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Petrópolis, Brazil
Email: gilson@lncc.br

Abstract—Nowadays, pattern recognition, computer vision,
signal processing and medical image analysis, require the man-
aging of large amount of multidimensional image databases,
possibly sampled from nonlinear manifolds. The complex tasks
involved in the analysis of such massive data lead to a strong
demand for nonlinear methods for dimensionality reduction to
achieve efficient representation for information extraction. In
this avenue, manifold learning has been applied to embed non-
linear image data in lower dimensional spaces for subsequent
analysis. The result allows a geometric interpretation of image
spaces with relevant consequences for data topology, compu-
tation of image similarity, discriminant analysis/classification
tasks and, more recently, for deep learning issues. In this
paper, we firstly review Riemannian manifolds that compose
the mathematical background in this field. Such background
offers the support to set up a data model that embeds usual
linear subspace learning and discriminant analysis results
in local structures built from samples drawn from some
unknown distribution. Afterwards, we discuss topological issues
in data preparation for manifold learning algorithms as well
as the determination of manifold dimension. Then, we survey
dimensionality reduction techniques with particular attention
to Riemannian manifold learning. Besides, we discuss the
application of concepts in discrete and polyhedral geometry for
synthesis and data clustering over the recovered Riemannian
manifold with emphasis in face images in the computational ex-
periments. Next, we discuss promising perspectives of manifold
learning and related topics for image analysis, classification
and relationships with deep learning methods. Specifically,
we discuss the application of foliation theory, discriminant
analysis and kernel methods in curved spaces. Besides, we take
differential geometry in manifolds as a paradigm to discuss
deep generative models and metric learning algorithms.

Keywords-manifold learning; statistical learning; Rieman-
nian manifolds; image analysis; deep learning

I. INTRODUCTION

Many areas such as computer vision, signal processing
and medical image analysis require the managing of data sets
with a large number of features or dimensions. Therefore,
dimensionality reduction may be necessary in order to
discard redundancy and reduce the computational cost of
further operations [1]–[3].

We may distinguish two major classes of dimensionality
reduction methods: linear and nonlinear. The former includes

the classical principal component analysis (PCA), factor
analysis (FA) [3], multidimensional scaling (MDS) [4], [5]
and projection pursuit (PP) [3], [6]. Linear techniques seek
for new variables that obey some optimization criterium and
can be expressed as linear combination of the original ones.
That’s why they fail if the input data has curved or nonlinear
structures.

Nonlinear dimensionality reduction methods include ker-
nel approaches, like kernel PCA (KPCA), kernel LDA
(KLDA) and kernel Fisher discriminant analysis (KFD).
These techniques map the original input data into a feature
space by a (global) nonlinear mapping, where inner products
in the feature space can be computed by a kernel function
in the input space without explicitly knowing the nonlinear
mapping [7]–[9].

A more complete scenario in nonlinear dimensionality
reduction is the one that encompasses samples from dif-
ferent classes obtained from an unknown data manifold.
We can use manifold learning techniques to estimate the
intrinsic manifold topology and geometry in order to ad-
dress the problem of dimensionality reduction. Also, we
can estimate local tangent spaces using linear subspace
learning techniques. From such viewpoint emerges a data
model that embeds usual linear dimensionality reduction and
discriminant analysis results in local structures built from
samples drawn from some unknown distribution. In this way,
we recognize manifold learning as a background to image
analysis techniques based on the geometric structure of
high-dimensional image databases [10], [11]. The so called
geometric data analysis is a combination of differentiable
manifold elements, data representation techniques, machine
and statistical learning methods, for extracting meaningful
information from image spaces [1], [2], [12], [13].

From a theoretical viewpoint, manifold learning is based
on the assumption that the database samples (or their fea-
tures) lie on a low-dimensional manifold M embedded in a
high-dimensional space [14]. In the specific case of Rieman-
nian manifold learning (RML) techniques [15]–[17], there is
also the assumption that the low-dimensional manifold is a
Riemannian one; that is, it is equipped with an inner product



that varies smoothly from point to point [18], [19].

Therefore, we need to learn the underlying intrinsic
manifold geometry in order to address the problem of
dimensionality reduction. Thus, instead of seeking for an
optimum linear subspace, like performed for linear tech-
niques [3], the manifold learning methods try to discover
an embedding procedure that describes the intrinsic similar-
ities of the data [20]. In order to implement this solution,
manifold learning approaches take the samples of a database
D = {p1, . . . ,pN} ⊂ RD and perform the following
steps [11], [17], [21]: (a) Recover the data topology; (b)
Determination of the manifold dimension d; (c) Construction
of a neighborhood system; (d) Computing the embedding
or local parameterizations associated to the neighborhood
system. The former is a global map f :M→ Rd while the
latter is a family of local coordinate systems {(Uα, ϕα)}α∈I ,
where I is an index set, Uα ⊂ Rd and ϕα : Uα →M.

Each one of the above steps has specific issues that have
been addressed in different ways along the literature. So, we
analyse the problems related to data topology, and manifold
dimension estimation [2], [22], [23]. Then, we review some
traditional algorithms in manifold learning (Local Tangent
Space Alignment (LTSA), Locally Linear Embedding (LLE)
and Isomap). Besides, we discuss the local Riemannian
manifold learning (LRML) technique in order to present
specific issues in distance preservation in the lower di-
mensional data representation. We give special attention to
application of concepts in discrete and polyhedral geometry
for synthesis and data clustering over the manifold [17], [24].
In the experimental results we explore the LRML framework
for face image synthesis and analysis. Lastly, we discuss
opened issues exploring foliation theory and the topological
structure of the face image space. Also, the relationship
between manifold and deep learning starts to be investigated
to identify the factors that contribute to the success of deep
hierarchical representations of the data [25]. We focus on
generative adversarial networks and deep metric learning
[26], [27]. Besides, discriminant analysis and kernel methods
in manifolds will be discussed.

This paper is organized as follows. Section II gives the
geometric background. Then, section III offers a geometric
viewing of linear and nonlinear dimensionality reduction
methods. Section IV discusses concerns about data topology
and dimensionality estimation in manifold learning. Next,
sections V and VI survey linear and manifold learning
frameworks for dimensionality reduction. Afterwards, in sec-
tion VII we embed the concepts of synthesis and clustering
in a discrete geometry framework. The section VIII shows
the experimental results using LRML technique. In section
IX we discuss promising perspectives for manifold learning
in image analysis and relationships with deep learning
methods. Finally, we end with the conclusions in section
X.

II. DIFFERENTIABLE MANIFOLDS ELEMENTS

In this paper, the normal uppercase symbols represent
matrices, data sets and subspaces (P , U , D, S, etc.); the
bold lowercase symbols represent data points and vectors,
such as p, x, y; and the normal Greek lowercase symbols
represent scalar numbers (λ, α, etc.).

A differentiable manifold of dimension d is a set, denoted
in Figure 1 as Md and a family of one-to-one functions
{ϕα}α∈I , with I an index set, ϕα : Uα ⊂ Rd →Md where
Uα is an open set of Rd, such that [28]:

1) ∪α∈Iϕα (Uα) =Md.
2) For every α, β ∈ I, with ϕα (Uα)∩ϕβ (Uβ) = W 6= ∅,

the sets ϕ−1
α (W ) and ϕ−1

β (W ) are open sets in Rd and
the chart transition ϕ−1

β ◦ ϕα : ϕ−1
α (W ) → ϕ−1

β (W ) are
differentiable functions.

3) The family {(Uα, ϕα)} is maximal respect to properties
(1) and (2).

The properties (1) and (2) define the differential structure
ofMd. They allow to generate a natural topology overMd:
a set A ⊂Md is an open set of Md if ϕ−1

α (A ∩ ϕα (Uα))
is an open set of Rd, ∀α.

Figure 1. Coordinates change and differentiable manifold elements.

Let p ∈ ϕα (Uα) and ϕ−1
α (p) = (x1 (p) , ..., xn (p)). So,

ϕα (Uα) is called a coordinate neighborhood and the pair
(Uα, ϕα) a local parametrization or system of coordinates
for Md in p. The Figure 1 pictures the main elements
of items (1)-(3) representing also the change of coordinate
systems in the item (2). If ϕ−1

β ◦ϕα ∈ Ck, with k ≥ 1, then
we say that Md is a Ck-differentiable manifold, or simply
Ck-manifold. If k = ∞, Md is called a smooth manifold.
Besides, we say that N is a submanifold ofMd if N ⊂Md

and N is also a differentiable manifold.
Let Md be a Ck-manifold of dimension d with local

coordinates ϕ : U ⊂ Rd → Md, at a point p = ϕ (x).



A tangent vector v to Md at p can be expressed in the
local coordinates x = (x1, ..., xn) as:

v =

d∑
i=1

(
vi

∂

∂xi

)
. (1)

where the vectors

B =

{
∂

∂x1
, ...,

∂

∂xm

}
, (2)

are defined by the local coordinates.
The set of all tangent vectors to Md at p is called the

tangent space to Md at p, and is denoted by Tp

(
Md

)
.

The vectors in the set (2) determine an natural basis for
Tp

(
Md

)
. The collection of all tangent spaces to Md is

the tangent bundle of the differentiable manifold Md :

TM =
⋃

p∈Md

Tp

(
Md

)
. (3)

A Riemannian manifold is a manifoldMd equipped with
an inner product in each point p (bilinear, symmetric and
positive definite form in the tangent space Tp

(
Md

)
) that

varies smoothly from point to point.
A geodesic in a Riemannian manifold Md is a differ-

entiable curve α : I ⊂ R → Md that is the shortest
path between any two points p1 = α (t1) and p2 = α (t2)
[29]. With this concept, we can define the geodesic distance
between the points p1 and p2 as:

dMd (p1,p2) =

∫ t2

t1

√〈
dα

dt
,
dα

dt

〉
dt. (4)

We denote by α(s,q,
v

‖v‖
) the geodesic, parameterized

by the arc length s, that pass to q at s = 0 with unitary
tangent vector α′ (0) =

v

‖v‖
. Existence and uniqueness for

geodesics can be demonstrated in a Riemannian manifold
which allows to define the exponential map as follows.

Definition 1. Let the subset U ⊂ TM, such that U =
{(q,v); q ∈ Md, v ∈ Tq(Md), ||v|| < ε}. Then, the
function:

exp : U → Md

(q,v) 7→ exp(q,v) = α

(
‖v‖,q, v

‖v‖

)
is well defined and is called exponential map in U .

According to the definition, the geodesic distance from

the point q to the point z = α

(
‖v‖,q, v

‖v‖

)
, that is, the

arc length from q to z, is exactly dMd (q, z) = ‖v‖. We
also use the notation exp(q,v) = expq(v) for the image of

a vector v∈ Tq
(
Md

)
by the exponential map. The Gauss

Lema assures that the exponential map is a local isometry; in

other words, it is a diffeomorphism that preserves the inner
product in Md (a differentiable map f is a diffeomorphism
if it is one-to-one and onto, and if the inverse f−1 is also
differentiable). Therefore, we can define its inverse, called
logmap.

(a)

(b)

Figure 2. (a) Exponential map. (b) Riemann normal coordinates for a
2-dimensional manifold.

Once the exponential map is a local diffeomorphism at
Tp(Md), ∀p ∈ Md, if we map Tp(Md) with Rd the
exponential map can be used to define a system of local
coordinates for Md in p as follows.

Definition 2. Let p ∈ Md, and a orthonormal basis
{ei} in Tp(Md). If q = expp (

∑
i uiei) then we call

(u1, u2, . . . , ud) the Riemann normal coordinates of q.
Conversely, once the exponential map is a diffeo-

morphism, its inverse (logmap) is well defined. So, if
logmap (q) = v ∈ Tp(Md) then we can project v in
{ei} to get the Riemann normal coordinates. The Figure
2 illustrates these concepts for 2-dimensional manifold (a
regular surface in R3). The Figure 2.(a) describes the ex-
ponential map computed at a pair (p,v) given the point
q = expp(v) and the Figure 2.(b) the associated system of
local coordinates in which the point q ∈ Md has Riemann
normal coordinates (a1, a2).

Let Md and N k be submanifolds of a manifold Y . We
say that Md and N k are transverse, if at every point p ∈
Md ∩N k we verify the property:

Tp

(
Md

)
+ Tp

(
N k
)

= Tp

(
Yd
)
, (5)

where ‘+’ indicates sum o vector spaces.

III. GEOMETRY AND DIMENSIONALITY REDUCTION

In general, the dimension of the original data space is
very large which requires some dimensionality reduction



technique in order to discard redundancies. So, let an input
database:

D = {p1,p2, . . . ,pN} ⊂ RD. (6)

The key assumption in manifold learning methods is that
the points in D are samples of a lower-dimensional manifold
Md, with d < D, embedded in the high-dimensional
space RD. For instance, in the case of Figure 3 the curve
represents an one-dimensional manifold embedded in a two-
dimensional space.

Figure 3. Data model elements: Original coordinate system (x1, x2),
manifold (M1), tangent space at a point p ∈ M1, probability density
function (pdf ).

Behind manifold learning techniques there is a data model
which main elements are pictured on Figure 3. In this figure,
the corresponding geometry is represented by a smooth
curve, which is a differentiable manifold of dimension d =
1. Given a point p ∈M1, the tangent space Tp

(
M1

)
is the

Euclidean space that spans all the vectors that are tangent to
M1 in p. Data points appear according to some probability
density function (pdf ), which is depicted bellow the tangent
space in the Figure 3. In this paper, we are concerning with
the problem of how to recover the underlying manifold from
the samples.

Once Md ⊂ RD the Whitney Theorem [30] assures that
D ≥ 2d+1. Therefore, if we compute an one-to-one smooth
map ψ :Md → Rs that preserves the differential structure
ofMd, called here embedding, such that (2d+ 1) ≤ s < D
then we perform dimensionality reduction in the sense that
the embedding f allows to represent each data point using
less coordinates than the original data representation. This
process is pictured in Figure 4.(a).

On the other hand, we could try to estimate the dimension
d of the data manifold and, instead of computing the global
embedding, we could calculate local parameterizations ϕα :
Uα ⊂ Rd → M in order to recover the differentiable
structure of the manifold, defined by properties (1)-(2) of
section II, and represented in Figure 1.

Therefore, to address the manifold learning problem we
can distinguish two approaches: (a) Learning methods that

Figure 4. Data samples over the manifoldMd ⊂ RD and the embedding
in the Rs.

compute an embedding ψ : Md → Rs; (b) Seek for a
compact data representation by recovering the differentiable
structure behind the support manifold. Techniques like LLE
and Isomap [31], [32] follow the first approach while LRML
implements the second one [17].

Besides, linear dimensionality methods, like PCA, can
be used to estimate the manifold dimension and, con-
sequently, compose the whole framework behind mani-
fold learning. Moreover, nonlinear dimensionality reduction
methods based on kernel approaches can be analysed using
differentiable manifold elements [33]. Such relationships
between dimensionality reduction methods motivates the
taxonomy shown in Figure 5.

Figure 5. Taxonomy for dimensionality reduction methods: manifold
learning, subspace learning and subclasses.



IV. MANIFOLD LEARNING ISSUES

In most of manifold learning methods, there are two
free parameters: the neighborhood size and the intrinsic
dimension of the high dimensional data set. The former is
fundamental to define the manifold topology. For instance,
the Figure 6 shows an example that illustrates the problem
when choosing a too large neighborhood size: point xi will
be connected with point c generating paths that do not
belong to the data manifold (short-circuits). Such problem is
even more important in sparse data sets, as pictured in Figure
6. The generation of the local parameterizations in definition
of differentiable manifold (section II) undergoes also strong
influence of the neighborhood size parameter. The intrinsic
dimension can provide insights about the complexity of the
model needed to represent the data, as well as the actual
degrees of freedom involved which may be different from
the dimensionality of the input space. Next, we provide some
solutions for these issues.

Figure 6. Sparse sampling and a short-circuit point in green.

A. Recovering the data topology

Among the possibilities to yield the data topology [34],
[35], we will describe the solution presented in the RML
technique [15]. The RML has as input the database D =
{p1, . . . ,pN} ⊂ RD, the number of neighbors for each
point pi ∈ D and a parameter ρ used for the selection of
these neighbors, both chosen by trial and error. Initially, the
Dijkstra’s algorithm is used to compute the minimum paths
on the complete graph G(D) whose vertices are the elements
of D.

1 For each element pi ∈ D find the set KNN(pi)
composed by the K ≤ N nearest neighbors of pi
in the graph G(D).

2 Determine the set of visible neighbors of pi defined

by:

V N(pi) = {p ∈ KNN(pi); 〈pi − p,pi − q〉 ≥ 0,

∀q ∈ KNN(pi)}.
(7)

3 Obtain the safe neighborhood denoted by SN(pi)
as follows: Firstly, sort the vectors pj − pi, pj ∈
V N(pi) in the ascending order of lengths to
obtain the set {e1, e2, . . . , eK}. Next, apply PCA
to compute the local intrinsic dimension dj of the
subspace generated by the first j (1 ≤ j ≤ K)
elements of {e1, . . . , eK}. If dj > dj−1, calculate
the jump of increased length ‖ej‖−‖ej−1‖. If the
maximal jump is larger than a threshold given by
ρµ(‖ej‖), where ρ > 0 and µ(‖ej‖) is the average
size of vectors {e1, . . . , eK}, then pj is removed.

B. Building Neighborhood System

In this section we build a suitable cover for the database
that is composed of subsets Di ⊂ D such that D = ∪i=1Di.
For this task we revise the solution presented in [17]. We
consider the subgraph G̃ of G, whose edges connect only
safe neighbors determined in section IV-A, and use Dijk-
stra’s algorithm to compute shortest paths on the graph G̃
which, given two safe points p1 and p2, may be considered
approximations of the geodesic distances between them,
given by expression (4). We denote by dG̃(p1,p2), the
shortest distance between the two points on the graph G̃.

1 Choose p ∈ D and set W ← D and i← 1.
2 Main Loop: while W 6= ∅:
3 qi ← p,
4 Let V (qi) the set of K nearest neighbors of qi in G̃.
5 Find the data point q′ that is farthest from qi in the

set V (qi) and compute ri = dG̃(qi,q
′), the geodesic

distance from qi to q′. Take the safe points s such that
d(qi, s) ≤ αri where α > 1.0. Let Di the obtained
set.

6 Find p that is farthest from pi in Di,
7 If W 6= W−Di then W ←W−Di. Otherwise choose

p ∈W ,
8 i← i+ 1,
The output of the above algorithm is given by the points

qi ∈ D, called base points, and the sets Di, V (qi), i =
1, · · ·, L, where L is the execution number of the main loop.

C. Manifold Dimension Estimation

The data manifold dimension is directly related to the
concept of intrinsic dimension of a data set, which is the
minimum number of coordinates that is necessary in order to
account for all the information in the data [36]. In this paper,
the data set is modeled by the manifold geometry which
is supposed to be a connected topological space locally
homeomorphic to Euclidean d-space. The number d is the



manifold dimension (section II) which can be also defined
as intrinsic dimension of data set [36].

The use of more dimensions than strictly necessary leads
to several problems in terms of space needed to store the data
as well as performance of algorithms. In fact, the computa-
tional complexity of pattern recognition procedures depends
on the dimension of the feature vectors, so a reduction of
the dimension can result in reduced computation time. In
this scenario, classification of different sample groups must
be performed over the manifold by computing separating
submanifolds [37]. Hence, the suitable determination of
the manifold dimension leads to improved classification
performance.

Following [36], we may distinguish two categories of
techniques for estimating the manifold dimension. The first
one is local, using the information contained in sample
neighborhoods, avoiding the projection of the whole data set
onto a lower-dimensional space. For instance, at the end of
the steps described on section IV-A, we can get a dimension
di for every SN(pi) by computing the PCA (section V-A
next) and keep the di eigenvectors with eigenvalues larger
than a predefined tolerance. Then, and we can estimate
the manifold dimension through the average of the di’s.
Regarding the data model pictured in Figure 3, in this pro-
cess we are determining the dimension of the tangent space
Tp

(
Md

)
. However, the sets SN(pi) define a topology of

the data set, which allows to define a neighborhood system
for the target manifold, as we shall see next.

In the second class (global), the data set is unfolded in the
d-dimensional space [38]. Traditional methods in this cate-
gory include PCA, that works well if the manifold curvature
is small. Global method based on minimal spanning trees of
geodesic graphs are also reported in the literature [36].

V. LINEAR DIMENSIONALITY REDUCTION

These methods can be also classified as subspace learning
approaches in the sense that the output linear space has an
optimum subspace for compact data representation. Among
the techniques in this category [4], [5], we describe bellow
the PCA and MDS because the former is commonly used to
estimate the manifold dimension (as commented in section
IV-C) while the latter is applied in the ISOMAP to compute a
distance preserving embedding for dimensionality reduction.

A. Principal Component Analysis (PCA)

Given the database in expression (6) the PCA works as
follows:

1) Compute the global mean:

p =
1

N

N∑
i=1

pi, (8)

2) Compute the set {(p1 − p) , (p2 − p) . · ··, (pN − p)},
and the Covariance Matrix:

S =
1

N

N∑
i=1

(pi − p) · (pi − p)
T
, (9)

3) Compute the eigenvectors {v1,v2, · · ·,vD} of S and
select the d ones which correspond to the largest
eigenvalues as the principal direction.

Considering Figure 3, we shall observe that, the step (3)
will select d directions, say v1, ···,vd, such that span{v1, ··
·,vd} ≈ Tp

(
Md

)
. Therefore, if the manifold curvature

is small everywhere, we can represent Md as a linear d
dimensional space:

Md =
{
p + w ∈ RD; w ∈ span{v1, · · ·,vd}

}
. (10)

B. Multidimensional Scaling (MDS)

Let the distance matrix A = {dij}, where:

dij = d (pi,pj) = ||pi − pj ||, (11)

with || · || ≡ || · ||2 along this paper, and pi,pj ∈ D defined
in expression (6). Therefore:

d2
ij = ||pi||2 + ||pj ||2 − 2pTi pj . (12)

Let the matrices A = {aij} and B = {bij} given by:

aij = −1

2
d2
ij , (13)

bij = pTi pj = −1

2

(
d2
ij − ||pi||2 − ||pj ||2

)
, (14)

The multidimensional scaling seeks for a low-dimensional
orthogonal projection yi = PTpi , where P ∈ RD×s that
solves the problem [11]:

min
P

∑
i

∑
j

(
d (pi,pj)− d

(
PTpi, P

Tpj
))2

. (15)

So, following [11], [39], we form the matrix:

B = HAH, (16)

where A = {(−1/2)d2
ij}, H = IN −N−1JN is a centering

matrix, JN is the matrix of all ones and IN is the identity
matrix, all of them with dimension N × N . Then, we find
a matrix B∗ that minimizes:

trace
{

(B −B∗)2
}

=
∑
i

∑
j

(
bij − b∗ij

)2
. (17)

If {λk} and {λ∗k} are the eigenvalues of B and B∗,
respectively, then the minimum of the objective function (17)
is given by

∑
N
k=1 (λk − λ∗k)

2, where λ∗k = max (λk, 0), for
k = 1, 2, . . . , N . By the spectral theorem we know that we
can factor B as:



B = V ΛV T , (18)

where Λ = diag {λ1, λ2, . . . , λN} is the diagonal matrix
of the eigenvalues of B, and V = (v

1
,v

2
, . . . ,v

N
) is the

matrix whose columns are the eigenvectors of B. If B is
nonnegative-definite with s < D non-null eigenvalues, then
expression (18) becomes:

B = VsΛsV
T
s =

(
VsΛ

1/2
s

)(
Λ1/2
s Vs

)T
= Y Y T , (19)

where Vs = (v
1
,v

2
, . . . ,vs), Λs = diag {λ1, λ2, . . . , λs},

and:

Y = VsΛ
1/2
s =

(√
λ1v1

,
√
λ2v2

, . . . ,
√
λsvs

)
. (20)

The new coordinates are the columns y1,y2, . . . ,yN ∈
Rs of Y T ∈ Rs×N and we can show that:

||yi − yj ||2 = (yi − yj)
T

(yi − yj) = d2
ij ,

where dij is given by expression (11).

VI. MANIFOLD LEARNING METHODS

If the curvature cannot be discarded, as observed in Figure
3, than the expression (10) gives a poor representation of
Md if globally applied. Manifold learning methods address
such limitation of linear techniques by embedding linear
subspace learning as local structures in the data geometry.

A. Local Tangent Space Alignment (LTSA)

We assume that the target differentiable manifold Md is
globally parameterized through an unknown function:

f : U ⊂ Rd →Md, (21)

with d < D and Md ⊂ RD.
Given the subset D ⊂ M, where D is defined in

expression (6), we want to estimate τi ∈ Rd, such that:

f (τi) = pi, i = 1, 2, · · ·, N, (22)

without explicitly constructing f .
Let:

f (τ) = f (τ) + J (τ) (τ − τ) +O
(
‖τ − τ‖2

)
(23)

If we know an unitary matrix Qτ forming an orthonormal
basis for the tangent space Tτ we can write:

J (τ) (τ − τ) = Qτθ
∗
τ (24)

Therefore:

θ∗τ = QTτ J (τ) (τ − τ) ≡ Pτ (τ − τ)

But:

J (τ) (τ − τ) = [f (τ)− f (τ)] +O
(
‖τ − τ‖2

)
So, we can think about an approximation for θ∗τ given by:

θτ = QTτ [f (τ)− f (τ)] = θ∗τ +O
(
‖τ − τ‖2

)
.

So, we are looking for τ and Pτ such that:∫
dτ

∫
Ω(τ)

‖Pτ (τ − τ)− θτ‖ dτ ≈ 0 (25)

If J (τ) is of full column rank, the matrix Pτ is non-
singular and then:

τ − τ ≈ P−1
τ θτ ≡ Lτθτ

So, we can introduce this result in expression (25) and
say that we are looking for τ and an affine transformation
Lτ such that:∫

dτ

∫
Ω(τ)

‖τ − τ − Lτθτ‖ dτ ≈ 0 (26)

The main point here is how to translate the above (con-
tinuous ) development in a model driven by the data. In the
local tangent space alignment (LTSA) method the solution
is based on the following steps [40]: (a) for each pi of the
database take the K-nearest neighbors KNN(pi) and form
the matrix Xi = [pi1 ,pi2 , · · ·,piK ]; (b) For each local
neighborhood KNN(pi) compute a d-dimensional affine
approximation by solving the optimization problem:

minp,θj ,Qi

k∑
j=1

∥∥pij − (p +Qiθ
i
j

)∥∥2

2
(27)

The solution of this problem is p = pi + Qiθ
i
j , where

pi is the mean of the elements of KNN(pi) and Qi is
obtained using the d largest singular values of the matrix
Xi − pie

T , where e is a m-dimensional column vector of
all ones. The matrix Qi corresponds to the matrix Qτ in
the continuous formulation (expression (24)) and will be the
input for the next stage of the LTSA method in order to solve
a discrete version of the problem (26) for computing the
global coordinates τi, i = 1, 2, ···, N [40]. This is performed
by written the reconstruction error

τij = τ i + Liθ
i
j + εij , (28)

with j = 1, 2 . . . ,K and i = 1, 2, . . . , N , where Li
is a local affine transformation. If we form the matrices
Ti = [τi1 , . . . , τiK ] and Ei =

[
εi1, . . . , ε

i
K

]
, and Θi =[

θi1, . . . , θ
i
K

]
then we can assemble the reconstruction errors

in the matrix form:

Ei = Ti

(
I − 1

K
eeT

)
− LiΘi, (29)



where e is an N-dimensional column vector of all ones. The
optimal alignment matrix Li that minimizes the Frobenius
norm [41] of the local reconstruction ||Ei||F is [40]:

Li = Ti

(
I − 1

K
eeT

)
Θ+
i , (30)

where Θ+
i denotes the Moor-Penrose generalized inverse of

Θ+
i [41]. The last step of LTSA algorithm is to find Ti that

minimizes the global reconstruction error:
N∑
i=1

||Ei||F .

B. Locally Linear Embedding (LLE)

The LLE method [31] is a manifold learning technique
that works through scheme of Figure 7.

Figure 7. Basic steps of Locally Linear Embedding (LLE) algorithm
(Reprinted from [31]).

In this method, for each data point pi ∈ RD it is computed
the KNN neighbors, represented with red color in the
Figure 7. Then, a weighting vector wi,j is computed for
each pi by solving the optimization problem:

min
(wi1,wi2,···,wiK)

∥∥∥∥∥∥pi −
K(i)∑
j=1

wijpj

∥∥∥∥∥∥
2

, (31)

subject to :

K(i)∑
j=1

wij = 1.

where K (i) = KNN (pi).
Expression (31) implies that we are looking for a point,

closer to the point pi, in the convex hull of the polygon
with vertices in the KNN(pi) set. Finally, if we assume
that the underlying data geometry can be embedded in Rs,
with s < D, then we can assign a feature vector yi ∈ Rs to
each pi by solving the expression:

min
yi

∥∥∥∥∥∥yi −
K(i)∑
j=1

wijyj

∥∥∥∥∥∥
2

, (32)

Observe that in this case we are not computing a compact
representation to the tangent space. Instead, the low dimen-
sional output yi represents the s coordinates on the manifold
respect to the target space Rs, as represented in Figure 4.

C. Isometric Feature Mapping

This approach builds on classical MDS but seeks an
isometric embedding; that is, a map that preserves the
geodesic manifold distances between all pairs of data points.
In this way, the isometric feature mapping (ISOMAP) seeks
an embedding of the data points D in Rs that preserves the
intrinsic manifold geometry, estimated through the geodesic
distances. So, the ISOMAP algorithm is composed by three
steps, as follows.

(1) For each pi ∈ D compute the K nearest neighbors in
D, denoted by KNN(pi);

(2) Geodesic Distances Computation: Build a graph G =
G(D, E), where the vertices are the points of D and matrix
E = {eij} indicates neighborhood relationships between
points in the sense that, eij = 1 if pj ∈ KNN (pi),
and eij = 0, otherwise. Next, we estimated the geodesic
distances by computing paths of minimum lengths on the
graph G using the Dijkstra algorithm [42]. The result is the
matrix DG = {d2

G(i, j)} , where dG(i, j) is the length of the
shortest path, in the graph G, between the points pi,pj ∈ D.

(3) Embedding Construction through MDS: We apply the
MDS Algorithm (section V-B) on the graph G by replacing
the matrix A by AG = (−1/2)DG in expression (17) to
obtain a representation of the data in the reduced dimension
s, as shown in Figure 4, preserving the geodesic distances.

D. Local Riemannian Manifold Learning (LRML)

In the LRML method, it is used the RML algorithm [15]
to determine the topology of the data (selection of neighbor-
hoods), perform the dimensionality reduction through a local
adaptation of the fast RML algorithm [16], and synthesize
new points in the original data space using barycentric
coordinates.

1) Local Normal Coordinates : The sets Di, obtained in
section IV-B, provide a cover for D that together with the
manifold dimension d and the sets V (pi) (section IV-B),
are used as input to the local version of the fast RML, given
below:

1 Take the set V (pi) and apply PCA to calculate an
orthonormal basis {eij}dj=1 for the tangent space. The
points p ∈ V (pi) are projected onto the Tpi

Md, and
represented as y = (y1, · · ·, yd)T ∈ Rd in the PCA
coordinate system. Proceed similarly to p ∈ Di−V (pi)
to obtain x = (x1, · · ·, xd)T ∈ Rd. Let Yi e Xi the
obtained coordinate sets.



2 Consider the square of the geodesic distance function
d2
Md(x,y). Compute its bilinear last square approxi-

mation fi : Xi × Yi → R, where fi(x,y) = (x −
y)TAi(x − y), with Ai ∈ Rd×d a symmetric and
positive defined matrix.

3 Given p ∈ Di, estimate the direction of the geodesic
passing through p and pi by computing g =∑d
j=1 g

jeij = ∇yfi(x,y)
∣∣
y=pi

.

4 Calculate the normal Riemann coordinates z for p ∈ Di
through: z = dMd(p,pi)

g√
〈g,g〉

, where dMd(p,pi)

is approximated through the minimum path in the graph
G̃ (section IV-B) linking the points p and pi.

As a consequence of the step 4, we get zi = 0 as the
normal coordinate vector for the point pi. At the end of this
process we obtain the set D̃ = {z1, z2, · · ·, zN} where zj
is the (local) normal coordinates of pj ∈ D. Besides, we
get a lower dimensional data representation that preserves
geodesic distances because 〈zi, zj〉 = (dMd(pi,pj))

2.
This is an important property because the distance be-

tween points (images) is directly linked to notion of simi-
larity between images. Therefore, it is important to preserve
geodesic distances in the final representation. The Figure
8 summarizes the main elements of the LRML and the
obtained manifold parametrization by exponential map.

Figure 8. Exponential map from Tpi (Md) toMd ⊂ RD , with 〈z, zi〉 =
(dMd (p,pi))

2, para z ∈ Tpi (M) and exppi
(z) = p ∈Md.

2) Composition of Local Parameterizations : Let us
take a look to the process for Riemann local normal
coordinates computation, given by Definitions 1 and 2
of section II to explain a key limitation of LRML for
pattern recognition applications. The LRML generates a
decomposition of the database into a neighborhood system
{Di, i = 1, 2, . . . , L} and builds a local parametrization
for each neighborhood ϕi : Ui ⊂ Rd → M, where
ϕi is given by the local exponential map. So, a point
z = (u1, u2, . . . , ud)

T ∈ Ui gives the Riemann normal
coordinates of its image p = ϕi(z). In fact, by returning to
Figures 2, Ui ⊂ Tp(Md) whereMd is the manifold holding
the data and p is common point between the manifold
and the tangent plane used for the normal coordinates
computation. Therefore, ϕi(0, 0, . . . , 0) = p because the
geodesic distance dMd (p,p) = 0. So, (0, 0, . . . , 0) ∈ Ui,

i = 1, 2, · · ·, L, which implies that ∩Li=1Ui = {0}, a fact
already pointed out in [17]. So, the obtained parametrization
can not be used as a feature space, for instance, without
ambiguities.

To address this limitation, in this section, we adapt the
technique proposed in [43] to compute rigid-body transfor-
mations to properly position and orient the local coordinate
systems to get a final global parametrization. Firstly, we take
the sets Di and build disjoint clusters Xi as follows: X1 =
D1 and Xi+1 = Di+1 − ∪ij=1Xj , i = 1, 2, 3, . . . , L − 1.
The Figure 9 pictures the result of this iterative process
when considering the sets D1, D2 and D3, colored with
red, green and blue, respectively. At the initial step of the
iterative process we get X1 = D1, shown in red. Then, the
next iteration will generate the set X2 through the difference
D1+1 − ∪1

j=1Xj = D2 −X1, which gives the green set on
the right side of the Figure 9. Analogously, the procedure
will generate the set X3 = D3 − (X1 ∪X2), in blue color.
We can verify that X1 ∩X2 ∩X3 = ∅, which is the desired
property.

Figure 9. Example for construction of the disjoint sets X1, X2 and X3.

Next, we estimate the base points set BP =
{qi ∈ Xi, i = 1, 2, . . . , L}, which is computed by an ap-
proximated version of the traditional minimax algorithm to
calculate the center of each Xi. Then, we find the nearest
data pair nxij ∈ Xi and nxji ∈ Xj (see Figure 10).

Figure 10. Elements of the composition method.

Each set Xi has a landmark set NXi ={
nxii1 ,nx

i
i2
, . . . ,nxiiL

}
with local reduced

representations Yi =
{
yi1,y

i
2, · · ·,yili

}
and

NYi =
{
nyii1 ,ny

i
i2
, . . . ,nyiiL

}
, respectively, both

computed by LRML. The base points set BP has
also a local reduced LRML representation denoted by



BP = {q1,q2, · · ·,qL}. Moreover, we can compute the
(global) low dimensional representation of NXi as well as
of the base points in the set BP through any dimensionality
reduction method that preserves geodesic distances. The
obtained sets, named SYi = {syii1 , sy

i
i2
, . . . , syiiL} and

CY = {cy1, cy2 . . . , cyL} are used as the skeleton of
the representational space in order to compute the rotation
matrix Ai to properly reorient the local parametrization Yi.
However, instead of computing principal axes like performed
in [43], we achieve a more robust implementation by solving
the following least square problem:

Ai = arg min
A

L∑
k=1

∥∥A (nyiik − qi
)
−
(
syiik − cyi

)∥∥2
,

(33)
where i = 1, 2, . . . , L,.

Therefore, we can align the local representation Yi with
the global skeleton SYi ∪ CY by computing the set:

RYi =
{
ryij = Ai × yij , j = 1, . . . , li

}
. (34)

We must translate each RY i to its proper location given
by lower dimensional representation of the corresponding
base point:

TYi =
{
tyij = ryij + cyi, j = 1, . . . , li

}
. (35)

Finally, the composition:

TY = ∪Li=1TYi, (36)

gives global low dimensional representation of the database
in the representational space.

VII. DISCRETE METHODS FOR SYNTHESES AND DATA
ANALYSIS

After performing the dimensionality reduction, we need
a technique to compute the synthesis of new data from new
points in the representational space. Specifically, given a new
point t̃y ∈ Rd, t̃y /∈ TY , how to compute the corresponding
image q ∈ Md that is immersed in RD? In [21], this
problem is addressed using barycentric coordinates. In this
section we immerse this idea in the framework of discrete
and polyhedral geometry in order to efficiently use barycen-
tric coordinates and to incorporate piecewise linear methods
for data analysis in the reduced space. Let’s look at some
fundamental concepts initially [44].

Definition 3. Given a set D = {p0,p1, ...,pm} ⊂ RN+1

we define the convex hull (co (D)), the affine hull (aff (D))
and the tangent space (tng (D)), respectively, as follows:

co (D) = {v =
∑m
i=0 αipi | αi ≥ 0,

∑m
i=1 αi = 1} ,

aff (D) = {v =
∑m
i=0 αipi |

∑m
i=1 αi = 1} ,

tng (D) = {v = w1 −w2 |, w1,w2 ∈ aff (D)} .
If the vectors p1 − p0,p2 − p0, ...,pm − p0 are linearly

independent in RN+1 then points in D are called affinely
independent. In this case, the set co (D) is called a m-
simplex.

If u ∈ RN+1, u 6= 0 and γ ∈ R, then the set{
x ∈ RN+1 | uTx ≥ γ

}
is named half-space and its bound-

ary
{
x ∈ E | uTx = γ

}
a hyperplane. A finite intersection

of half-spaces is a convex polyhedral or a cell [44]. Hence,
cells are closed convex sets that may be bounded or un-
bounded. A bounded cell is called polytope. It has a finite
number of vertices, say p0, p1,...,pm, and will be denoted
by [p0,p1, ...,pm]. The dimension of a cell σ is identified
with the dimension of its tangent space. If that dimension is
m, we say that the cell is m-dimensional or simply that we
have a m-cell.

Definition 4. A face τ of a cell σ is a convex subset
τ ⊂ σ such that for all x,y ∈ σ and λ ∈ R the following
property holds: x,y ∈ σ, 0 < λ < 1, (1− λ)x + λy ∈
τ =⇒ x,y ∈ τ .

A face τ of dimension k is called a k-face. For instance,
a 0−face is a vertex and a 1−face is an edge of σ.
If dim (τ) = dim (σ) − 1, then τ is called a facet of
σ. All other faces of σ are called proper faces. A point
v ∈ σ − {τ | τ is a k-face of σ} is an interior point of σ.

Definition 5. Let M̂ a family of (N + 1) − cells. For
0 ≤ k ≤ N + 1, we define the sets:

M̂
k

=
{
τ | τ is a k-face of some cell σ ∈ M̂

}
and: ∣∣∣M̂ ∣∣∣ =

⋃
σ∈M̂

σ.

Definition 6. We call M̂ in definition 5 a piecewise linear
manifold of dimension N + 1 if and only if the following
conditions hold:

(1) The intersection σ1 ∩ σ2 of two cells σ1, σ2 ∈ M̂ is
empty or a common face of both cells;

(2) A facet τ ∈ M̂
N

is common to at most two cells of
M̂ ;

(3) The family M̂ is locally finite, that is, any compact
subset of

∣∣∣M̂ ∣∣∣ meets only finitely many cells of M̂ .
A triangulation Γ is a special kind of piecewise linear

manifold in which the cells are simplices of RN+1. A
fundamental point for our work is to build a triangulation
from a set D of points in RN+1 such that the 0−faces of
the triangles are points in D . An efficient algorithm can be
designed to perform this task by using the pivoting process.

Definition 7: Let σ = [p0,p1, ...,pN ,pN+1] be
a (N + 1)-simplex with vertices in D and τ =
[p0,p1, ...,pi−1,pi+1, ...,pN+1] the facet of σ lying op-
posite the vertex pi. The process of pivoting consists of
finding a point p̃i ∈ D, with p̃i 6= pi, in order to build a
simplex σ̃ = [p0,p1, ...,pi−1, p̃i,pi+1, ...,pN+1] such that
σ ∩ σ̃ = τ .



In the above process, we must be careful because it may
exist a point p ∈ D−{p0,p1, ...,pi−1, p̃i,pi+1, ...,pN+2}
such that p ∈ σ̃. Besides, for each new simplex we must
have the properties (1) and (2) above satisfied. The following
algorithm summarizes the whole process:

Algorithm 1: Building a triangulation from a finite set
of points
• 0 Input: Set D = {p0, ...,pm} ⊂ RN+1, with m ≥
N + 1

• 1 Output: Triangulation Γ with vertices in D.
• 2 Initialization

– 2.1. Find a simplex σ ⊂ RN+1 with vertices in D;
– 2.2. Actual list of simplices:

∑
= {σ};

– 2.3. V (σ) = set of vertices of σ;
– 2.4. Point to simplex hash table: H (p) = {σ} if

p ∈ V (σ); H (p) = ∅ otherwise.
• 3 While V (σ) 6= ∅ for some σ ∈

∑
,

– 3.1. get σ =
[
pi0 , ...,piN+1

]
∈
∑

such that
V (σ) 6= ∅;

– 3.2. get p ∈ V (σ) ;
– 3.3. (p̃, σ̃) = Pivoting (p, σ);
– 3.4. drop p from V (σ);
– 3.5. if σ̃ ∈

∑
then

∗ 3.5.1. go to 3.
– 3.6. else
∗ (a).

∑
←
∑
∪{σ̃} ;

∗ (b). Update hash table: H (p) ← H (p) ∪ {σ̃}
if p ∈ σ̃

∗ (c). V (σ̃)← V (σ̃)− {p̃};
– 3.7. Go to 3.

Procedure: Obtain σ̃ from σ by pivoting the vertex p
into p̃:
• (p̃, σ̃) = Pivoting (p, σ)
• Take the facet with vertex set F =

{
pi0 , ...,piN+1

}
−

{p};
• Find the set of simplices 4 =
{ρ; ρ ∈ H (v) for v ∈ F};

• Consider the hyperplane defined by u ∈ RN+1 and λ ∈
R, such that uT ·x−λ = 0, ∀x ∈ F and uT ·p−λ < 0,

• Delete from 4 any simplex ρ that satisfies v ∈ ρ =⇒
uT · v − λ ≤ 0;

• If 4 = ∅ then
– find a point v ∈ D such that the simplex ρ =

[F ∪ {v}] satisfies properties (1)-(2) and ρ ∩D =
F ∪ {v};

– σ̃ ← ρ and p̃← v;
– return (p̃, σ̃) .

• Let v ∈ D ∩
(
∪
ρ∈4

ρ

)
such that uT · v − λ > 0. If

any new facet τ ⊂ [F ∪ {v}] satisfies τ ∩ ρ ⊂ D for
anyρ ∈ 4 then set σ̃ ← [F ∪ {v}] and p̃← v;

• return (p̃, σ̃) .

The Figure 11 pictures the initial steps of the evolution of
the algorithm. Firstly, the initial simplex σ0, shown in Figure
11.(a) is obtained at the initialization by exhaustive search.
Then, the execution enters the mail loop of the algorithm
generating by pivoting the simplices σ1, σ2 and σ3 in the
first, second and third iterations, respectively.

(a)

(b)

Figure 11. Evolution of Algorithm 1 for data set {p0,p1, ...,p12} : (a)
Initial simplex. (b) Simplices generated after three iterations of the main
loop.

It can be shown that the triangulation Γ generated by
the Algorithm 1 has the property ∪

σ∈Γ
σ = co (D). This

triangulation can be used to represent a manifold defined
by the Implicit Function Theorem [44] through a piecewise
linear manifold with some degree of precision. For our
interest, the piecewise linear manifolds will be defined
through a Characteristic Function χ : D → {−1, 1} that
may represent the labels in a classification task. For such a
function, the following definitions will be useful.

Definition 8. We call an 1 − face τ of a triangle σ
completely labeled respected to χ : D → {−1, 1} if this
function changes its signal in τ .

Definition 9. A triangle (or face) σ in RN+1 is called



transverse with respect to χ if it contains a completely
labeled 1− face.

Given a k-face τ ∈ Γ, let us define an affine map that
coincides with χ on the vertices of τ as follows:

χτ : τ → R;

χτ (v) =

k+1∑
i=1

αiχ (vi) , v =

k+1∑
i=1

αivi, (37)

We can straightforward use this definition to extend the
characteristic function to the set |Γ|:

χΓ : |Γ| → R; χΓ (v) = χσ (v) , (38)

for v ∈ σ and σ ∈ Γ.
Finally, we can state a fundamental theorem for our work.
Theorem 1. If σ is a triangle of a triangulation Γ of

RN+1 which has a non-empty intersection with χ−1
Γ (0) ,

then Mσ = σ∩ χ−1
Γ (0) is a N − dimensional polytope,

and the family:

MΓ =
{
Mσ | σ ∈ Γ, σ ∩ χ−1

Γ (0) 6= ∅
}
,

is a piecewise linear manifold of dimension N .
Dem. See [44].
The following algorithm describes the fundamental steps

for obtaining the piecewise linear manifold approximat-
ing χ−1

Γ (0). The heart of the procedure is a continuation
methodology that keeps track of all vertices of each trans-
verse simplex σ which remain to be checked in order to find
all possible new transverse simplices by pivoting. The step-
by-step of the procedure marches through the triangulation
generated in the Algorithm 1. Therefore, it is not necessary
to apply any consistency test during its execution [44].

Algorithm 2: Piecewise Linear Manifold Generation
Algorithm
• 0 Input: Set D = {p0, ...,pm} ⊂ RN+1; Triangula-

tion Γ and Characteristic function χ : D → {−1, 1}.
• 1 Output: piecewise linear manifold MΓ approximat-

ing χ−1
Γ (0).

• 2 Initialization
– 2.1. Find a transverse simplex σ ⊂ Γ;
– 2.2. Actual list of transverse simplices:

∑
= {σ};

– 2.3. V (σ) = set of vertices of σ;
– 2.4. Actual list of manifold patches: MΓ = σ∩
χ−1

Γ (0)

• 3 While V (σ) 6= ∅ for some σ ∈
∑
,

– 3.1. get σ =
[
pi0 , ...,piN+1

]
∈
∑

such that
V (σ) 6= ∅;

– 3.2. get p ∈ V (σ) such that the facet with vertices
in F =

{
pi0 , ...,piN+1

}
− {p} is transverse;

– 3.3. (p̃, σ̃) = Pivoting Transverse (p, σ);

– 3.4. drop p from V (σ);
– 3.5. if σ̃ is not transverse then
∗ 3.5.2. go to 3 .

– 3.6. else
∗ if σ̃ ∈

∑
then drop p̃ from V (σ̃);

∗ else
·
∑
←
∑
∪{σ̃} ;

· V (σ̃)= set of vertices of σ̃;
· drop p̃ from V (σ̃).
· MΓ ← σ̃∩ χ−1

Γ (0)

– 3.7. Go to 3 .
Procedure: Obtain σ̃ from σ by pivoting the vertex p
into p̃:
• (p̃, σ̃) = Pivoting Transverse (p, σ)
• Take the facet with vertex set F =

{
pi0 , ...,piN+1

}
−

{p};
• Find the transverse simplex σ̃ that satisfies σ̃ ∩σ ⊃ F ;
• Find {p̃} = V (σ̃)− F
• return (p̃, σ̃) .

The Figure 12 helps to understand the main stages of
Algorithm 2. The Figure 12.(a) shows a set of points with
blue and red labels, as well as the set of transverse triangles
in gray level. Each transverse triangle holds a patch of the
one dimensional piecewise linear manifold (a polygonal line
in this case) which composes the output shown in Figure
12.(b).

In this paper, we apply the above framework for synthesis
and data analysis. Thus, let us return to the set TY in the rep-
resentational space, defined by expression (36). Let us take
the triangulation Γ of co(TY ) obtained by Algorithm 1 with
input D = TY . Given a new t̃y ∈ co(TY )− TY , the goal
of synthesis is to find its image q ∈Md ⊂ RD. For this, we
firstly find a d-dimensional simplex [t̃y0, t̃y1, . . . , t̃yd] ∈ Γ
containing t̃y. In this case, the equation t̃y =

∑d
j=0 αj t̃yj ,

with the constraint
∑d
j=0 αj = 1, has unique solution

(α0, α1, · · · , αd). Since t̃yi ∈ TY , the simplex in Rd has
a unique counterpart [p̃0, p̃1, · · · , p̃d] with vertices p̃i ∈ D,
the original database, which allows to write q =

∑d
j=0 αjp̃j

as an linear estimate (synthesis) for the new sample q in the
data space.

Starting from the simplex [t̃y0, t̃y1, . . . , t̃yd] a more gen-
eral polytope σ can be generated and the technique described
in [45] can be used to compute barycentric coordinates of t̃y
with respect to σ. With such generalization we can smooth
local variations of data samples and consequently increase
the quality of the interpolation process.

The LRML together with the discrete geometry frame-
work of this section can be used to analyse two class,
say C1, C2 ⊂ RN+1, databases as follows: (a) Perform
dimensionality reduction using LRML; (b) Compute the set
TY in the representational space by using expressions (34)-
(36); (c) Build a triangulation Γ using the Algorithm 1;



(a)

(b)

Figure 12. (a) Set of transverse triangles obtained by Algorithm 2
evolution. (b) One dimensional piecewise linear manifold (polygonal line
in black).

(d) Define the characteristic function χ : D → {−1, 1}
by setting C1 samples with label +1 and the C2 samples
with label −1; (e) Apply the Algorithm 2 in order to get
the N dimensional piecewise linear approximation of the
manifold χ−1

Γ (0), where χΓ is given by expression (38).
The topology and geometry of the obtained piecewise linear
manifold gives information about data distribution in the
image space, like clusters and separation surfaces.

VIII. COMPUTATIONAL EXPERIMENTS

In this section we tested the LRML framework (section
VI-D) and the syntheses technique of VII on synthetic data
sets composed by sphere points as well as face images of
FEI data base, maintained by the Department of Electrical
Engineering of FEI, São Paulo, Brazil.

For performance comparisons we consider the traditional
ISOMAP, LLE, and LTSA, summarized in section VI, as
well as the fast RML [16]. The goal of this section is to
check the LRML ability to preserve geodesic distances, the
efficiency of the composition technique to get a representa-

tional space and the capabilities of the polyhedral geometry
framework of section VII for synthesis and data analysis.

A. Sampling of Sphere

In this experiment we consider a synthetic 3-D data set
D, pictured on Figure 13.(a), uniformly generated from the
unitary sphere. The objective of this experiment is to map
data samples, originally embedded in a 3D space, onto a
2D plane. Therefore, this synthetic data provides a standard
benchmark to evaluate the efficiency of the algorithms,
because both input and output data can be easily visualized.

(a)

(b)

Figure 13. (a) Point samples over the sphere. (b) Neighborhoods of the
data cover: D1 in red color, D2 in blue and D3 in green.

The raw data set D is processed by the procedure of
section IV, with parameters K = 40, ρ = 1.5, and tolerance
10−5 (see section IV-C). The output is the topology of
the data set given by the safe neighborhoods SN(pi),
i = 1, 2, ..., 1086. Then, the original data set is partitioned
into 3 subsets D1, D2 and D3, by using the algorithm of
section IV-B. The obtained neighborhoods, highlighted on
Figure 13.(b), together with the manifold dimension d = 2,
are used in the algorithm of section VI-D1 in order to
compute the local normal coordinates. In this case, we did
not apply the composition process of section VI-D2.

The Table I allows to compare the performance of the
LRML algorithm against three traditional competing ones
(ISOMAP, LLE, and LTSA) on the synthetic data using the
following parameters: K = 40 and dimension d = 2. Table
I reports the mean µ and standard deviation σ for the error
associated to each obtained map. This error distribution for



Cluster µLLE µLTSA µISOMAP µLRML

1 0.45490 0.45441 0.00411 0.00944
2 0.34195 0.34216 0.00184 0.00128
3 0.43712 0.43496 0.00696 0.00546

Cluster σLLE σLTSA σISOMAP σLRML

1 0.22508 0.22487 0.00382 0.00590
2 0.18500 0.18510 0.00128 0.00127
3 0.20838 0.20721 0.00521 0.00307

Table I
MEAN ERROR (µ) AND STANDARD (σ) DEVIATION CORRESPONDING TO

THE GEODESIC DISTANCES FOR THE CONSIDERED EMBEDDINGS.

Method LLE LTSA ISOMAP LRML+Comp.
Mean Error 0.67248 0.67224 0.00382 0.00840
Variance 0.39558 0.39530 0.00327 0.00780

Table II
COMPARING TRADITIONAL EMBEDDINGS AND THE OBTAINED

REPRESENTATIONAL SPACE (LRML PLUS COMPOSITION).

each technique is computed as follows: (i) take a subset Di;
(ii) for each pair of points pi,pj ∈ Di compute the geodesic
distance dM2(pi,pj) and the corresponding distance in the
reduced space d(zi, zj) = ||zi − zj ||; (iii) compute the
matrix C(i, j) = |dM2(pi,pj) − d(zi, zj)|; (iv) calculate
the mean µ and the standard deviation σ of the elements of
the matrix {C(i, j)}.

Table I shows that LRML and ISOMAP perform better
then the competing ones in every case. The standard devia-
tion for both LRML and ISOMAP are of order 10−3 which
allows to compare their results through the reported mean
error. The Table I shows that for the neighborhoods D2 and
D3 the LRML performs better than the ISOMAP. However,
things change for the neighborhood D1 and LRML achieves
a mean error larger than the mean error of the LRML.

In the next example, we take the result of LRML and
apply the composition procedure of section VI-D2 in order
to get the representational space. The Figure 14 shows the
obtained result in the reduced space as well as the global
embedding generated by ISOMAP, LLE and LTSA. By
visual inspection it is difficult to get some conclusion. So,
we compute the global error distribution (steps (i)-(iv) above
with Di replaced by D and d(zi, zj) by d(tyi, tyj)) which
is reported on Table II. The LRML is outperformed only by
the ISOMAP although the mean error and standard deviation
of both methods remains in the same order of magnitude
(10−3).

Now, we exemplify the triangulation generated by the
Algorithm 1 and piecewise linear manifolds obtained with
the Algorithm 2. The Figure 15 shows the triangulation, in
the representational space, obtained from the set of points
pictured on Figure 14.(a). A visual analysis shows that
the triangulation verifies the properties (1)-(3) of Definition
6. However, there are triangles that are not well-shaped
(internal angles out of the range [45o, 90o]). We shall take

(a)

(b)

(c)

(d)

Figure 14. Comparing manifold learning methods applied to the sphere
samples: (a) LRML plus composition process. (b) ISOMAP. (c) LLE. (d)
LTSA.



into account that the Algorithm 1 did not perform any
procedure to check the quality of the triangles. We avoid the
computational cost of such step. For instance, the computa-
tional complexity to build a Delaunay triangulation from the
points {ty1, ty2, · · ·, tyN} ⊂ Rd is O(Ndd/2e) if d ≥ 3,
which is prohibitive for higher dimensions [46]. Besides,
once the region ∪

σ∈Γ
σ is the convex hull of the input points

we notice degenerate triangles nearby the boundary of the
triangulation.

Figure 15. Triangulation obtained with Algorithm 1 from the points in
Figure 14.(a), with zoom in some regions.

The Figure 16.(a) pictures the one-dimensional piecewise
linear manifolds that separate the set TY1 from TY2 and
the set TY2 from TY3 in the representational space. We
avoid to show the triangulation in order to simplify the
visualization. The former is generated by the following
steps: take the triangulation of the Figure 15 and define
the characteristic function χ : S → {−1, 1} by setting
the samples (vertices) from the set TY1 with label +1 and
the remaining samples with label −1; apply the Algorithm
2 in order to extract the one-dimensional piecewise linear
manifold. An analogous procedure is performed to build the
other piecewise linear manifold. In this case, due to the
low dimensions involved we can also visualize the image
of the linear manifold under the exponential map in the
original data space, as we can see in Figure 16.(b). Such
result can be applied for classifying unlabeled samples based
on the nearest projection distances from the samples in the
piecewise linear manifolds. A similar approach is performed
in [47] but without the dimensionality reduction step and the
global triangulation generation.

B. Real-World Data Set

In this section, the FEI database is used to illustrate the
behavior of our algorithm. In this data set the number of
subjects is equal to 200 (100 men and 100 women) and
each subject has two frontal images (one with a neutral
or non-smiling expression and the other with a smiling
facial expression), performing a total of 400 images for the

(a)

(b)

Figure 16. (a) Piecewise linear manifolds that separates clusters. (b)
Exponential map image (over the sphere) of the piecewise linear manifolds.

experiments. All faces are mainly represented by subjects
between 19 and 40 years old with distinct appearance,
hairstyle and adorns. The images are well scaled and aligned.
These features make the FEI database very attractive for
testing dimensionality reduction techniques. For memory
requirements, we convert each pose to gray scale before
computations and reduce the original spatial resolution
(260× 360) to 35× 40.

We execute the procedures of section IV to compute the
topology of the data set and estimate the manifold dimension
d. So, firstly, for each element pi ∈ D we find K = 30
nearest neighbors in the graph G(D). Then, we determine
the set of visible neighbors for pi, defined by expression (7).
Next, we obtain the safe neighborhoods SN(pi), using the
parameters ρ = 1.0. The sets SN(pi) define a topology
of the data set, which allows to build the neighborhood
system {Di, i = 1, 2, ···, 11}, obtained with the procedure
of section IV-B. The manifold dimension was estimated
as d = 12 and is obtained by computing the dimension
di for each SN(pi), i = 1, · · ·, 400, through PCA, and
averaging the obtained values. We apply tolerance 10−12 for
the eigenvalues (see section IV-C). However, we decided to
reduce the dimension to d = 4 (tolerance 0.01) in order to
analyse the result considering a lower dimensional space.

We take two images, p10 and p356, highlighted in Figure
17 with continuum squares. Then, we consider a path linking
these images and synthesize intermediate points along it.



Figures 17.(a) and 17.(b) allow to check the quality of the
images generated by the synthesis process (section VII). In
these figures, all images are synthetic ones, with exception
of p10 and p356. Although the presence of some artifacts, we
consider the image quality pretty good. We verify a gradual
evolution from image p10 to p31 in Figure 17.(a). The same
can be realized in Figure 17.(b) but in this case, from image
p31 to p356.

(a)

(b)

Figure 17. (a) Sequence of images generated by our synthesis technique
along the path connecting the images p10 to p31, indicated with continuum
squares. (b) Analogous result but using images p31 and p356 of the data
set.

IX. PERSPECTIVES

A. Foliations and Face Image Space

Roughly speaking, a foliation of dimension k of a dif-
ferentiable manifold Md is a decomposition of Md into a
disjoint family F = {Lα; α ∈ I} of submanifolds, named
leafs, each one with dimension k, as shown in Figure 18.

Figure 18. Foliation F with submanifolds Lα as leafs.

Our purpose in this subject is to apply the foliation theory
to analyze the space of human face images. Specifically, let
us take an acquisition set up which can be described by the
geometric imaging model of Figure 19.

(a)

(b)

Figure 19. (a) Spherical coordinates to parameterize S2. (b) Geometric
elements of the face imaging model (Source [17]).

In this model the human head is placed in the center of
a sphere S = {(x, y, z) ∈ R3;x = r sin(ϕ) cos(φ), y =
r sin(ϕ) sin(φ), z = r cos(ϕ)}, with r > 0, 0 ≤ φ < π; 0 ≤
ϕ ≤ π, pictured on Figure 19.(a). We suppose that the human
face is fixed and so we obtain different poses by moving
the camera but its optical axis is set to pass through the
sphere center (see Figure 19.(b)). The projection (camera)
plane is supposed to be perpendicular to the optical axis. All
the other geometric parameters (planar rotation angle of the
camera, focal length of the camera, light position, etc.) and



physical parameters related to the illumination model are
supposed to be fixed. Accordingly, the degrees of freedom
are (r, φ, ϕ) ∈ R3, and we can define a function:

f : U ⊂ R3 → M, (39)

U = {(r, φ, ϕ) ; r > 0, 0 ≤ φ, ϕ < π} ,

(r, φ, ϕ)
f−−−−→ I (r, φ, ϕ) ∈ RN1×N2 ,

which, given the point (r, φ, ϕ) ∈ U , calculates a digital
image I (r, φ, ϕ) with resolution N1 ×N2. In this case, the
manifoldM is a set of digital images, which has dimension
d = 3 and it is embedded in a space of dimension N1×N2 by
f. This simple model is enough to show that for face images
the idea that the input data resides on a low-dimensional
manifold embedded in an environment space isomorphic to
RN1×N2 makes sense, as observed in [17]. More specifically,
if the function f in equation 39 is differentiable then the
generated image space consists of a differentiable manifold
with dimension d = 3. It is a known result of the theory
of foliations that every compact and oriented manifold of
dimension d = 3 admits a foliation with dimension k = 2.
If an analogous result is valid for the manifold generated
by the acquisition model of Figure 19, then we will have in
hand a resource to organize the topology of the face image
space: we have ’building blocks’ of the face space formed
by three-dimensional manifolds that hold the different poses
for each person. These blocks can be decomposed according
to the cited theorem. Does the space so generated admit a
foliation? Also, does the space of expression have a similar
organization?

Foliations can be also used to generalize the concept
of manifold entanglement used in [25] to investigated the
factors that contribute to the success of deep hierarchical
representations of the data. Transversality (end of section
II) is also useful in this context. To explain this, let us
suppose that the data points are samples from two swiss rolls
entangled within each other as shown in Figure 20.(a). In
this case, the learning process should recognize and separate
individual data manifolds for respective classes. Besides,
the transition between the two manifolds will recover a
foliation that could reveal structural changes when navigat-
ing between the classes. Also, the two manifolds could be
transverse likewise in Figure 20.b.

A complete synthesis process in such case will generate
samples belonging to two transverse foliations. In [25],
authors propose a few quantities for measuring the geometric
configurations represented in Figure 20 and to validate the
hypothesis that deep architectures are able to compute the
embedding of Figure 4, a process named flattening in [25].
However, we are still in the beginning of this research
in order to translate deep learning machinery in manifold
geometry elements.

(a) (b)

Figure 20. (a) Two entangled swiss rolls representing different data classes
(source [25])) . (b) Transverse data sets (source [25]).

B. Manifold Learning and Deep Hierarchical Structures

Considering the data model of Figure 3 we can say that a
promising learning technique must discover rich models that
represent the probability distributions over the data and/or
the geometry that is implicity in the data samples. We expect
that deep learning approaches can fulfill these requirements
and generate hierarchical models to describe the data.

In this section, we focus on generative adversarial network
(GAN) models and deep metric learning [26], [27] because
the former is directly related to the synthesis problem while
the latter offers promising perspectives for RML techniques.

GANs are models that take a training set, consisting of
samples drawn from an unknown distribution, and learns
to synthesize new data samples [26]. However, GANs are
not based in manifold learning. Instead, in such models
a generative model G captures the data distribution, and
a discriminative model D estimates the probability that a
sample came from the training data rather than G.

The basic GAN model incorporates a generator’s distri-
bution pg over data x ∈ RD, a prior pz on input noise
variables z ∈ Rd, and represents the mapping to data space
as G (z, θg), where G is a differentiable function and θg is
an array of parameters. In this scenario, the discriminator
is a function D (x, θd), parameterized by θd, that represents
the probability that x came from the data rather than pg .
In practice, both G and D models are implemented as
multilayer perceptrons with θg and θd being the network
parameters. Along the training process we try to solve the
problem:

min
G

max
D

V (G,D) , (40)



where:

V (G,D) = Ex∼pdata(x) [log (D (x))]

+Ez∼pz(z) [log (1−D (G (z)))] . (41)

Putting the expression (41) explicitly gives:

V (G,D) =

∫
x

pdata (x) log (D (x)) dx

+

∫
z

pz (z) log (1−D (G (z))) dz. (42)

It can be shown that the solution of the problem (40) is
achieved if and only if pg = pdata.

From the viewpoint of manifold learning, we shall notice
that the generator is a function G : Rd −→Md that can be
seen as a global parametrization of the data manifold and
the computation of G allows the execution of a synthesis
procedure.

However, we know from the differential geometry liter-
ature that manifold parameterizations may be only locally
defined. The unity sphere is the most known example of
this fact. What are the implications of this fact for GANs?
Besides, does G preserve data topology? A partial solution
for this question would be to impose the following constraint
to GAN model:

dMd (G (z1) , G (z2)) = ||z1 − z2||. (43)

This constraint can be satisfied if the generator G com-
putes the exponential map function (see Figure 2). In this
case, the space Rd, named latent space in GAN literature,
would be a tangent space, as represented in the Figure 2.
The distance dMd over the manifold can be approximated
using shortest paths in the graph on the data samples, as
performed elsewhere (see section VI-C, for instance). The
open point is to set a multilayer perceptron that computes
the exponential and logmap functions, defined in section II.

The metric concept is important because it can be seen as
a similarity measure between data points. However, which
metric makes sense? This question points towards deep
metric learning techniques, like that one presented in [48],
which considers the metric:

df (p1,p2) = ||f (p1)− f (p1) ||, (44)

where f is a nonlinear mapping, computed by a deep neural
network, with discriminative properties. We can go a step
further and use a similar methodology to seek for a mapping
f such that dMd (p1,p2) = df (p1,p2). New issues related
to the network architecture must be addressed to complete
such task.

C. Discriminant Analysis and Manifolds

Let a differentiable curve α : (−ξ, ξ) ⊂ R → Md

passing through two points pi = α (ti) and pj = α (tj), a
differentiable function f :Md → R, and a local coordinate
(U,ϕ) such that α (−ξ, ξ) ⊂ ϕ (U). So, the representations
of f and α in the local parametrization ϕ : U →Md are:

f ◦ ϕ (x) = f (x1, ..., xn) , x = (x1, ..., xn) ∈ U, (45)

ϕ−1 ◦ α (t) = (x1 (t) , ..., xn (t)) ∈ U. (46)

Therefore, considering the restriction of f to α and
applying the chain rule we get:

d

dt
(f ◦ α) =

d

dt
f (x1 (t) , ..., xn (t)) =

n∑
i=1

dxi (t)

dt

∂f

∂xi
.

(47)
Hence, if pj and pi are close each other in the manifold,

we can write:

f (pj) ≈ f (pi) +
d

dt
f (x1 (t) , ..., xn (t)) |tidt, (48)

which renders:

f (pj) ≈ f (pi) +

(
∂f

∂x1
, ...,

∂f

∂xd

)
(dx1, ..., dxd)

T
. (49)

If we approximate (dx1, ..., dxd)
T

= PTpi
(pj − pi),

which is a projection of (pj − pi) in the tangent space
Tpi

(
Md

)
, we obtain:

f (pj) ≈ f (pi) + vTpi
PTpi

(pj − pi) , (50)

where vTpi
=
(
∂f
∂x1

, ..., ∂f∂xd

)
|pi .

Expression (50) is the key of the work presented in [49].
The function f serves as a connection between the data
representation and discriminant analysis inMd. Specifically,
from equation (50) we can write:

f (pi) ≈ f (pj) + vTpj
PTpj

(pi − pj) . (51)

The supervised methodology presented in [49] sup-
poses that data in different classes, with labels in the
set {1, 2, . . . , C}, are generated from different manifolds.
Provided that the labeled data set:

X =
{

(pi, yi) ;pi ∈ RD, yi ∈ {1, 2, . . . , C} , 1 ≤ i ≤ N
}

(52)
has been partitioned into L disjoint patches Xi, following the
LDA philosophy [5], the within-class data structure over the
manifold is obtained by constructing the within-class graph
G = {X,W} where W is a characteristic matrix compute
as follows: if pi belongs to the k-nearest neighbors of pj
and yi = yj then Wij = Wji = 1. Otherwise, it is assumed
that there is no edge connecting the points and Wij = 0.



Besides, let πi ∈ {1, 2, . . . , L} an index indicating the patch
Xi to which pi belongs to. In this way, we shall perform the
changes vTpi

→ vTπi
and PTpi

→ PTπi
, analogous for pj in

expressions (50)-(51). Then, if nearby data points pi and pj
belong to the same class πj , we can measure their similarity
s (pi,pj) as follows:

s (pi,pj) =
[
f (pi)− f (pj)− vTπj

PTπj
(pi − pj)

]2
.

(53)
From expressions (50) and (51), the similarity between

nearby tangent spaces can be computed by:

sT (πi, πj) = vTπj
PTπj
− vTπi

PTπi
, (54)

and, consequently, if sT (πi, πj) ≈ 0 we get:

vπi
≈ PTπi

Pπj
vπj

=⇒ ||vπi
≈ PTπi

Pπj
vπj
||22 ≈ 0 (55)

if the tangent spaces Tπi

(
Md

)
and Tπj

(
Md

)
are similar.

If we suppose that f in equation (53) is given by a linear
function f (p) = tTp then, putting all the above elements
and results together we can build the following criterion
to gather within-class information based on the manifold
structure:

min
t,v

∑
i,j

WijΘij , (56)

where:

Θij =
(
tTpi − tTpj − vTπj

PTπj
(pi − pj)

)2

+γ||vπi
− PTπi

Pπj
vπj
||22

where γ is a parameter to balance the influence of between
expressions (53) and (55). We can say that when solving (56)
we are looking for a projection direction t that minimizes
the within-class separability but steered by the manifold
geometry implicit in the products vTπj

PTπj
.

The model for the between-class information is based on
a graph Ǧ =

{
X, W̌

}
, construct as follows:

W̌ij =
1

N
, yi 6= yj ,

and:

W̌ij = Aij

(
1

N
− 1

Nc

)
, yi = yj ,

where:

Aij = exp

(
−||pi − pj ||22

σiσj

)
,

if pi ∈ KNN (pj) or pj ∈ KNN (pi); and, Aij = 0,
otherwise.

Then, in [49] it is proposed the following objective
function to separate nearby between-class data points:

max
t

∑
i,j

W̌ij

(
tTpi − tTpj

)2
. (57)

In [49] it is shown that we can solve the problems (56)
and (57) simultaneously in order to get the solution t ∈ Rd
and v1,v2, . . . ,vC ∈ Rd.

In this formulation, it is supposed that samples from
different classes belong to different manifolds that could
be submanifolds of the data space. Could it make sense to
suppose that these submanifolds are members of a foliation,
with dimension d, of the RD or some suitable subset? The
geometry and topology of such foliation could be incorpo-
rated in the above formulation? On the other hand, if we
suppose that the different classes lye over a single manifold
Md, then we can formulate the classification problem using
separating submanifolds N ⊂ Md. The next section deals
with such scenario.

D. Classification and Kernels in Manifolds

Classification of different sample groups over the mani-
fold can be achieved by defining kernels on manifolds and
computing separating hypersurfaces (submanifolds) through
the kernel trick.

The foundations of kernel methods belongs to the re-
producing kernel Hilbert spaces and Mercer theory. A re-
markable results in this area is the Mercer theorem, which
we summarized bellow [50]. So, let the space Rn and µ a
finite measure in Rn. We define also the function spaces
L2 (Rn) =

{
f : Rn −→ R; |f |2 is µ− integrable

}
and

L∞ (Rn) = {f : Rn −→ R; ∃K > 0, |f (x) | ≤ K}.
Mercer Theorem: Suppose k : Rn × Rn −→ R is

a continuous symmetric positive definite function (kernel)
such that k ∈ L∞ (Rn × Rn). Under certain conditions, the
integral operator Tk : L2 (Rn) −→ L2 (Rn):

(Tkf) (x) =

∫
R
k (x,y) f (y) dµ (y) , (58)

has a set of normalized eigenfunctions ψj : Rn −→ R,
with associated eigenvalues λj > 0, sorted in non-increasing
order, such that: k (x,y) =

∑nF

j=1 λjψj (x)ψj (y). Either
nF ∈ N or nF =∞.

With this result, the kernel support vector machines
(KSVM) generalizes their linear versions through the kernel
function k which allows to write the hypersurface that
separates positive from negative samples in the input space
as [50]:

F (p) ≡
N∑
i=1

yiαik (pi,p) + b̃ = 0, (59)

where αi ≥ 0, i = 1, 2, ·, ·, ·, N , are Lagrange multipli-
ers in the quadratic optimization problem behind KSVM
technique [50]. The samples pi with αi 6= 0 are named



support vectors. If nF ∈ N then, there exists a map
Φ (p) ≡ (z1 (p) , z2 (p) , z3 (p) , . . . , znF

(p)) such that the
separating surface in the feature space RnF is given by:

nF∑
r=1

ωrzr (p) + b̃ = 0 (60)

where ωr =
∑M
i=1 yiαizr (pi).

All the above machinery remains at hand if we can define
kernels k : Md ×Md −→ R on manifolds. In this way,
the work [37] defines positive definite kernels on manifolds,
based on Gaussian radial basis function, that permit to
embed a given Riemannian manifold in a high dimensional
reproducing kernel Hilbert space. The main consequence
of this development is analogous to the one that emerges
from expression (60): it makes possible to utilize algorithms
developed for linear spaces (support vector machines, for
instance) on data manifolds.

X. CONCLUSION

This paper covers the main topics involved in the ap-
plication of manifold learning methods for image analysis:
(a) Recover the data topology; (b) Determination of the
manifold dimension d; (c) Construction of a neighborhood
system; (d) Computing the embedding or local parameteri-
zations associated to the neighborhood system; (d) Given a
point in the representational space, compute its image in the
data manifold (synthesis).

We review traditional techniques in this field, with partic-
ular attention to LRML method and the application of con-
cepts in discrete and polyhedral geometry for synthesis and
data clustering over the manifold. Also, we present practical
examples using 3D data points as well as image analysis and
synthesis through LRML applied to FEI database. The mate-
rial helps to understand advanced concepts, advantages and
drawbacks of nonlinear dimensionality reduction based on
manifold learning. Besides, the perspectives in the field, in-
cluding topological structure of image spaces and application
of manifold learning concepts for deep learning analysis and
understanding, opens future directions in manifold learning
and related topics.
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