workshop on Bayesian Deep
Learning at NIPS 2016.

∙ Second author of 28, published at the journal PLOS
ONE.

The first two papers listed above are mostly incorpo-
rated to the dissertation, while the last two are not. As of
June 2017, those papers have been cited 23 times according
to Google Scholar.
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