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Abstract—The logging and further analysis of borehole images
is a major step in the interpretation of geological events.
Natural fractures and beddings are features whose identification
is commonly performed using acoustic and electrical borehole
imaging tools. Such identification is a tedious task and is made
visually by geologists, who must be experts on classification. The
correct identification of planar features, represented as sinusoids
into an image projection, depends on the quality of the images.
Due to the distortions and noises of the images, known as
artifacts, the automatic features detection is not trivial through
conventional image processing methods. Since the identification
process has to ensure that the marked events are true with
minimal inconsistencies, we propose a pioneering approach to
improving the quality of the results by applying deep neural
networks to confirm or exclude candidate features extracted by
a regular Hough transform. This is the first approach in literature
to improve the quality of geological auto-detected marks by
applying deep learning techniques for borehole images where
our implementation is able to exclude most of the false positive
marks.

I. INTRODUCTION

Analysis of borehole images is the main method used by ge-
ologists to detect several weak points in wells. Some patterns,
like fractures and breakouts, can prevent a possible collapse
of wellbores, being an important analysis for geologists. Our
work deals only with natural fractures and beddings, which are
planar features, but are presented in the images as sinusoids
due to the cylindrical geometry of wells projected into a 2D
image as can be seen in Figure 1. While in this work we
analyze only images acquired by electrical and acoustic tools,
the proposed method can be easily extended to other sources.

Electrical tools use the resistivity of the borehole to generate
the image. They are based on pads with electrodes, which in
an oil-based-mud, apply a voltage that is partially reflected at
a borehole wall and captured back at the upper part of the tool
[2], [3].

Acoustic tools are based on a rotating transducer that emits
acoustic energy in a mud-filled borehole, which is partially
reflected at the walls and received by the transducer. This kind
of tool uses the amplitude of reflected energy (pulses) to create
an image of the borehole wall [4].

Fig. 1. Plane crossing a borehole: shows the corresponding sinusoidal
pattern at the projected image. Image extracted from [1].

The images generated by these tools usually have artifacts,
which interfere in the features detection [5]. While the analysis
of these artifacts is fundamental for the borehole pre-analysis,
the complexity of the images can increase the time spent
for this task by geologists, which in some cases can lead to
human failures. Figure 2 shows sample images of both acoustic
and electrical borehole images presenting several sinusoids.
Figures 2a and 2c illustrate the input images that geologists
will analyze. Figures 2b and 2d depict the result of the manual
feature identification process.

Aiming to help geologists, this work presents a new au-
tomatic detection approach of sinusoids in borehole images.
We first clean up the image with traditional image processing
and correction strategies [6]. Next, we apply traditional Hough
transform [7] to select possible beddings and fractures. Finally,
we apply deep learning algorithms to fine-tuning the results
and arrive at a more precise classification. In order to have
a higher computational performance, our methods are fully
based on GPU Computing, making all results for big images
available in a few seconds of processing [8].

The remainder of this paper is organized as follows. Section
2 briefly exposes related works for automatic curves classi-
fication. Section 3 presents our deep learning identification



(a) Original acoustic (b) Manually marked (c) Original electrical (d) Manually marked

Fig. 2. Sample images: Example of original images (a,c), and sinusoids manually marked (b,d) of acoustic and eletrical wellbores.

process, starting from the pre-processing stage. Section 4
presents our experiments and results. Finally, we present our
conclusions and future works.

II. RELATED WORKS

In the last 30 years, several works proposed new methods
for detection and characterization of borehole image features.
The most common methods for detecting sinusoidal shapes
are based on Hough [9] and Radon transforms [10].

Hall [7] proposed a methodology for automatic extraction
and characterization of features in borehole images combining
edge detection, Hough transform, and an unsupervised neural
network called Competitive and Selective Learning. Thapa
[11] used a more simple method based on Hough transform.
After selecting the 10% darkest pixels, a 3D search finds the
amplitudes, phases, and offsets of the possible sinusoids. Due
to the computational limitation of their times, both methods
were not practical to be used in production stages. Similar
methods were proposed by Glossop [12] and by Zhang [13].
While the first uses a Laplacian of Gaussian (LoG) filter, the
second combines an adaptive histogram equalization with a
direction filtering, before applying the Hough transform.

Ginkel [10] presented an approach for curve detection using
Radon transform on a 3D orientation space, which the authors
acknowledge as having a poor performance.

Assous [14] combined gradient and phase-based approach to
validate congruence and amplitude, using Log-Gabor wavelets
for validating detected edges and then sinusoidal detection and
estimation. The authors claim a false positive rate between 2%
and 5%.

Wang [15] developed a methodology for rock fracture
detection using edge detection and Support Vector Machines
(SVM). After the edge detection, 11 parameters were extracted
from the image, for fracture detection using SVM with the
Gaussian kernel. Although it seems to be a promising ap-
proach, the authors noticed that it did not achieve the expected
performance.

Al-Sit [16] proposed a method for detecting planar disconti-
nuities in borehole digital images using Gabor filters to extract
features and Hough transform to detect sinusoidal forms and
planar discontinuities. The authors achieved high detection
rates with only 1% of false positives.

Most of the previously published experiments were made
using modeled data or low noise level images, usually acoustic

images. When used with real images, extracted from acoustic
and electrical images of public borehole data, most with high
levels of noise, these methods fail and bring a considerable
amount of false positive results.

Compared with the state-of-the-art approaches, our method
presents a way to make effective analysis in real acoustic
and electrical images, with high performance due to the
GPU optimization, making possible the interactive analysis
during perforation in such a way that the extraction process is
improved and the risks are reduced.

III. METHOD

Our proposed method is composed of 4 steps (see Figure
3). At the preprocessing stage, the colored image is filtered to
select the most relevant pixels and reduce noise artifacts. In the
Identification process, the binary image will be filtered with a
Hough transform, in order to identify all possible candidates of
senoids. The postprocessing step involves reducing the set of
identified senoids removing those that are very close, with high
probability to be the same feature at the borehole. Finally, all
the remaining senoids are considered as feature candidates, and
they go through a convolutional neural network confirmation
process for validation or exclusion. Only the senoids with a
high likelihood of being real planar fractures are held and
shown to the user.

Figure 3 presents a more detailed description of each stage.

A. Preprocessing

Black pixels typically indicate the presence of fractures and
breakouts. However, several other gray pixel patterns may
appear due technical inaccuracies regarding data acquisition
and also be part of breakouts. It is desirable, therefore, to
minimize the set of pixels that may not represent any relevant
borehole feature. In this sense, the image is first converted
to grayscale, and then the extra noise is removed by applying
quantization and the median filter. Following, all pixels greater
than a threshold are removed.

To minimize user intervention, we select a fixed fraction
of the darkest pixels based on the image histogram; their
value was experimentally determined to be 25% since such
value obtained clear contrasts on most of the input images.
Therefore, the threshold is automatically set by traversing the
histogram bins until the intended fraction of the pixels is
reached.



B. Identification

In order to select the pixels that likely form part of planar
fractures, we use the Hough transform [9] [11] due to the
robustness of the method for detecting lines, circles and even
arbitrary shapes with noise or pixel discontinuity [17].

The sinusoidal curve is represented mathematically as:

y = A sin(ωx+ θ) + y0 (1)

where A is the amplitude, θ is the phase, ω the angular
frequency, and y0 the baseline position. Since ω can be
considered a constant, for each position y0 this method makes
use of an auxiliary 2D parameter space, where each point
denotes a specific curve represented as the pair (A, θ). For
each pixel from the binary image, a new vote is accumulated
in the parameter space.

Next, we select the most voted curve in the space, since it
has the biggest amount of pixels composing it. This procedure
is repeated varying the y-coordinate with a fixed step size.
Finally, each selected curve is characterized by retrieving their
main features such as depth, amplitude, and phase.

C. Postprocessing

At this stage, depending on the step size, the number of
senoids identified could be impeditive. Also, several nearby
curves could be representing the same planar feature. Never-
theless, a bigger step size could make the procedure overlook
some curves with perhaps more probability of being right
marks. So, regarding this trade-off, we chose to set a step size
that allows us to achieve a performance as close as possible
to real-time while removing the curves with fewer votes by
grouping them according to their y-coordinate.

D. Classification

In the previous stage, the step size is determined in order
to guarantee that all candidates of fractures will be selected.
However, doing so, many false positives will be selected. In
fact, this strategy will generate a huge amount of senoids.
While this is a common problem in numerous previous works,
our solution uses this big dataset in order to apply the deep
learning strategies for filtering the correct results.

Since each identified sinusoidal curve has an associated
voting weight, with the criteria given by the user, it is possible
to select a threshold to show just the most voted curves.
However, because of the presence of noise, many of them
should not have been marked automatically. We abstract this

problem as an image classification problem which aims to
select those candidates that have a high probability of being a
real planar fracture and exclude any other.

We adopt deep learning strategy due to its ability to
overcome human performance regarding object recognition in
different scenarios, such as those presented at the ImageNet
challenge [18].

Inspired by biological processes, convolutional neural net-
works (CNN) are composed of multiple layers to learn repre-
sentations of data with several levels of abstraction. Each layer
transforms the input volume into an output volume where the
final layer is often a function that outputs a probability value
for classification problems. Internal layers such as convolu-
tion, pooling, and fully connected layers complete the CNN
architecture.

For the neural network strategy, we use the AlexNet model
[19]. Alexnet is an architecture composed of 5 convolutional
layers, three fully-connected layers, and three max-pooling
layers for a total of 8 weight layers. Although it is not as deep
as other popular convolutional networks solutions, Alexnet
is good enough to learn the basic edge features even up to
intermediate cases between the raw pixels data and the high-
level curve classification [20].

We perform that classification by training separately elec-
trical and acoustic models. Following the supervised learning
techniques strategy, borehole experts should first mark by hand
senoids of differents boreholes images.

IV. EXPERIMENTAL RESULTS

We performed several experiments using real data in order
to evaluate our proposed method. In this section we first
introduce our dataset, then we discuss the results.

A. Dataset

Our data is composed of two types of images, classified
as positive and negatives. Positive images are those where
a planar event exists, and their mark was visually made by
specialists. Each sinusoidal curve defines a separated slice of
the image with fixed size. Conversely, negatives images do not
contain any event, and random sections are extracted from the
corresponding log image. They also are divided into slices.
Figure 2 shows five positive and five negative slices of images
that belong to an acoustic image log.

Due to the deep learning limitations, it is necessary to have
a huge amount of samples. Since the datasets of boreholes are

Preprocessing Identification Postprocessing Classification

Deep Learning

Fig. 3. Method flowchart: Our proposed method has four main phases. Preprocessing is where we reduce the number of pixels in an image to 25% of
them. In Identification, we apply the Hough transform to identify the possible sinusoids. Postprocessing is where we remove the sinusoids that have greater
possibilities of being false. Finally, in Classification, we apply deep learning and remove all but the true positives sinusoids.



(a) Positive acoustic (b) Negative acoustic (c) Positive electrical (d) Negative electrical

Fig. 4. Dataset samples: example of acoustic and eletrical sinusoids in wellbores.

(a) Accuracy (b) Loss

Fig. 5. Results of the training phase

Image
Type ID Senoids Detected by

Hough Transform
Senoids Classified as Real by

Deep Learning method
Ratio of false

positives removed

Acoustic Well A 855 33 96.14%
Well B 778 35 95.50%

Electrical Well C 901 411 54.38%
Well D 364 2 99.45%

TABLE I
COMPARISON RESULTS OF THE HOUGH TRANSFORM AND DEEP LEARNING METHOD

limited in number, we successfully used data augmentation
techniques, which is a common approach for deep learning
solutions [21]. We implement this augmentation within hori-
zontal and vertical mirroring transformations, resulting in four
times the number of the original images.

Considering the augmented data, in the case of acoustic
image logs, we used 7750 images for training and 2600 images
for testing. For the electrical image logs, the dataset contains
18500 images for training and 6250 images for testing. As
pointed previously, each subset is categorized into two classes,
positive and negatives.

In this work, we used two datasets and trained two dif-
ferent networks for the deep learning approach for automatic
detection of sinusoids, one for each dataset. The datasets were
divided according to the type of tools: electrical and acoustic.
We train our CNN model over a GPU-based environment
using the deep learning framework Caffe, considering 60

epochs for achieving good results. The total training time using
two NVIDIA GPUs (GeForce GTX 980 and Quadro K2200)
took approximately 45 minutes and 120 minutes respectively.
Figure 5a shows the accuracy reported when the model was
trained with the training dataset. The loss rate is shown in
figure 5b and suggests that the model trained does not overfit
the training dataset when using different data.

B. Results

We define precision and recall as:

Precision =
TP

(TP + FP )
(2)

Recall =
TP

(TP + FN)
(3)

The confusion matrix for the acoustic dataset returns 99% of
accuracy, where 103 of 104 features where correctly classified.



The results were TN = 64, FP = 1, FN = 0, TP = 39. This
resulted in 97.5% of precision and 100% of recall.

The confusion matrix for the electrical dataset returns 100%
of accuracy for 250/250 corrects. The results were TN = 175,
FP = 0, FN = 0, TP = 75, suggesting 100% of precision and
100% of recall.

Once the models are trained, the automatic identification
of senoids on new borehole images is real time, allowing the
operational process to be interactive. The number of false posi-
tives was remarkably reduced from both electrical and acoustic
images. Figure 6a shows a sample of an acoustic image used as
input. Figure 6b is the result of the preprocessing step where
some enhancing filters are applied. Then, by means of the
Hough transform, as shown in figure 6c, red marks represent
senoids with a high probability of being false positives, and
the green marks represent those that were classified as real
fractures. In figure 6d, green marks represent those events
identified by specialists. Just like the acoustic image log, figure
7 shows the process when we apply our method to an image
acquired with an electrical tool having similar results. Table I
presents numerical results about the quantity of false senoids
removed by our method in four wellbore samples.

V. CONCLUSIONS AND FUTURE WORK

In this research, we used two different trained neural
networks, one for each type of drilling tool (electrical and
acoustic) in separated datasets. Our results show considerable
improvements when compared with traditional image segmen-
tation techniques and show close matches when compared with
human based detection.

The main achievement of the presented method compared
with the available literature is that we were capable of ex-
cluding most of the false negatives senoids detected by the
Hough transformation. Another important characteristic of our
work is the initiative of using deep learning to improve the
precision of the results and using GPUs to optimize our
algorithm achieving near real-time processing, reducing the
costs and time for borehole image analysis and making easier
the geologists’ classification work.

As future works, we intend to test the method using larger
datasets of borehole images, so our neural network knowledge
can be naturally incremented. A possible network variation
would be mixing the different types in only one dataset and
train a new neural network to compare two approaches: using
two networks (specific) against using one network (generic).
We also intend to extend this experiment to including the
automatic detection of breakouts in the borehole images.
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(a) Original (b) Filtered (c) Automatic marks (d) Manual marks

Fig. 6. Process of detection in accoustic images: Shows original wellbore image (a), filtered image (b), the automatic marked image (c) and the original
image manually marked. The green sinusoids, in (c), indicate the true positives and the red are false positives, detected by the Hough transform and removed
using deep learning.

(a) Original (b) Filtered (c) Automatic marks (d) Manual marks

Fig. 7. Process of detection in electrical images: Shows original wellbore image (a), filtered image (b), the automatic marked image (c) and the original
image manually marked. The green sinusoids, in (c), indicate the true positives and the red are false positives, detected by the Hough transform and removed
using deep learning.


