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Abstract—This paper introduces a new method for multi-
object segmentation in images, named as Hierarchical Layered
Oriented Image Foresting Transform (HLOIFT). As input, we
have an image, a tree of relations between image objects, with
the individual high-level priors of each object coded in its
nodes, and the objects’ seeds. Each node of the tree defines a
weighted digraph, named as layer. The layers are then integrated
by the geometric interactions, such as inclusion and exclusion
relations, extracted from the given tree into a unique weighted
digraph, named as hierarchical layered digraph. A single energy
optimization is performed in the hierarchical layered weighted
digraph by Oriented Image Foresting Transform (OIFT) leading
to globally optimal results satisfying all the high-level priors.
We evaluate our framework in the multi-object segmentation of
medical and synthetic images, obtaining results comparable to the
state-of-the-art methods, but with low computational complexity.
Compared to multi-object segmentation by min-cut/max-flow
algorithm, our approach is less restrictive, leading to globally
optimal results in more general scenarios.

I. INTRODUCTION

Image segmentation is the task of partitioning an image
into objects of interest by assigning distinct labels to their
composing pixels. Hence, all the pixels sharing the same
label in the image form an object. This task is not only
important from the computer vision point of view, but also has
impact in different research areas such as Ecology, Medicine,
Neurology, Artificial Intelligence [1]–[3]. For example, in
medical imaging, image segmentation can be used to isolate
the objects corresponding to different organs in Magnetic
Resonance Images (MRI), helping to analyze their forms,
volumes and textures for the diagnostic of pathologies [4].

Currently, interactive graph-based methods are commonly
used in image segmentation tasks, where the image is modeled
as a connected graph. The image segmentation task is posed
as a graph partition problem, formulated as an optimization
problem, satisfying some optimality constraints [5]–[9].

In the context of multiple object segmentation, each object
may present its own distinctive features, requiring different
high-level priors, such as connectivity [10], [11], shape [12]–
[15] and boundary polarity [16], [17]. In order to obtain
a good segmentation result, the segmentation method must
attend all the individual priors of each object, as well capture
the contextual or structural relations between them. However,
many existing methods do not include any form of structural
information or only include high-level priors for single object

segmentation [10], [11], [13], [16], [17]. Consequently, they
may be inappropriate in the context of multiples objects.

The priori information about topology has been shown
to improve the results in different applications of graph-
based methods [18]. In the context of image segmentation,
most of the methods that include structural information are
based on graph-cut optimization and are performed by a min-
cut/max-flow algorithm [19]–[21]. These methods usually use
priors, based on inclusion or exclusion interactions between
objects. However, their globally optimal results are restricted
only to some particular cases and they usually have a high
computational cost. The methods based in LOGISMOS [22],
[23] require an approximated pre-segmentation whenever the
objects present complex shapes. Note that the fast segmenta-
tion obtained by our proposed method could also be used as
a starting point for LOGISMOS.

In the context of segmentation by the Image Forest-
ing Transform (IFT) framework, in order to incorporate
structural information among objects, Fuzzy Object Models
(FOMs) [24]–[32] are usually employed. However, these ap-
proaches are based on separate IFT executions per object, that
do not incorporate contextual information and the high-level
priors of all objects in a single energy optimization, limiting
their potential.

In this work, we circumvent the aforementioned problem
of IFT-based methods, by proposing a hierarchical layered
graph-based approach for the multiple object segmentation by
Oriented Image Foresting Transform (OIFT) [17], named as
Hierarchical Layered OIFT (HLOIFT), using a single energy
optimization. A hierarchical graph is defined by graph-based
layers representing each image object. The hierarchy considers
geometric interactions as inclusion and exclusion between
objects as in [19], but we also argue that each image object
must have its own set of local and global priors. Further, we
formulate the integration of local and structural priors from
layers, within a single energy optimization, overcoming the
mentioned limitations from previous works and conserving the
low computational cost of the OIFT framework.

Therefore, our main contributions are: Theoretical, we
propose a new method for multi-object segmentation allowing
high-level priors for image objects and geometric interactions
between them. Generality, our approach is less restrictive,
leading to globally optimal results in more general scenarios.



Complexity, our method has low computational complexity
compared to methods based on min-cut/max-flow.

A. Paper Overview

Our paper is organized as follows: In Section II, we in-
troduce some required definitions and review the IFT and
OIFT frameworks. HLOIFT is then proposed in Section III.
In Section IV, we evaluate HLOIFT and our conclusions are
stated in Section V.

II. BACKGROUND

In this section, we introduce some notations and definitions
used in our proposed method and review the IFT and OIFT
frameworks, introduced before in [7], [17].

An image I is a pair (I, I) where I is a finite set of pixels,
i.e., I ∈ Z2, and I is a mapping that assigns a pixel value
I(t) to each pixel t ∈ I.

An adjacency relation A is a binary relation between the
pixels within I. We usually consider translation invariant
relations, meaning that A depends only on the relative position
t − s of the pixels. For example, we can take A to consist
of all pairs of distinct pixels (s, t) ∈ I × I such that
d(s, t) ≤ ρ where d(s, t) denotes the Euclidean distance and
ρ is a specified constant (e.g., 4-neighborhood when ρ = 1
and 8-neighborhood when ρ =

√
2). We use the expressions

t ∈ A(s) and (s, t) ∈ A to indicate that t is adjacent to s.
For a given adjacency relation A, an image I can be

interpreted as a weighted digraph G = (I,A, ω), where the
image pixels in I are the nodes, the pixel pairs (s, t) ∈ A
are directed arcs and ω(s, t) ≥ 0 is a fixed weight assigned
to each arc (s, t), which may be obtained by a dissimilarity
measure between pixels s and t. A digraph G is symmetric if
∀(s, t) ∈ A, the pair (t, s) is also an arc of G.

For a given graph G, a path is a sequence of pixels π =
〈t1, t2, . . . , tk〉, where (ti, ti+1) ∈ A, for 1 ≤ i ≤ k − 1. We
use πt to indicate that pixel t is the terminus of the path. To
explicitly indicate the origin of the path, we use the notation
πs t = 〈s = t1, t2, . . . , tk = t〉, where s indicates the origin
and t the terminus. A path is trivial when k = 1. If πs and τ =
〈s, t〉 are both paths, we denote as πs · τ the concatenation of
the two paths. We denote as Π(G, t) the set of all paths in the
graph G with terminus t. A spanning forest is a function P that
assigns to each pixel t in I either some other adjacent pixel
in I, or a distinctive marker nil not in I, with no containing
cycles. Thus, for any pixel t ∈ I, a spanning forest P defines
a path πPt recursively as 〈t〉 if P (t) = nil (root node), and
πPs · 〈s, t〉 if P (t) = s 6= nil (predecessor node of t).

A connectivity function is a function f that assigns to each
path π a path cost value f(π). Usually, the cost of path depends
on the arc weights ω along the path. In this paper, we use
connectivity functions (f ) constrained to paths starting in a
given set S ⊆ I of pixels. We use the term seeds to denote
S. This constraint is modeled by defining a new path-cost
function fS(π), which is equal to f(π) when the origin of π
belongs to S, and it is equal to +∞ otherwise.

A path πt is optimum if f(πt) ≤ f(τt) for any other path
τt ∈ Π(G, t). Let V be a set of cost values. Without loss of
generality, we assume that V contains a maximum element,
which we denote by +∞. The optimum path value Vopt(t) is
obtained by taking to each terminus pixel t one optimum path,
which is defined by

Vopt(t) = min
∀πt∈Π(G,t)

{f(πt)}. (1)

A. Image Foresting Transform (IFT)

The IFT algorithm solves the optimization problem, given
by Equation 1, by dynamic programming, such that given
an image graph G and a smooth path-cost function f [7],
it associates one optimum path πPt to each pixel t ∈ I. The
IFT path-cost map V converges to Vopt being f a smooth
function. Finally, a spanning forest P of optimum paths is
obtained. Algorithm 1 describes the IFT procedure.

Algorithm 1 General IFT algorithm
INPUT: Image I = (I, I), adjacencyA, set of seeds So (object) and Sb (background),

and path-cost function f .
OUTPUT: Optimum-path forest P , the path-cost map V which converges to Vopt in

the case of smooth functions and label map L.
1: for all t ∈ So, do L(t)← 1

2: for all t ∈ Sb, do L(t)← 0

3: for all t ∈ I do
4: Set P (t)← nil, V (t)← f(〈t〉)
5: Set status(t)← 0. . status is an auxiliary array
6: if V (t) 6= +∞, then insert t in Q . Q is an auxiliary priority queue
7: while Q 6= ∅ do
8: Remove s from Q such that V (s) is minimum
9: Set status(s)← 1

10: for all t ∈ A(s), such that status(t) = 0, do
11: Compute tmp← f(πP

s .〈s, t〉) . tmp is an auxiliary variable
12: if tmp < V (t), then
13: if V (t) 6= +∞, then
14: Remove t from Q

15: Set P (t)← s, V (t)← tmp
16: Set L(t)← L(s)
17: Insert t in Q

In the case of non-smooth functions, the IFT algorithm
produces a spanning forest P but the paths πPt may not be
optimum. However, the computed spanning forest P may be
optimal according to other optimality criteria, as proved for
the cost function of OIFT [17].

B. Oriented Image Foresting Transform (OIFT)

The OIFT method explores the object-contour orientation,
in directed graphs using non-smooth connectivity functions
(NSCF), as described in [17], and some optimal criteria based
on a cut measure on the graph. It improves the segmentation
results because it helps to distinguish between two similar
and nearby boundary segments with opposite orientations from
distinct regions.

Let G be a strongly connected and symmetric digraph.
The arcs weights ω(s, t), are a combination of an undirected
dissimilarity measure ψ(s, t) between neighboring pixel s and
t, multiplied by an orientation factor, as follows:

ω(s, t) =

 ψ(s, t)× (1 + α) if I(s) > I(t),
ψ(s, t)× (1− α) if I(s) < I(t),
ψ(s, t) otherwise,

(2)
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Fig. 1: Overview of our multi-object segmentation framework. Given the input parameters, HLOIFT constructs a hierarchical
layered weighted digraph using the inclusion (solid line) and exclusion (dashed line) geometric interactions between objects.
Finally, we have a labeled image as output.

where α ∈ [−1, 1]. Note that, we usually have ω(s, t) 6=
ω(s, t) for α 6= 0. Also, for α > 0, the segmentation by
OIFT favors transitions from bright to dark pixels, and α < 0
favors the opposite orientation.

The OIFT is build upon the IFT framework by considering
the following path-cost function in a symmetric digraph:

f?(〈t〉) =

{
−1 if t ∈ So ∪ Sb

+∞ otherwise

f?(πr s · 〈s, t〉) =

{
ω(s, t) if r ∈ So

ω(t, s) otherwise (3)

where the function f? is a non-smooth connectivity function.
Finally, the OIFT segmentation is defined from the labeled

map L computed by Algorithm 1 using the function f?. The
optimality by OIFT is supported by the maximization of the
energy E(L) (Equation 5) involving the outer-cut boundary of
the object in the image graph C(L) (Equation 4).

C(L) = {(s, t) ∈ A | L(s) = 1 and L(t) = 0} (4)

E(L) = min
(s,t) ∈ C(L)

ω(s, t) (5)

III. HIERARCHICAL LAYERED OIFT

We propose the Hierarchical Layered Oriented Image
Foresting (HLOIFT) as a new method for multi-object seg-
mentation. Figure 1 shows an overview of our framework.
For a given input image, seeds sets for some objects, and
the tree of relations between objects, the HLOIFT method
has the following steps: (1) HLOIFT constructs each layer
as a weighted digraph representing each object with its own
priors (described in Section III-B). (2) HLOIFT defines a
setup for the inter-layer connections representing the geometric
interactions, such as inclusion and exclusion relations, by a
hierarchy of layers (described in Section III-C). (3) HLOIFT

uses an extension of the OIFT algorithm to compute an optimal
cut over the hierarchical layered digraph, giving as output a
labeled image (described in Section III-D).

A. Notations and definitions

We have the following definitions for multiple object seg-
mentation. We denote by L an index set, where each element
in L is associated to an object. We denote by m = |L| the
number of objects to be segmented. The binary variable xip
identifies the location of pixel p ∈ I with respect to the object
i ∈ L, i.e., xip = 1 or xip = 0 for pixels inside and outside the
ith object from layer i, respectively.

We denote as h the tree of relations among objects, where
each of its nodes represents an object and the arcs represent
the a priori inclusion relation between two objects. Formally
h is an acyclic connected graph whose nodes are indexed
by 1 ≤ i, j ≤ m. We use the notation h[i].parent = j to
indicate that node j is the parent of node i and the notation
h[i].parent = h[j].parent, to say that the two nodes are
sibling nodes. Next, we present the two resulting definitions
from the relations coded in h.

Definition 1 (Parent object). For a given sequence of sets
O1, O2, . . . Om of pixels, which represent m objects, such that
O1 ⊆ O2 ⊆ · · · ⊆ Om, we define the parent object of Oi (1 ≤
i ≤ m− 1) as the object Oi+1, that is, h[i].parent = i+ 1.

Thus, notation h[i].parent = j also reflects that an object
Oj is a parent object of an object Oi. If h[i].parent = −1 we
have that the image domain I is the parent of object i.

Definition 2 (Sibling object). We say that the following
sets Oi1, Oi2, . . . , Oik, for k > 1, are sibling objects if
they have the same parent object Oj (i.e., h[i1].parent =
j, . . . , h[ik].parent = j) and Oix ∩ Oiy = ∅ for all 1 ≤
x, y ≤ k where x 6= y.



B. Layer digraph construction

The first step of HLOIFT is to create a set of m layers,
where each layer Hi represents one corresponding object Oi
to be segmented. It is formally defined as:

Definition 3 (Layer). A layerHi = (I,Aii, ωii), is a weighted
digraph where i ∈ L, Aii is the intra-layer adjacency relation
and ωii are the weights of the intra-layer arcs.

An object Oi can be defined by setting its priors, for
instance, we could use boundary polarity priors [17], geodesic
star convexity priors [33], both constraints at the same
time [14], or none of them.

These priors affect the layer construction as follows. In
the case of boundary polarity priors to explore the object-
contour orientations, we use the same scheme that was adopted
by the regular OIFT method, where ωii(s, t) is defined as
described by Equation 2 and ψ(s, t) is usually set to be the
value |I(s) − I(t)|, however, other settings can be used too.
Each object Oi has its own α value in [−1, 1] coded in the node
h[i] of the tree of relations h as h[i].α, so that we can favor
the segmentation of Oi with transitions from bright to dark
pixels (h[i].α > 0) or the opposite orientation (h[i].α < 0).
Note that h[i].α = 0 can be used to indicate that the object
Oi has no boundary polarity prior.

If the ith layer is created using the geodesic star convexity
prior then we will be prioritizing the segmentation of Oi
with more regular shape [33]. Moreover, it is still possible to
simultaneously handle boundary polarity and shape priors [14].
The geodesic star convexity prior for the ith layer is obtained
by setting the weights ωii of some arcs in Hi to −∞,
according to the scheme proposed in [14].

C. Setup of inter-layer connections

In this step, HLOIFT generates a weighted digraph H from
the set of m layers {H1,H2, ...,Hm} created in the previous
step, according to the template given by the tree h of geometric
interactions among objects. The hierarchical layered digraph
is defined as:

Definition 4 (Hierarchical layered digraph). A hierarchical
layered graphH is the weighted digraph obtained as the union
of all graphs Hi, i = 1, . . . ,m, with additional inter-layer
arcs, described by an inter-layer adjacency relation Aij , with
ωij representing the inter-layer arcs weights between pixels of
layers Hi and Hj .

We use two types of geometric interactions among objects:
inclusion, when an object is a subset of another object,
and exclusion, when the two objects are disjoint sets. These
geometric interactions were previously studied under the con-
text of the graph cut algorithm in [19], but globally optimal
results were restricted only to limited cases involving certain
submodular functions of graph cut.

Thus, HLOIFT defines the adjacency relation Aij and the
ωij between any pair of objects related as parent or sibling
objects. In the case of inclusion relation, Aij and ωij are
defined as follows:

0

Layer i

Layer j

r=1

Fig. 2: Inter-layer arc construction, involving two objects i, j
for inclusion (j is the parent of i), where wij = 0 and wji =
∞.

0

Layer i

Layer j

r=1

Fig. 3: Inter-layer arc construction, involving two objects i, j
for the exclusion case (i, j are siblings), where wij = 0 and
wji =∞. The special arcs are represented by dashed lines and
the flipped meaning of xjp’s variables in layer j are marked
with black circles.

• Inclusion. For each h[i].parent = j, where i = 1, . . . ,m
and j 6= −1, we define the arcs (s, t) ∈ Aij with
wij(s, t) = 0 from node s in Hi to t in Hj considering a
radius r defined by the Euclidean adjacency relation, such
that d(s′, t) ≤ r, where s′ is the corresponding node of
pixel s in the layer Hj and d(s′, t) denotes the Euclidean
distance. A reversed arc (t, s) ∈ Aij from node t in
Hj to s in Hi is also considered with the worst cost
wji(t, s) = ∞. Figure 2 shows the definition of inter-
layer arcs using a 4-neighborhood adjacency (r = 1).

• Exclusion. For each pair of objects, such that
h[i].parent = h[j].parent (i, j = 1, . . . ,m) and i > j,
we define Aij and wij similarly as for the inclusion
case, but we consider special inter-layer arcs, which flip
the meaning of xjp’s variable values in layer j in the
proposed HLOIFT algorithm, as will be discussed later.
Figure 3 presents the special inter-layer arcs by dashed
lines and the flipped meaning of variables xjp in layer j
is represented by black circles.

In Figure 4, we give an example of the hierarchical layered
digraph construction for a case that cannot be optimized
under the graph cut framework [19]. This case combines the
inclusion and exclusion geometric interactions, such that we
have two mutually exclusive objects Oi and Oj , both contained
within another object Ok. Globally optimal segmentation in
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Fig. 4: Inter-layer arc construction, involving three objects i, j
and k. The special arcs are represented by dashed lines and the
flipped meaning of xjp’s variables in layer j by black circles.

this case cannot be modeled with graph cuts, because it cannot
be converted to a submodular energy. The proposed HLOIFT
method can compute globally optimal results in this case and
also in other more sophisticated cases, as depicted in Figure 1.

D. Energy optimization

In the final step, we execute the HLOIFT algorithm, which
corresponds to a OIFT execution [17], [34], in the hierarchical
layered graph H, with a modified path function to properly
address the special inter-layer arcs from exclusion relations,
resulting in a single energy optimization, simultaneously tak-
ing into account all the constraints from all objects.

The HLOIFT algorithm uses a revised path function f?,
formally defined as:

f?(〈t〉) =

{
−1 if t ∈ So ∪ Sb,
+∞ otherwise, (6)

f?(πr s · 〈s, t〉) =

 ω(s, t) if L(s) = 1 and Case 1,
ω(s, t) if L(s) = 0 and Case 2,
ω(t, s) otherwise,

where r, s, t are graph nodes, ω(s, t) = ωi,j(s, t) with s
in Hi and t in Hj , Sb and So are seed nodes, such that
So = S1

o ∪ ... ∪ Smo and Sio is the set of seed nodes in Hi
selected inside the ith object in layer i. The background seed
pixels are marked for all the corresponding nodes in all the
m layers in Sb. Let lt ∈ L represent the index layer for the
node t.

Case1: We have ls = lt, or h[ls].parent = lt, or
h[lt].parent = ls (inclusion), or h[ls].parent = h[lt].parent
((exclusion, when ls > lt).

Case2: We have h[lt].parent = ls and ls < lt.
Next, we describe how the HLOIFT algorithm generates

the paths, propagating the variable values xis = L(s) and
xjt = L(t) from a pixel s to its adjacent t, for inclusion and
exclusion cases in the modified IFT algorithm:
• For the inclusion relation: Line 16 of Algorithm 1 must

be kept unchanged as “Set L(t)← L(s)”. Therefore, we
will have L(t) = xjt = xis = L(s) whenever the cost
f?(πr s · 〈s, t〉) = 0.
For exclusion relation: Line 16 of Algorithm 1 we must
be changed to “Set L(t)← 1−L(s)”, because xltt = L(t)
and xlss = L(s) have flipped meaning. Therefore, we

will have L(t) = xjt 6= xis = L(s) whenever the cost
f?(πr s · 〈s, t〉) = 0.

The optimality by HLOIFT is supported by an energy
maximization of E(L), on a labeled image L and its resulting
cut in the graph H, involving arcs from object to background
pixels C(L) (outer-cut boundary), both defined in Equation 5
and Equation 4.

Respect to the computational complexity, HLOIFT is
O(M + N), where N is the number of vertex and M is
the number of arcs in the graph H, when Q is implemented
using bucket sorting [7] and O(M + N logN) (linearithmic
time) if Q is a heap. The Graph cut is O(

√
M ∗N2 = N2.5)

when H is a sparse graph, which is more than quadratic-time
using a push-relabel based on the highest label node selection
rule [35].

IV. EXPERIMENTS

This section presents an experimental evaluation of the
HLOIFT method. We formulated four experiments: The first
experiment analyzes the effect of high levels priors on the
segmentation result. The second experiment assesses the per-
formance of the HLOIFT against the multiple object segmen-
tation by the IFT method. The third experiment shows an
application on colored images. Finally, the fourth experiment
shows how to model and segment objects on more sophisti-
cated images such as medical images. Reproducibility, our
code and data are available under request.

A. Different priors for objects

This experiment shows how the definition of high-level pri-
ors for each object is essential to obtain a target segmentation
result. Figure 5 shows a two object segmentation problem
for a given synthetic image. We set an internal seed for the
object O1, and the relation that O2 is parent of O1 (i.e.,
h[1].parent = 2). Our HLOIFT model with different priors
for each object can provide different results allowing the easy
customization of the segmentation to any desired particular
result.

B. Comparison with the IFT method

The objective of this experiment is to visually compare the
results obtained by HLOIFT against the IFT method [7] for
multi-object segmentation. We compared with the IFT because
it allows multiples objects segmentation while the original
OIFT only works for binary segmentation.

Figure 6 shows a medical image segmentation task where
the goal is to segment the knee with three objects. The objects
O1, O2 and O3 are shown in yellow, blue and red color,
respectively.

The left part, from first row, of the figure contains the
input image with seeds for each object (for the three objects
plus background) and the output segmentation obtained by
the IFT method. The second row of the figure contains the
image with only seeds for some objects (for two inner objects
plus background), and as output, we are given two results
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Fig. 5: Example of two object segmentation using HLOIFT where O2 is parent of O1. Each object has different high-level
priors –db: polarity from dark to bright and bd: from bright to dark, g: geodesic star prior.

HLOIFT
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Fig. 6: Knee segmentation modeled by three objects. On the
left of first row, we have the output using IFT; on the second
row, the results by HLOIFT using different priors for O1; and
the main differences are highlighted in the right column of
first row.

of segmentation obtained by HLOIFT. The first output result
was obtained using the prior geodesic start constraint with
boundary polarity from bright to dark (g+ bd) for all objects,
and for the second output the O1 uses the prior geodesic with
boundary polarity from dark to bright (g + db).

Now, in the right column of first row, we can observe the
differences highlighted in the O1’s contour. The IFT gives
poor result for O1 mixing bright and dark boundaries because
it does not allow the usage of the boundary polarity prior. On
the other hand, HLOIFT can define different priors for each
object, giving better results compared to IFT and also requiring
fewer seeds. HLOIFT can be seen as an extension of OIFT
for multiple object segmentation.

Input image Output image

(a)

(b)

Fig. 7: Application of HLOIFT in colored images for (a) two
sunflowers and (b) five sunflowers, where each sunflower is
defined by two objects.

C. Application on colored images

Figure 7 shows one application example of HLOIFT in
colored images. In the first row (a), we show the segmentation
result of two sunflowers, and in the second row (b) we have
the result for five sunflowers. In all cases, each sunflower is
properly defined by two objects, the seeds (dark part) and the
petals (yellow part), modelled by a inclusion relation. Also,
each seeds part has a geodesic star prior.

D. Application on medical image segmentation

In medical image segmentation is common to have sophis-
ticated multiple objects which are hard to detect with simple
models without user interaction. We show that by modelling
them under the HLOIFT framework we have good results
with less effort. An example of a sophisticated medical image
segmentation, involving ten objects, was presented in Figure 1.

Another example is given in Figure 8 for brain segmentation
involving seven objects. As input we have the given image,
the objects definition and the seeds. In this case we are given
seeds only for the objects O1, O2 and background. Then, by
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Fig. 8: Brain segmentation considering the following objects:
internal capsule (O1), putamen (O2), white matter (O3), gray
matter (O4), cerebral spinal fluid (O5), skull (O6) and scalp
(O7). For the given input parameters, we obtain an initial
result. By adding more seeds (red circles), the segmentation
result is improved.

using the tree of relations and the high-level priors for each
object, we can automatically segment the other objects. As
output, the obtained initial result still contains some small
errors, however our framework allows the user to perform
corrections to improve the result with a simple user interaction
of adding new seeds (second row of Figure 8).

V. CONCLUSION

We proposed a new graph-based approach, named as
HLOIFT, which extends OIFT for multi-object segmentation,
allowing each object to have its own high-level priors and
preserving its low time complexity. Besides the theoretical
contribution in the context of the multi-object segmentation
problem, our experiments show that good segmentation results
can be obtained, even when considering a simple measure of
intensity dissimilarity. Besides being faster than min-cut/max-
flow based approaches, it is also less restrictive, allowing
globally optimal results for arbitrary hierarchies. Note also
that HLOIFT could be combined with LOGISMOS. Finally,
as a future work we intend to compare HLOIFT with other
methods from the literature in more specific applications.
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