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Abstract—Fruit flies are of huge biological and economic
importance for the farming of different countries in the World,
especially for Brazil. Brazil is the third largest fruit producer
in the world with 44 million tons in 2016. The direct and
indirect losses caused by fruit flies can exceed USD 2 billion,
putting these pests as one of the biggest problems of the world
agriculture. In Brazil, it is estimated that the economic losses
directly related to production, the cost of pest control and in
the loss of export markets, are between USD 120 and 200
million/year. We propose to apply mid-level image representations
based on local descriptors for fruit fly identification tasks of
three species of the genus Anastrepha. In our experiments, several
local image descriptors based on keypoints and machine learning
techniques have been compared in the target task. Furthermore,
the proposed approaches have achieved excellent effectiveness
results when compared with a state-of-art technique.

I. INTRODUCTION

The fruit flies belong to the Tephritidae family, which
comprises approximately 5,000 species. They are distributed
all over the world and several species are important agri-
cultural pests. The damages are caused by the larvae that
feed inside the fruit, making them unfit for consumption and
commercialization. In addition to direct damage to fruits, some
species of fruit flies are of quarantine importance, that is, they
hamper the international market for fresh fruits. The country
where the quarantine pest does not occur imposes customs
barriers for the importation of commodities from the country,
in which the pest is present.

Among the fruit flies economically important in the Amer-
icas are the species of the Anastrepha. This genus is the most
diverse in America tropics and subtropics with approximately
300 known species, of which 120 are recorded in Brazil [1].
However, few species are economically important in Brazil
namely the South American fruit fly Anastrepha fraterculus
(Wiedemann), the West India fruit fly Anastrepha obliqua
(Macquart), and the guava fruit fly Anastrepha striata Schiner.
These three species are considered pests of quarantine signif-
icance by many regulatory agencies.

Identification of species is a crucial step for the development
studies on biology such as distribution, damage, quarantine,
and control. The identification of Anastrepha species are based
on wing pattern, and mostly on the aculeus (the piercing part
of the female ovipositor). However, the species boundaries
of some fruit fly complexes are difficult to be delimited.
Anastrepha fraterculus is the most emblematic case of a

cryptic species complex in the Americas, because it is a major
pest only in some areas of its occurrence, which ranges from
Mexico to northern Argentina [2]. Thus, misidentifications can
be of serious problem for the implementation of quarantine
restrictions, integrated pest management, and other control
programs [3].

This work aims to propose the use of mid-level represen-
tations based on local image descriptors for fruit fly identifi-
cation. Furthermore, it compares the effectiveness results of
different machine learning techniques using those represen-
tations to support the development of a real-time system for
fruit fly identification of the genus Anastrepha. This system
can be a good solution for a quick and precise identification,
reducing the time and costs in performing and assisting the
few experts in their tasks. Finally, the proposed approaches
can be incorporated into other systems already existing in the
literature.

II. LOCAL FEATURE EXTRACTION

Local feature extraction usually includes two distinct
steps [4]: feature detection and feature description. Feature
detection consists in finding a set of interest points, or salient
regions in the image that are invariant to a range of image
transformations. Feature description consists in obtaining ro-
bust local descriptors from the detected features. In the fol-
lowing we briefly introduce the detectors/descriptors evaluated
in this work.

A. Scale-Invariant Feature Transform (SIFT)

Proposed by Lowe [5], this is the most well-known and
widely used local descriptor for visual recognition tasks.
SIFT is both a feature detector (based upon Differences-of-
Gaussians, or DoG), and a feature descriptor. As a descriptor,
it computes a histogram of gradient (HoG) locations and ori-
entations. The resulting descriptor is 128-dimensional feature
vector, which is invariant to scale, rotation, affine transforma-
tions, and partially invariant to illumination changes.

B. Speeded Up Robust Features (SURF)

It was proposed by Bay et al. [6] as an accelerated version
of SIFT. SURF is also both a detector (based upon the
determinant of the Hessian matrix, also known as Fast-Hessian
feature detector) and descriptor. As a descriptor, it describes
a distribution of Haar-wavelet responses within the interest



point neighborhood. The SURF descriptor is based on similar
properties of localized information and gradient distribution
as SIFT, with a complexity stripped down even further.
Only 64 dimensions are used, reducing the time for feature
computation and matching, and increasing simultaneously the
robustness.

C. Binary Robust Independent Elementary Features (BRIEF)

Presented in 2010 by Calonder et al. [7], BRIEF was the first
binary descriptor published. It consists mainly in generating
binary strings from simple pixel intensity value comparisons
over an image patch smoothed using a Gaussian kernel. The
patches are usually obtained with the Fast-Hessian detector,
but it is not limited only to the use of this feature detector. We
employed the STAR detector, derived from CenSurE (Center
Surround Extremas) detector [8] and FAST (Features from
Accelerated Segment Test) detector [9]. The bit-length of the
BRIEF descriptor are 128, 256 (default), or 512 and due to
their correspondence in bytes they can also be referred as
BRIEF-16, BRIEF-32 and BRIEF-644, respectively.

D. Oriented FAST and Rotated BRIEF (ORB)

As the name itself suggest, ORB [10] combines and extends
on the concepts of FAST and BRIEF, reducing sensitivity to
noise and having rotational invariance. The ORB detector is
essentially a multi-scale FAST with orientation, while the ORB
descriptor uses a learning process to determine the spatial
arrangement of binary tests, decorrelating BRIEF features
under rotational invariance. This makes the nearest neighbor
search during matching less error-prone. The learning algo-
rithm search for a set of 256 uncorrelated tests, which produce
a 256 bit string, the ORB descriptor size.

E. Binary Robust Invariant Scalable Keypoints (BRISK)

Proposed by Leutenegger et al. [11], BRISK is a fast
descriptor which uses symmetric sampling pattern (composed
out of concentric rings) for intensity tests. The BRISK detector
is based on the AGAST (Adaptive and Generic Accelerated
Segment Test) detector [12], which is an extension of a
faster performance version of the FAST detector. To describe
the features, pairs of pixels around the interest point are
separated into two subsets: short-distance and long-distance
pairs. BRISK uses the long-distance pairs to estimate the
patch orientation and the short-distance pairs to construct the
descriptor itself through pixel intensity comparisons. BRISK
descriptor is composed of a bit-string of length 512, i.e., a
64-dimensional feature vector.

F. Fast Retina Keypoint (FREAK)

Inspired by the human visual system, FREAK [13] uses a
retinal sampled pattern for intensity tests. Similar to BRISK,
FREAK applies the same AGAST feature detector. The
FREAK descriptor is constructed by evaluating 43 weighted
Gaussians at locations around the interest point, leading to 903
possible pairs. A learning algorithm similar to ORB is applied
to find the 512 most relevant pairs and build the FREAK bit
string.

III. MID-LEVEL FEATURE EXTRACTION THROUGH
BOSSANOVA APPROACH

Mid-level feature extraction aims at transforming local
descriptors into a global and richer image representation of
intermediate complexity [14]. The standard pipeline to get
mid-level features can be broken into two steps: coding
and pooling. The coding step quantifies the local descriptors
according to a visual dictionary of k visual words, which is
usually built by clustering a set of local descriptors (e.g., k-
means clustering algorithm). The pooling step aggregates the
codes obtained into a single feature vector.

In the Bag of Visual Words (BoVW) [15], [16], the most
popular mid-level image representation, the coding step asso-
ciates the local descriptors to the closest element in the visual
dictionary (called hard-assignment coding), and the pooling
takes the average of those codes (called average pooling).
Since the pooling operation compacts all the information
contained in the individually encoded local descriptors into
a single feature vector, that step is critical for BoVW-based
representations. In general, the objective of pooling is to sum-
marize the information contained in the individually encoded
descriptors into a single feature vector, preserving important
information while discarding irrelevant detail [17].

Over the years, BoVW representation has been extended for
both steps of coding and pooling [18], [19]. Avila et al. [19]
introduced the BossaNova mid-level image representation. To
the best of our knowledge, this is the first time that it is
applied to fruit fly identification. In our experiments, we kept
the default BossaNova parameter values the same as in [19].
Figure 1 shows the main pipeline using BossaNova on insect
identification task.

IV. EXPERIMENTAL SETTINGS, RESULTS AND
DISCUSSION

A. Dataset
The dataset used in this work is composed of 301 images

and divided into three different categories: A. fraterculus (100),
A. obliqua (101), and A. sororcula (100).

It consists of pictures of specimens reared from samples
of fruit trees in experimental and commercial orchards in
the state of São Paulo, Brazil, stored in the Department of
Entomology and Acarology ESALQ, Piracicaba, SP, Brazil
and in the Biological Institute, Campinas, SP, Brazil. It is
important to recall that a 5-fold cross-validation protocol has
been adopted in our experiments. Figure 2 shows examples of
the three species used in this work.

B. Effectiveness Analysis
In this section, we have performed a comparative study

among nine learning techniques: Multiple Layer Perceptron
(MLP), Naı̈ve Bayes (NB), Decision Tree (DT), Naı̈ve Bayes
Tree (NBT), k-Nearest Neighbor (kNN) with k = {1, 3, 5},
Simple Logistic (SL), and Support Vector Machine (SVM)
using polynomial kernel. The implementation of the machine
learning techniques are available in the WEKA1 data min-

1http://www.cs.waikato.ac.nz/∼ml/weka (As of July, 2017).

http://www.cs.waikato.ac.nz/~ml/weka
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Fig. 1. The main pipeline of BossaNova. Local Feature Extraction: robust local descriptors (e.g., SIFT, SURF, BRIEF, ORB) are obtained from the detected
features. Mid-Level Feature Extraction: BossaNova descriptors creates the feature vectors for the images using a visual dictionary (k-means with Euclidean
distance is run over a sample local features, the final centroids are used as visual words). Decision Model Training: During the training-phase, the BossaNova
vectors of annotated images are employed to train a decision model using a machine learning method. Decision Model Prediction: The trained model employs
the BossaNova feature vectors of an image to predict on the positive or negative classes.

A. fraterculus A. obliqua A. sororcula

Fig. 2. Example of wings of each specie studied. Extracted from [20].

ing library. All machine learning techniques were used with
default parameters which means we did not optimize them
whatsoever.

Table I shows effectiveness results for all local descriptors
and learning techniques. Furthermore, the BRIEF, BRISK,
FREAK, ORB, F-SIFT and F-SURF local descriptors have
been performed with FAST feature detector. SIFT and SURF
descriptor used the original implementation, described in the
Section II.

In the first experiment, we can observe that BRIEF and F-
SIFT descriptors have achieved four of the best effectiveness
results among nine released learning techniques (in blue).
FREAK descriptor has achieved one best result using sim-
ple logistic (SL). Furthermore, we can observe that BRIEF
descriptor achieved the best average accuracy (84.7%) with
lower confidence interval (4.4).

In the second experiment, it possible to note that multi layer
perceptron (MLP) technique has achieved seven of the best
effectiveness results among eight local descriptors (in gray
cell) released in this work. SVM technique has achieved one
better effectiveness result with 90.4% of mean accuracy using
ORB descriptor. In addition, MLP technique using F-SIFT

descriptor was the best tuple (descriptor+learning technique)
performed in this work with 94.7% of mean accuracy (in blue
text and gray cell). Finally, we can verify that MLP and SVM
techniques were the best learning techniques with average
accuracy of 88.9% and 87.7%, respectively.
C. The Best Approaches

We also compared the best learning techniques for
each local descriptor (rows in the Table I), BRIEF+MLP,
BRISK+MLP, FREAK+MLP, ORB+SVM, SIFT+MLP,
SURF+MLP, F-SIFT+MLP, and F-SURF+MLP. Further-
more, the baseline technique LCH+SVM proposed in [20]
has been added in this experiment.

Figure 3 shows the effectiveness results among the best
tuples (descriptor+learning technique) and the best baseline
existing in the literature. Although F-SIFT+MLP (in blue)
has achieved the best mean accuracy, when we compute
the confidence interval with significance level of 0.05, it is
possible to observe that there is no statistically significant dif-
ference among our seven approaches and the baseline from the
literature LCH+SVM (in red). However, it is very important to
note that the baseline achieved excellent effectiveness results
by extracting color features from enhancemented images (e.g.,
segmentation and dilation operations) [20]. Our approaches
have been applied on the original images from the dataset.
Therefore, our approaches might be used in real-time systems
for insect identification tasks with no the use of any image
enhancement operation.

V. CONCLUSION

In this work, we proposed the use of a mid-level image rep-
resentation approach for insect identification of three species
of the genus Anastrepha using different local descriptors based



TABLE I
EFFECTIVENESS RESULTS (IN %) AMONG EIGHT LOCAL DESCRIPTORS AND NINE MACHINE LEARNING TECHNIQUES FOR A 5-FOLD CROSS-VALIDATION

PROTOCOL. IN BLUE ARE THE BEST IMAGE DESCRIPTORS FOR EACH MACHINE LEARNING TECHNIQUE. IN GRAY CELL ARE THE BEST MACHINE
LEARNING TECHNIQUES FOR EACH IMAGE DESCRIPTOR.

Descriptor Machine Learning Techniques Average CI
MLP NB DT NBT kNN1 kNN3 kNN5 SL SVM

BRIEF [7] 92.0 73.5 79.8 78.8 86.4 90.0 88.1 82.7 90.7 84.7 4.4
BRISK [11] 87.4 51.5 74.4 69.1 78.4 74.4 71.4 79.7 87.0 74.8 7.5
FREAK [13] 88.4 55.8 67.8 70.4 76.7 75.1 73.7 84.0 85.0 75.2 7.0

ORB [10] 90.0 61.8 75.1 74.4 86.7 84.4 82.4 82.1 90.4 80.8 6.3
SIFT [5] 84.7 53.8 62.5 61.8 67.2 68.4 68.5 75.1 84.4 69.6 7.1
SURF [6] 89.4 63.5 62.5 70.1 77.4 78.7 79.7 66.8 87.4 75.0 6.9

F-SIFT 94.7 62.1 76.7 82.1 87.4 85.1 84.4 82.4 93.7 83.2 6.7
F-SURF 84.7 49.2 65.8 66.1 76.1 74.1 72.1 80.4 83.4 72.4 7.7
Average 88.9 58.9 70.6 71.6 79.5 78.8 77.5 79.2 87.7

CI 2.4 5.5 4.7 4.57 4.8 5.0 4.9 4.0 2.5
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Fig. 3. Effectiveness results for each local image descriptor with 95%
confidence interval (CI), i.e, a significance level of 0.05. In blue is MLP
using BRIEF descriptor that has achieved the best mean accuracy.

on keypoints. Also, we performed two robust analysis to sup-
port the development of a real-time system for fruit fly iden-
tification. In the first, an effectiveness analysis among eight
local descriptors and nine learning techniques was performed
to verify the behavior of the tuples (descriptor+learning tech-
nique) in the fruit fly identification task. In this experiment,
we observed that BRIEF and F-SIFT achieved the best results
of mean accuracy among all of released local descriptors.
Moreover, MLP and SVM techniques achieved to be the
best learning techniques with higher average accuracy values
and lower confidence interval. In the second experiment, we
compared the best learning techniques for each local descriptor
against the best state-of-the-art baseline from the literature.
In this experiment, we verified that even though there are
statistical differences among our approach based on mid-level
image representation and baseline, our approach might be
directly applied on the original images with no require any
enhancement operation. Therefore, we conclude that this work
will support the development of a real-time system for fruit
fly specie identification of the genus Anastrepha.
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