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Fig. 1: Challenging search in an in the wild dataset [1]

Abstract—With the global demand for extra security systems,
and the growing of human-machine interaction, facial analysis
in unconstrained environments (in the wild) became a hot-topic
in recent computer vision research. Unconstrained environments
include surveillance footage, social media photos and live broad-
casts. This type of images and videos include no control over
illumination, position, size, occlusion, and facial expressions.
Successful facial processing methods for controlled scenarios are
unable to pledge with challenging circumstances. Consequently,
methods tailored for handling those situations are indispensable
for the face analysis research progress. This work presents
a comprehensive review of state-of-the-art methods, drawing
attention to the complications derived from in the wild scenarios
and the behavior differences when applied to the controlled
images. The main topics to be covered are: (1) face detection; (2)
facial image quality; (3) head pose estimation; (4) face alignment;
(5) 3D face reconstruction; (6) gender and age estimation; (7)
facial expressions and emotions; and (8) face recognition. Finally,
available code and applications for in the wild face analysis are
presented, followed by a discussion on future directions.

I. INTRODUCTION

Recent research on facial image analysis has shifted its
focus towards performing face recognition and expression
identification in unconstrained environments (in the wild) [2]—
[4], including surveillance footage, photos posted on social
media, and live broadcasts. In the wild images are charac-
terized by varying head poses, positions, and size; cluttered
backgrounds; variations and non-uniformity in illumination;
facial expressions, including open and closed mouths; and
occlusion caused by accessories and other objects (Fig. 1).

The lack of control over the image’s capture sensor carries
out problems that require preprocessing steps to be smoothed
out. An example is the use of generic quality measures to
evaluate image conditions or face hallucination, a technique
that synthesizes high resolution images from their low resolu-
tion form. Traditional methods that achieve high performance
when processing images acquired in controlled scenarios are
unable to yield substantial, useful results in more challenging
situations. Therefore, methodologies specifically tailored for
handling such scenarios are necessary in order to overcome
these limitations.

While holistic face processing solutions exist [5], [6], most
published works treat each subproblem separately. It is possi-
ble to study and evaluate each challenge in isolation, however,
a combination of these is typically applied as a pipeline for
ultimately performing face recognition or facial expression
analysis. An overview of the major face processing steps is
presented in Fig. 2.

Face detection, locating the faces in a given image, is essen-
tial for many tasks in face processing. Head pose estimation
determine the head orientation relative to the camera, and is
important to a variety of face processing approaches. Another
crucial task for many applications is face alignment, which
determines the geometric structure of the face. It is directly
applied to 3D face reconstruction, the recovery of the shape
and appearance of the face, which can assist face recognition,
as it is invariant to scale and robust to occlusion. Facial
expression analysis emerged from the necessity for systems
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Fig. 2: Overview of a face processing system with possible workflows. Face detection may occur before preprocessing

to interact and comprehend humans, and is the estimation
of muscle movements patterns that translates into known
expressions of emotions.

A comprehensive presentation, contextualization and review
of the different steps is presented, focusing on the final recog-
nition and expression analysis applications. While the order in
which processing occurs is not fixed, topics are presented in
a common, logical order, minimizing logical conflicts.

This paper addresses face detection in Section II; face
quality in Section III; head pose estimation in Section III;
face alignment in Section V; 3D reconstruction in Section VI;
gender and age estimation in Section VII; facial expression
analysis in Section VIII; face recognition in Section IX;
datasets in Section X; code availability in Section XI; to
conclude, Section XII presents final remarks.

II. FACE DETECTION

Face detection is defined as determining the position and
size of a face in an image. The traditional solution, based
on cascading Haar features, proposed by Viola and Jones
[7] is shown to perform adequately in controlled scenarios
with limited variations in lightning, expressions and head
poses. However, when applied in challenging situations, its
performance degrades significantly [5], [8], [9].

A more recent method, proposed by Liao et al. [9], is
an evolution of the Viola-Jones methodology [7]. A cascade
of Normalized Pixel Difference (NPD) features is used for
achieving a reliable and fast face detection approach (Fig. 3).

Fig. 3: Example face detection using Faster R-CNN [10] on
an image from the AFLW dataset [11]

The state-of-the-art for face detection in the wild was
established by the use of CNNs. Faster R-CNN [10] is a
generic object detector based on the introduced concept of
Region Proposal Networks (RPN). The RPN are used to
generate region proposals, which are evaluated by another
network as an object or not.

Jiang and Learned-Miller [12] studied in depth its appli-
cation for face detection, and determined a set or parameters
for maximizing its performance on the task. YOLO [13] and
SSD [14] are state-of-the-art real-time object detectors and,



similarl to Faster R-CNN, can be adapted for face detection.
Moreover, a scale invariant, CNN based face detector was
proposed by Hu and Ramanan [15]. Alternatively, Ranjan et
al. [5] proposed a complete framework for face processing in
challenging scenarios, and is able to accurately detect the face
while outperforming other existing methods. Faster R-CNN
[10] and the work proposed by Hu and Ramanan [15] offer
increased performance at the expense of greater computational
cost. Alternatively, YOLO [13] and SSD [14] provide solutions
for cases when real time processing is needed.

III. FACIAL IMAGE QUALITY

Preprocessing of challenging images can be performed by
using generic quality measures, such as the ones proposed by
Abaza et al. [16] for evaluating face regions. However, due to
differences in focus and blur that can be found in in the wild
images, it is common for the preprocessing step to take place
after the face is detected (Fig. 2).

Dutta et al. [17] proposed a Bayesian model for predicting
face recognition performance on images with varying illumi-
nation and head pose. Abaza er al. [16] generate a quality
score by evaluating illumination, brightness, contrast, focus
and sharpness of the face region. Silva er al. [18] extended
this evaluation by including a sixth measure, a head pose score
calculated given the nose region [19] (Table I).

The use of the head pose for estimating the face quality
allows for estimates that closely relate to the final problem
being solved. It is common for face recognition and expression
analysis methods to achieve better performance on frontal
faces. To favor these scenarios, this metric can be used to select
frames from a video when temporal information is available.

TABLE I: Example quality measurements proposed by Abaza
et al. [16] and the head pose [18]. Images were extracted and
modified from a video in the 300-VW dataset [20]

Contrast 0.350713 0.127890 0.301992
Brightness 0.431940 0.393008 0.389695
Focus 0.034787 0.009951 0.006392
Sharpness 0.085802 0.026179 0.053955
Illumination 0.369130 0.347084 0.317291
Head Yaw 0° -45° -15°

A common challenge in unconstrained environments is
the low resolution of the captured faces, which negatively
affect face analysis performance [21]. Face hallucination was
proposed to address this issue by generating a high resolution
equivalent of the degraded face based on temporal informa-
tion and previously seen examples [22]. Recently, this same
technique has been applied for synthesizing sketches [23],
however, focus is kept on the original application, sometimes
referred to as super-resolution.

Jiang et al. [24] proposed an iterative approach for generat-
ing hallucinated faces, preserving the original high resolution
geometry. Zhou et al. [21] proposed a learning approach by
extracting robust face representations from the raw input using
a CNN for generating high quality faces. Recently, the novel
use of smooth regressions was proposed [25], constraining
reconstruction while combining internal and external samples,
achieving consistent results.

IV. HEAD POSE ESTIMATION

Head pose estimation is defined by determining the angle
of rotation of the head relative to the camera on at least one
of three axis, yaw, pitch and roll [19] (Table I). While it is
traditionally linked to gaze estimation [26], recent works have
successfully used the head pose for estimating the face quality
[18] and performing face alignment [27].

Initially, when studied on controlled environments, multiple
solutions using traditional computer vision tools were pro-
posed [26]. However, under challenging circumstances, robust
approaches became necessary. Zhu and Ramanan [28] pro-
posed a mixture of trees for performing face detection, land-
mark localization and head pose estimation simultaneously.
Manifold analysis of the face region has also been applied
for solving this problem [29], [30]. Recently, a complete face
processing solution based on CNNs was proposed by Ranjan
et al. [6], including head pose estimation. Zavan et al. [19]
propose an alternative approach, in which only the nose region
is used, as opposed to the whole face, allowing for consistent
estimation even when the face is degraded.

V. FACE ALIGNMENT

Face alignment is the task of identifying the geometric struc-
ture of faces on images using discriminant facial components,
i.e eye corners, nose and mouth [31]. Although it is common
to use the set of 68 landmarks defined in [32], the number
of landmarks might vary depending on the task. For example,
[33] used five landmarks to rotate a facial image through an
affine transformation, but [34] used 94 landmarks for facial
expression analysis.

First estimation Final estimation
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Fig. 4: Example face alignment cascade regression refinement
[35]

Face alignment approaches include methods based on cas-
cade regressions [36], [37], which are not robust to head
pose variations. In order to address this issue, Zhu et al



[38] and Yan et al. [39] used a range of facial geometries
to initialize the regression model, while Yang et al. [40]
combined pose information with a rough alignment. State-
of-the-art performance was achieved by approaches based on
CNNSs. Sun et al. [33] used a CNN to localize five landmarks,
and Trigeorgis et al. [41] proposed the usage of recurrent
neural networks.

The presented methods are used only for near frontal faces.
To handle this issue, face alignment was extended from 2D to
3D. One of the main efforts towards this change was the 3D
Face Alignment in the Wild Challenge (3DFAW) [42], which
evaluated pose invariant 3D landmark localization. The method
proposed by Zavan et al. [27] detected landmarks by fitting a
mean shape model according to the head pose, estimated using
the nose region, and was extended by Silva [35] using cascade
regressions (Fig. 4). Zhao et al. [43] proposed estimating 2D
landmarks using a CNN, and then inferring the depth using
a set of fully connected layers. Finally, the state-of-the-art
challenge was achieved by Bulat and Tzimiropoulos [44] using
a two-state convolutional part heatmap regression to locate
2D landmarks, and then estimating the depth using a residual
network.

VI. 3D RECONSTRUCTION

Humans perceive the 3D shape of objects and faces through
patterns of shading and geometry [47]. Methods for 3D face
reconstruction try to recover this information in 2D images
or video frames. The uses for precise 3D face models range
from security based systems capable of recognizing a subject
independently of expression and facial accessories, to enter-
tainment systems transporting someone’s looks into a virtual
world.

A 3D morphable model (3DMM) is a principal component
analysis (PCA) built model of many face scans in dense
correspondence [48], [49], and is one of the most studied
approaches for 3D face reconstruction. The resultant 3D
model can be morphed by estimating the principal components
coefficients, following age, ethnicity and other human facial
characteristics restrictions. The seminal work from Vetter and
Blanz [50], later improved by Romdhani et al. [51] was
developed in an environment with controlled illumination
and background. Such scenarios are not suitable for practical
applications. Problems found in the wild are usually related
to background segmentation, landmark detection under large
poses and illumination, and scale.

Shape from shading approaches can retrieve a face’s 3D
model directly from the image’s shading information and have
been tested in unconstrained scenarios [52]. Recently, Liang
et al. [53] used images of the same person obtained on the
internet for reconstructing the whole head. This approach
makes use of different head poses from different images of
the same subject.

Huber er al. proposed a landmark fitting based approach,
which estimates the coefficients with the geometry of the
face only, without using the texture. Piotraschke et al. [54]
proposed a new approach for selecting the best out of many

in the wild images of the same person before reconstructing
the face with a 3DMM. Tran et al. [45] proposed a novel
approach, which uses a CNN for fitting the 3DMM. Results
obtained using two approaches with available code [45], [46]
are presented in Fig. 5.

VII. GENDER AND AGE ESTIMATION

In computer vision, gender estimation is defined strictly as
determining if a subject is male or female. Age estimation
admits variations, as datasets may be annotated with the
precise age [55] or a general age range [56]. Both tasks are
typically solved using only the face.

It is common for approaches to provide a single solution
for determining the gender and the age of a given subject in
unconstrained environments. Tasks can be performed simulta-
neously [6], or the same architecture can be reused [57].

In recent work, Ranjan er al. [6] was able to accurately
estimate the gender and age of subjects in challenging sce-
narios, while simultaneously performing other face analysis
tasks. Levi and Hassner [57] proposed a CNN architecture
that can be trained for both tasks, either classifying a face
into two genders or eight age classes. Similarly, Mansanet
et al. [58] provided a solution for estimating the gender by
combining local features and CNNs. To estimate the age under
considerable facial expressions, Lou et al. [59] proposed a
joint-learning approach using a graphical model that learns
the relationship between age and expression, achieving precise
results.

VIII. FACIAL EXPRESSIONS AND EMOTIONS

Facial expression identification is performed by using the
Facial Action Coding System (FACS) proposed by Ekman
et al. [60]. This model is based on the movement of facial
muscles, known as Action Units (AUs). FACS is a categorical
model stating that there is a limited set of emotion expres-
sions [61], the basic six (happy, sad, angry, disgust, fear,
surprise). Another model is the Circumplex of Affect [62],
which uses a continuum of two dimensions based on valence
(pleasant/unpleasant) and arousal (relaxed/aroused).

There is an ongoing debate on which one of the models
best describes human understanding of facial expressions.
Howeyver, it is known that there are more than six basic facial
expressions [34], [63]. The main difference between FACS and
the Circumplex of Affect is: FACS analyzes facial expressions
that can be used to express emotions, while the Circumplex of
Affect describes affect which can rely on facial expressions,
but also on other signals such as audio and gestures.

Facial expression analysis and emotion recognition used to
be evaluated on datasets acquired in controlled environments
[64], [65]. These datasets are also known as posed, as the
subjects were asked to perform the six basic expressions;
resulting in clearly defined and intense renditions. However,
daily expressions are subtler and not so distinct. To surpass
this limitation, datasets of people showing spontaneous expres-
sions were created [66]-[68]. The spontaneous behavior was
recorded while subjects performed a task to elucidate specific



(a) Input image

(b) Tran et al. [45]

(c) Huber et al. [46]

Fig. 5: Example of two approaches for 3D face reconstruction of an image from the 300-W dataset [32]

expressions. Although these datasets provide spontaneous ex-
pressions, they were also recorded in controlled environments.

Because facial expressions in the wild are complex, due
to their spontaneous behavior, using a model with a fixed
number of expressions has limited usage. Thus, performing
AU detection and intensity estimation is more appropriate for
this scenario. AU detection is a binary task of predicting
if a given AU is present (active) or not. It is possible to
use a binary model for each AU [4], [69], as it is also
possible to model the task into a multilabel classification
problem [70], [71]. Although it is possible to understand
expressions by only detecting AUs, a better understanding
can be achieved by estimating their intensities. AU intensity
is important for estimating compound facial expressions, as
some AUs interfere with each other [63], [72]. AU intensity
estimation predicts the contraction level of the AU; it is only
required when the AU is active. The contraction levels vary
from A to E (or 1 to 5) with the middle intensities being
the most common ones [60]. In this case, it is possible to
use a multiclass [73] or a regression [69] model for each
AU. Alternatively, a model can be used to to perform a joint
optimization for all AUs [70], [72], [74].

Although many approaches for AU detection and intensity
estimation have been proposed, it is not clear how to handle
these problems in challenging environments. One of the most
recent approaches, based on Gabor filters, was successfully
used to annotate a large dataset of facial expressions in the
wild [4]. Open challenges for performing facial expression
analysis in unconstrained environments remain [75]. An ex-
ample is the head pose, which was shown to be one of the
main issues in facial expression analysis [76]. Furthermore,
the Facial Expression Recognition and Analysis Challenge
(FERA) 2017 [77] focused on solving AU detection and
intensity estimation under various head poses; the winners
[78], [79] were CNN based approaches.

IX. FACE RECOGNITION

Processing faces in unconstrained environments has direct
applications in security systems, particularly for face recogni-
tion. Wang et al. [3] explore this aspect by performing large
scale searches for individuals in datasets containing millions
of subjects. They also perform a case study of the Boston

Marathon bombing, simulated using the suspects’ pictures
that were originally shared to match with their social media
pictures enrolled in a large gallery of subjects.

Parkhi et al. [80] leveraged the availability of large face
datasets by suggesting the use of very deep CNNs, which,
when properly trained, are able to achieve state-of-the-art
results for face recognition. To study the need for such large
labeled datasets, Simlarly, Amos et al. [81] proposed a CNN
based face recognition method also optimized using a triplet
loss of identities embeddings. Masi et al. [82] proposed manip-
ulating the original training images by synthesizing new head
poses, shapes and facial expressions trough 3D reconstruction.
Results indicate considerable gains in classification accuracy
without the need for including new training images in the
original dataset.

Focusing on in the wild images, Ranjan et al. [6] proposed
a complete, all-in-one, CNN, including detection, alignment,
gender, pose and age estimation, smile detection, and face
recognition. Experiments achieve high accuracy for all tasks,
which indicates that performing multiple tasks at once can be
positive for such approaches as the initial layers of the CNN
can extract features that are useful to all applications.

X. DATASETS

An overview of the main benchmarks for each of the tasks
related to face analysis is shown in Table II. It is important to
note that, for some tasks, controlled datasets are used because,
to the best of our knowledge, there are no in the wild labelled
datasets for that task. This is the case for 3D reconstruction
and AU intensity estimation. Although in the wild datasets
exist for AU detection, it is common to evaluate the proposed
approaches in controlled environments.

In order to simulate in the wild scenarios, for 3D reconstruc-
tion, it is a common practice to use pictures from the internet
[45], [53], [102]; for facial expression analysis cross-dataset
evaluation is being used, as described in [4].

XI. CODE AVAILABILITY

The source code of many of the presented methods is avail-
able to the scientific community to be used for benchmarking
and building upon. Table III presents an overview of all these
methods.



TABLE II: Overview of the datasets for face analysis. The acronyms in the first column represent the target task of the dataset.
The acronyms stand for: Face Detection (FD), Head Pose Estimation (HPE), 3D Reconstructions (3D), Face Alignment (FA),
Gender and Age Estimation (GA), Emotion Recognition (EM), Facial Expression Analysis (FEA), and Face Recognition (FR)

Dataset Environment Type Description
n FDDB [83] in the wild Image 5,000+ faces
P~ Wider Face [84] | in the wild Image 300,000 faces
= AFW [28] in the wild Image Head pose from —90° to 90° in steps of 15°
o AFLW [11] in the wild Image Continuous annotation acquired through 3D model fitting
A Multi-PIE [85] controlled Image 15 view points and 19 illumination conditions
“  Bosphorus [86] controlled Image Includes the 3D ground truth for the faces
300-VW [20] in the wild Video 68 landmarks per face
< 3DAFW [42] in the wild Image 66 3D landmarks
~  LS3D-W [87] in the wild Image 68 3D landmarks form 230,000 images
Menpo [1] in the wild Image 29 or 68 landmarks depending on the head pose
<« Chalearn [88] in the wild Image 12,000 images
O CelebA [89] in the wild Image 10,000 subjects
EmotioNet [4] in the wild Image 23 emotions
AffectNet [90] in the wild Image 8 emotions and valence/arousal
FER-Wild [91] in the wild Image 7 emotions
E FER-2013 [92] in the wild Image 7 emotions
EmotiW [93] in the wild Image/Video 7 emotions
AVEC [94] controlled Audio/Video Valence/Arousal
Aff-Wild [95] in the wild Images Valence/Arousal
EmotioNet [4] in the wild Image Occurrence of 12 AUs
AM-FED [96] in the wild Image Occurrence of 12 AUs
FERA 2011 [97] | controlled Image Occurrence of 12 AUs
é FERA 2015 [98] | controlled Video Occurrence of 12 AUs; Intensity of 5 AUs
" FERA 2017 [77] | controlled Video Occurrence of 10 AUs; Intensity of 7 AUs; 9 head poses
BP4D [67], [68] | controlled Video Occurrence of 12 AUs; Intensity of 5 AUs
DISFA [66] controlled Video Intensity of 12 AUs
PaSC [99] in the wild Image/Video 265-293 identities
o LFW [100] in the wild Image 5,749 identities
YTF [101] in the wild Video 1,595 identities
Parkhi et al. [80] | in the wild Image 2,600 identities
TABLE III: Available state-of-the-art code XII. FINAL REMARKS
Category Method A survey on the state-of-the-art regarding facial image

Face Detection

(101" [9F° [15]°

Head Pose Estimation

28]

Face Alignment

871

3D Reconstruction

[46]° [45]

Age and Gender Estimation

[571°

Facial Expression Analysis

(697 [711" [74]™ [72]"

Face Recognition

Uhttps://github.com/rbgirshick/py-faster-rcnn

Zhttp://www.cbst.ia.ac.cn/users/scliao/projects/npdface/

3https://github.com/peiyunh/tiny
“https://www.ics.uci.edu/~xzhu/face/

Shttps://github.com/1adrianb/2D-and- 3D-face-alignment

Ohttps://github.com/patrikhuber/eos
"https://github.com/anhttran/3dmm_cnn
8https://github.com/GilLevi/AgeGenderDeepLearning
“https://github.com/TadasBaltrusaitis/OpenFace

[80]13 [69]14

analysis in the wild was presented. The subject has been
evolving considerably in the past five years, but the yearning
for better results in real-life applications is still high. The
performance of current approaches to solve problems due
to unconstrained, heterogeneous scenarios is limited by low
image quality, occlusions, and varying face poses, which
impose a great drawback for automated systems. However,
advances have been made in diverse topics related to facial
image analysis in the wild. Future work is expected to tackle
challenging scenarios where subjects actively try to not be
recognized via multiple methods, including blending in a large

1Ohttps://github.com/zk120061823/DRML
https://github.com/kaltwang/latenttrees
2https://github.com/RWalecki/copula_ordinal_regression
Bhttp://www.robots.ox.ac.uk/~vgg/software/vgg_face/
14https://cmusatyalab.github.io/openface/



crowd, increasing the search scale, or wearing multiple face
accessories, creating occlusions. Facial expression analysis and
3D face recognition, which still heavily rely on controlled
acquisitions and dense annotations, should experience a switch
to in the wild environments as new, large, and annotated
datasets become available.
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