
A Comparative Analysis of Deep Learning
Techniques for Sub-tropical Crop Types Recognition
from Multitemporal Optical/SAR Image Sequences

Jose Bermudez Castro.∗, Raul Queiroz Feitosa∗†, Laura Cue La Rosa∗, Pedro Achanccaray Diaz∗ and Ieda Sanches‡
∗Pontifical Catholic University of Rio de Janeiro, Brazil

Email: {bermudez, raul, lauracue, pmad9589}@ele.puc-rio.br
†Rio de Janeiro State University, Brazil
‡National Institute for Space Research

Email:ieda.sanches@inpe.br

Abstract—Remote Sensing (RS) data have been increasingly
applied to assess agricultural yield, production and crop con-
dition. In tropical areas, crop dynamics are complex due to
multiple agricultural practices such as irrigation, non-tillage,
crop rotation and multiple harvest per year. Spatial and temporal
information can improve the performance in land-cover and crop
type classification tasks. In this context Deep Learning (DL)
have emerged as a powerful state-of-the-art technique in the
RS community. This work presents a comparative analysis of
traditional and DL (supervised and unsupervised) approaches
for crop classification on sequences of multitemporal optical and
SAR images. Three different approaches are compared: the image
stacking approach, which is used as baseline, and two DL based
approaches using Autoencoders (AEs) and Convolutional Neural
Networks (CNNs). Experiments were carried out in two datasets
from two different municipalities in Brazil, Ipuã in São Paulo
state and Campo Verde in Mato Grosso state. It is shown that
CNN and AE outperformed the traditional approach based on
image stacking in terms of Overall Accuracy and Class Accuracy.

Index Terms—Crop Recognition; Multitemporal Images; Au-
toencoders, Convolutional Neural Networks.

I. INTRODUCTION

Prediction of yields, estimation of food production and
precise and accurate agricultural statistics are crucial to antici-
pate the market behavior, create new strategies for agriculture
and develop economic planning by government and private
agencies. Remote sensing data has been widely used for
this purpose because it provides a cost-effective tool for
agricultural monitoring and management. With the launch of
more satellites, high spatial and temporal resolution images
with low revisit time are affordable, which allows to capture
changes as crops evolve through their characteristic phenologi-
cal stages. In tropical areas, crop dynamics are complex due to
multiple agricultural practices such as irrigation, non-tillage,
crop rotation and multiple harvest per year.

Among the proposed approaches for crop recognition, there
are three main groups: Pixel-wise, Object-based and Context-
based. Pixel-wise methods take information from every pixel
individually and classify each image separately. Neural Net-

works (NNs), Support Vector Machines (SVMs) and Random
Forest (RF) classifiers have been applied for this purpose [1],
[2]. These methods have a major limitation, because they
ignore spatial and temporal context. Object-based methods
[3] partially capture spatial context by classifying segments.
Their main limitation is due to the fact that conventional
segmentation algorithms rely only on the data and fully
disregard semantics. Context-based classification approaches
take into account contextual information in the spatial and/or
temporal domains. The temporal context carries information
about the phenological cycles, which is essential to properly
discriminate among different crop types [4], [5].

Hidden Markov Models (HMMs) has been used to model
crop’s phenology over time [6], [7]. Spatio-temporal Markov
Random Fields (MRFs) [8] and Conditional Random Fields
(CRFs) [9] have been proposed to unify both, spatial and tem-
poral information. These approaches achieve higher accuracies
than other methods at the cost of a higher computational effort
and more labeled samples for a supervised training. They also
require a prior feature selection analysis.

On the other hand, Deep Learning (DL) techniques have
recently become very popular in the scientific community par-
ticularly for image classification. Such techniques are able to
learn features automatically from non-labeled samples. Deep
Belief Networks (DBNs) [10], Autoencoders (AEs) [11], [12],
Convolutional Neural Networks (CNNs) [13] and Recurrent
Neural Networks (RNN) [14] are the main approaches in DL.
CNNs and RNNs perform a supervised training of the whole
network. In contrast, DBNs and AEs train one layer at a time
in an unsupervised manner, reducing the need of collecting
many labeled samples.

State-of-the-art land-cover and crop type classification tech-
niques implement DL approaches using spatial and temporal
context [12], [15]. Kussul in [16] used temporal information
in a multilevel DL architecture for crop type classification in
a heterogeneous environment in Ukraine with scenes acquired
by Landsat-8 and Sentinel-1A satellites. The crop calendar of
these data is from September to July for winter crops, and



from April to October for spring and summer crops. Crop’s
dynamic is simpler than in the tropics with only one crop per
field per season. To our knowledge this is the first work that
approaches crop mapping using deep learning strategies on a
database from tropical regions.

In this paper, we perform a comparative analysis of super-
vised and unsupervised DL techniques for crop classification
on sequences of multitemporal remote sensing images. Both
techniques have been tested in two datasets composed by
Optical (Landsat 5/7) and SAR (Sentinel-1) image sequences
from two different municipalities in Brazil, Ipuã in São Paulo
state and Campo Verde in Mato Grosso state, respectively.
These are representative agricultural areas in Brazil, where
crops dynamic is more complicated than in temperate regions.

The remainder of this paper is organized as follows. Section
II explains the fundamentals of AEs and CNNs. Section
III introduces the methods evaluated in this work to extract
multitemporal feature representations. Section IV presents
the datasets used in our experiments, the features extracted
from them and the experimental protocol. Section V shows
the results obtained in our experiments and discusses them.
Finally, Section VI summarizes the conclusions drawn from
our results.

II. FUNDAMENTALS

A. Autoencoders (AEs)

An Autoencoder is a Neural Network architecture formed
by two modules, an encoder and a decoder [17]. As shown in
Figure 1, the encoder projects the d-dimensional input data x
onto a k-dimensional (k is the number of hidden nodes) space
through a nonlinear mapping function f :

f(x) = s(Wx+ b) (1)

where W is a k×d weight matrix, b is an d-dimensional bias
vector and s is a nonlinear function. In contrast, the decoder
projects back to the original d-dimensional input space through
another mapping function h:

x̂ = h(f(x)) = s(W′f(x) + b′) (2)

where W′ is usually constrained to be equal to WT . The
parameters (the weights and bias) of the autoencoder are
learned using the backpropagation algorithm by minimizing
a cost function L, such as the one given by Equation 3.

L =
∑
i

‖xi − h(f(xi))‖22 + α ‖W‖22 + βKL(ρ||ρ̂) (3)

where
∑

i ‖xi − h(f(xi))‖22, ‖W‖22 and KL(ρ||ρ̂) correspond
to the reconstruction error, weight decay and sparsity penalty
terms respectively, controlled by the weighting coefficients α
and β. ‖W‖22 is the Frobenius norm of the weight matrix.
The term KL(ρ||ρ̂) is the Kullback-Leibler (KL) divergence
between ρ and ρ̂, the ideal and actual distribution of the
average activation over all hidden units, respectively.
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Fig. 1. Autoencoders architecture. Layer 1 corresponds to the Input data,
layer 2 to the Encoder, and layer 3 to the Decoder.

Once the autoencoder’s parameters have been learned, the
encoder function f is used to generate a new set of features
from the original data. This new set of features is expected to
be more discriminative than the original ones.

B. Convolutional Neural Networks (CNNs)

CNNs pass the image through a series of several layers
of small neuron/kernel collections where each one looks at
an small portion of an image and gets an output. The output
can be a single class or a set of class probabilities that best
describes the image. Typically, CNNs use small convolutional
kernels. In consequence, CNNs involve fewer parameters than
fully connected neural networks [18]. The simplest CNNs
architectures is shown in Figure 2 and consists of several
layers. These layers can be one of the following types:

1) Convolutional: during the convolution the kernels slide
over all pixels of the input image. This kernel/weights
is an array with the same depth of the input. Each of
these kernels can be seen as feature identifiers.

2) Pooling: this is a downsampling layer whose input is
the output of a convolutional layer. The pooling layer
reduces the amount of data in spatial domain (depth
remains unchanged) in order to reduce the number
of parameters of the subsequent layers, to reduce the
computation cost and also to control overfitting.

3) Fully-Connected: takes an input volume layer (previous
layer) and convert it to an one-dimensional layer, by
connecting all neurons of the previous layer to every
single neuron of the fully-connected layer.

The final layer in a CNNs contains a single node for each
class. In our model, a softmax activation function was used
to get the posterior probability for the different classes. More
complex CNNs architectures usually have many convolutional
and pooling layers [19]–[21].



Fig. 2. CNNs basic architecture.
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Fig. 3. Image Stacking. First, images in a multitemporal sequence are stacked.
Then, a classification algorithm is trained using this stack.

III. METHODS

This section describes the methods evaluated in this work
for crop recognition: Image Stacking and two approaches
based on DL’s techniques, Unsupervised Multitemporal based
on Autoencoders and Supervised Multitemporal based on
Convolutional Neural Networks. Image Stacking [22], [23]
is the most widely exploited approach in the literature for
multitemporal remote sensing image analysis, and in this work,
we used it as the baseline. Likewise, AE and CNN are the DL
methods most widely used in the literature. An explanation of
each method is given in the following.

A. Image Stacking (IS)

The traditional approach consists in stacking all images
of the multitemporal sequence to assemble, for each pixel
location, a descriptor that comprises the features of all epochs.
The representations built in this way are used to train a
classifier that assigns a class label to each pixel along the
sequence. In this approach no spatial context is taken into
account. Figure 3 illustrates the process flow of this method.

B. Unsupervised Multitemporal based on Autoencoders
(UMAE)

In this approach, temporal and spatial contextual infor-
mation are exploited as part of the AE training. In this
method, an AE is trained for each epoch separately. Here,
the final descriptor for each pixel of the image sequence
will be assembled by concatenating the corresponding new
learned pixel representation of each epoch. Similar to IS, a
classification model is built from the resulting descriptors.
Figure 4 summarizes the method. The descriptor x of a pixel
in each image is a d× w2 dimensional vector that comprises
the w-by-w-by-d patch centered at that pixel, where d is the
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Fig. 4. Unsupervised Multitemporal based on Autoencoders approach. First,
an Autoencoder is trained for each image of the multitemporal sequence.
Then, these outputs are stacked. Finally, a classification algorithm is trained
using this stack.

depth of each input image. The training/inference procedure
consists of the following steps:

1) Select randomly for each image in the sequence, M
pixel descriptors.

2) Train for each image, an AE using the corresponding
set of M vectors. Then, these sets are previously stan-
dardized to zero-mean and unit-variance.

3) Compute the representation of each pixel in each image
using the encoded mapping functions learned by each
AE in the previous step.

4) Take as final representation of each pixel the concatena-
tion of its single date AE representations over the whole
sequence. Notice that pixels at the same location will
share the same representation over all epochs.

5) Train a classifier for the target image using labeled
pixel samples and their representations computed in the
previous step.

6) Apply the classifier trained in the previous step to all
pixels of the target image not used for training, using
the representations computed in step 4.

C. Supervised Multi temporal based on Convolutional Neural
Networks (SMCNN)

The CNN architecture tested is this study is shown in Figure
2. It consists of four layers, from left to right: convolutional,
max-pooling, fully connected and softmax layer. Similarly to
[16], we train a CNN to describe a pixel location taking
information of the neighborhood. The descriptor x of a pixel in
each image is a d×n×w2 dimensional vector that comprises
the w-by-w-by-d patches centered at the same position of all
n images, where d is the depth of each input image. Notice
that pixels at the same location will share the same descriptor
over all epochs. The training/inference procedure consists of
the following steps:



Fig. 5. Study area: Campo Verde, Mato Grosso state, Brazil.

1) Train a CNN in a supervised fashion for the target image
using labeled pixel samples and their corresponding
descriptors.

2) Apply the CNN trained in the previous step to the
descriptors of all pixels of the target image not used
for training.

IV. EXPERIMENTS

A. Datasets

1) Ipuã: Ipuã municipality in the state of São Paulo, Brazil
has an extension of 465 km2 approximately (see Figure 6).
A sequence of 9 Landsat scenes, from August 2000 to July
2001, was taken, from either Landsat-5 (TM) or Landsat-
7 (ETM+) with 30 m spatial resolution, each image having
approximately 500K pixels. The reference for each epoch was
produced manually by a human expert.

The most common crops are Sugarcane, Soybean and
Maize. In our study, we also included two classes related
to no crops: Prepared Soil, which corresponds to ploughing
and soil grooming phases, and Post-Harvest, characterized by
vegetation residues lying on the ground. To complete the set
of classes, Pasture, Riparian Forest and Others were also
included in our model. The last one represents minor crops
as well as rivers and urban areas. Figure 7 shows the class
occurrences per image in the dataset. Notice that some classes
appears only in two or three epochs due to its shorter cycle
(Maize) or the gap in the acquisition dates (Soybean) during
cloudy months. On the other hand, Sugarcane, which is a long
cycle crop, appears in all epochs.

2) Campo Verde: Campo Verde municipality in the state of
Mato Grosso, Brazil has an extension of 4782 km2 approxi-
mately (see Figure 5). A total of 27 Level 1 Interferometric
Wide Swath (IWS) mode Ground Range Detected (GRD)
Sentinel-1 products in VV and VH polarizations were used to
cover all Campo Verde municipality from October 2015 to July
2016 resulting in a sequence of 14 images, with two images
per month for November, December, March, May and July
and only one image for October, January, February and June.
These images were geometrically corrected using a Range
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Fig. 6. Study area: Ipuã, São Paulo state, Brazil.

Doppler terrain correction with a Digital Elevation Model
(DEM) from SRTM, radiometrically calibrated to a backscatter
coefficient (sigma nought (σ0) in this case), converted to db,
co-registered using a RapidEye mosaic (5 m spatial resolution)
and georeferenced to UTM projection Zone 21S and Datum
WGS84.

The main crops found in this area are: Soybean, Maize and
Cotton. Also, there are some minor crops such as Beans and
Sorghum. As non-commercial crops (NCC), Millet, Brachiaria
and Crotalaria were considered. Other classes present in the
dataset are Pasture, Eucalyptus, Soil, Turfgrass and Cerrado.
Figure 8 shows the class occurrences per images in the
dataset. Similar to Ipuã dataset, the number of crops per image
changes along the whole image sequence due to the different
phenological cycles of each culture.

B. Feature Extraction

Hand-crafted features were computed for each dataset and
used for the experiments as well as those learned by the
aforementioned methods in Section III. For Ipuã, the pixel
spectral information from bands 1-5 and 7, and the Nor-
malized Difference Vegetation Index (NDVI) were used as
feature vector. For Campo Verde, features extracted from the
Gray Level Co-occurence Matrix (GLCM) or pixels values
were selected depending on the evaluated method. For the IS
approach, GLCM features were employed and pixel values for
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Fig. 7. Class occurrences per image in Ipuã dataset.
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Fig. 8. Class occurrences per image in Campo Verde dataset.

the other methods based on deep learning techniques. As in
[24], four features were computed for each image band from
the GLCM (correlation, homogeneity, mean and variance)
in four directions (0, 45, 90 and 135 degrees) using 3 × 3
windows. Then, each pixel was represented by a feature vector
of dimensionality 32.

C. Experimental Protocol

For the IS and UMAE approaches we used a Random For-
est (RF) classifier, specifically the implementation in Scikit-
Learn [25]. The DL based algorithms were implemented using
the Theano framework [26]. For all experiments, a manual
parameter tuning procedure was carried out to get the best
possible configuration. For the RF classifier, the number of
random trees and its maximum depth was set to 250 and 25,
respectively; for the UMAE, the size of patches was 3 × 3,
the hidden layer was set to 256 neural units and the sparsity
penalty parameter to 10−4; for the SMCNN, the size of the
neighborhood was 5 × 5, the convolutional layer was set to
256 kernels of 3× 3 and the FC layer to 256 neural units. We
used a dropout of 0.5 at FC layer to train the CNN.

The protocol followed in the experiments is described next.

Algorithm 1: Experimental Protocol
Input: Sequence of n images {I1, I2, I3, ..., In}

1: for t = n to 1 do
2: for l = 0 to t− 1 do
3: Stack the feature pixel representation that

comprises the whole sequence of l images from
It to It−l, according to the selected method.

4: Train and evaluate a classifier/DL approach using
the stacked features and the reference for the last
image in the sequence It, respectively.

5: end for
6: end for

For a given image sequence we classified only the image
of the last epoch. We started with a single image in the
sequence and repeated the experiment by adding earlier images
successively (see Figure 7).

Two sequences were considered for both datasets based
on the class distribution per image in Figure 7 and 8.

For Ipuã dataset, these sequences were selected with focus
on Maize and Sugarcane, wich come about only between
February and April and between February and July for Sugar-
cane, respectively; although Sugarcane appears throughout the
whole images sequence, only images from February on were
considered because of the missing images between November,
2000 and January, 2001. Likewise, for Campo Verde dataset,
we took one sequence from November, 2014 to February,
2015, where there is mainly Soybean, and another one from
March to July, where Cotton and Maize are the major crops.
Notice that October epoch was excluded from the analysis
because there were not enough samples of any class of interest.

In order to balance the number of training samples for all
classes we replicated samples of some less abundant classes on
both datasets. In particular, for Ipuã dataset we selected 5,000
samples per class while for Campo Verde, 50,000 samples per
class were selected.

V. RESULTS

Results for both Ipuã sequences are shown in Figure 9,
Figure 10 and Table I. Each figure summarizes, for differ-
ent sequence lengths, the Accumulated Class Accuracy (AA)
obtained by the methods described in Section III. From left to
right, in each bar group, each bar corresponds to IS, UMAE and
SMCNN methods, respectively. The maximum possible value
of each bar is equal to the number of classes×100%. This kind
of comparison allow us to analyze the contribution of temporal
information to the classification performance as the sequence
length increases by adding data from the past. Similarly, Table
I summarizes the results of the same experiments in terms of
Overall Accuracy (OA).

Figure 9 and Figure 10 show improvements on the AA of
up to 76% and 60%, respectively for IS as more images were
considered. Notice that performance for most classes improved
as the sequence length increased. A similar behavior was
observed for UMAE and SMCNN. A significant improvement
was obtained when a second image was added to the sequence.
As more images were added, the incremental improvements
decreased. This behavior can be explained by considering that
information from earlier images tend to be less relevant as we
move back in time.

TABLE I
OVERALL ACCURACY FOR BOTH SEQUENCES EVALUATED FROM IPUÃ
DATASET: FROM FEB TO APRIL AND FROM FEB TO JUL, CLASSIFYING

ALWAYS THE LAST IMAGE IN EACH SEQUENCE.

Sequence
length

OA(%)
Feb - Apr Feb - Jul

IS UMAE SMCNN IS UMAE SMCNN

1 78.7 82.9 85.5 72.9 76.8 80.6

2 82.9 85.2 86.5 78.0 80.0 82.2

3 84.6 85.9 86.9 79.9 81.8 81.3

4 – – – 82.3 82.1 82.6

5 – – – 82.3 82.5 83.8

6 – – – 82.6 81.9 84.4
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Fig. 9. Accumulated Class Accuracy for different sequence lengths for the
first sequence from Ipuã dataset. From left to right in each bar group: Is,
UMAE and SMCNN approaches.
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Fig. 10. Accumulated Class Accuracy for different sequence lengths for the
second sequence from Ipuã dataset. From left to right in each bar group: Is,
UMAE and SMCNN approaches.

TABLE II
OVERALL ACCURACY FOR BOTH SEQUENCES EVALUATED FROM CAMPO

VERDE DATASET: FROM NOV TO FEB AND FROM MAR TO JUL,
CLASSIFYING ALWAYS THE LAST IMAGE IN EACH SEQUENCE.

Sequence
length

OA(%)
Nov - Feb Mar - Jul

IS UMAE SMCNN IS UMAE SMCNN

1 24.4 47.2 36.7 18.2 42.6 38.5

2 51.0 53.4 53.9 47.2 52.8 54.5

3 56.5 58.0 62.4 52.7 56.6 59.1

4 59.4 60.8 66.5 57.5 59.9 63.7

5 63.7 64.8 70.6 60.3 62.2 61.4

6 64.8 65.8 71.2 62.9 64.2 66.5

7 – – – 63.5 64.6 67.1

Results from Table I are consistent with the results exhibited
in Figure 9 and Figure 10; OA improved as the sequence length
increased. For instance, the results for IS improved up to 6%
and 10% in terms of OA for the shorter and the longer Ipuã
sequences, respectively.

As for the DL based techniques with respect to the IS,
major improvements were achieved primarily in relation to the
monotemporal classification (first group of bars in Figure 9 and
Figure 10 or the row of sequence length equal to 1 in Table
I); up to 45% for both sequences in terms of AA or 8% for
the OA metric, while for longer sequences (see Figure 9), the
improvement decreases to 7% for higher sequence lengths.
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Fig. 11. Accumulated Class Accuracy for different sequence lengths for the
first sequence from Campo Verde dataset. From left to right in each bar group:
IS, UMAE and SMCNN approaches.
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Fig. 12. Accumulated Class Accuracy for different sequence lengths for the
second sequence from Campo Verde dataset. From left to right in each bar
group: IS, UMAE and SMCNN approaches.

The results for the Campo Verde dataset are shown in Figure
11, Figure 12 and Table II. Similar to the results drawn from
the experiments on Ipuã, temporal information helped a lot
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Fig. 13. Prediction maps of a selected interest region of Ipuã dataset. (a) is the reference map, (b), (c) and (d) are the IS approach prediction maps for
sequence lengths of 1, 3 and 6, respectively. (e), (f) and (g) are the corresponding SMCNN approach predictions maps.
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Fig. 14. Prediction maps of a selected interest region of Campo Verde dataset. (a) is the reference map, (b), (c) and (d) are the IS approach prediction maps
for sequence lengths of 1, 3 and 6, respectively. (e), (f) and (g) are the corresponding SMCNN approach predictions maps.



to improve the classification performance for all evaluated
approaches. This behavior becomes more evident for Campo
Verde due to the low rates in the monotemporal classification,
less than 50% OA (see Table II) due to classes with Class
Accuracy close to zero. For instance, it can be seen in Figure
11 that Maize bars only increased for sequences comprising
more than three epochs. The Campo Verde data set is highly
unbalanced in terms of number of samples per class. Though
we balanced the training set by replicating samples of minority
classes, they still presented low AA.

Like the results for Ipuã, the results obtained with features
learned by AEs were superior to the results achieved with
handcrafted features. However, SMCNN results outperformed
all other methods in almost all cases. As the Campo Verde
dataset has more training samples than Ipuã dataset, a better
network’s parameters tuning could be achieved. So, the su-
periority of SMCNN to the other approaches was higher for
Campo Verde.

Finally, Figure 13 and Figure 14 show snips of the reference
and classification maps obtained by the IS and SMCNN ap-
proaches for Ipuã and Campo Verde (sequence 1), respectively,
in three cases: monotemporal classification and multitemporal
for sequence of 3 and 6 images, respectively. We see that
the classification improved as more images were added to
the sequence. For longer sequences, the prediction maps came
closer to the reference. Comparing the performance of IS and
SMCNN, we notice that, in both datasets, the salt&pepper
effect was less significant for SMCNN. This difference can
be related to the ability of CNNs to capture spatial context.

VI. CONCLUSION

In this work, we developed a comparative analysis of super-
vised and unsupervised DL techniques for crop recognition in
tropical regions, on an optical and on a SAR dataset. Results
confirmed that temporal information plays an important role.

On the other hand, Deep Learning techniques outperformed
the conventional image stacking strategy in almost all experi-
ments. In particular, SMCNN was the best performing among
all evaluated methods, mainly for the SAR dataset.

Future works will be focused in other CNN architectures.
In particular, Recurrent Neural Networks architectures will be
considered in the continuation of this research.
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