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Abstract—Representing reality in computer graphics requires
simulating the appearance of real-world materials. Bidirectional
Reflectance Distribution Functions (BRDFs) are commonly used
to perform this task, as they represent the appearance of a
material through the quotient between the reflected radiance and
the incoming irradiance at this point. Acquiring the BRDF of a
real material is an expensive task due to its high dimensionality,
so strategies to take advantage of already existing measurements
are a promising solution. In this paper we present an approach
to create BRDFs for new materials from a basis of tabular
representations of BRDFs. We apply dimensionality reduction in
this basis and then we perform a triangulation in the resulting
reduced space. Thus, any position in this reduced space can
be used to create a new material: using the triangulation, we
estimate coefficients that can be used to find the BRDF of this
new material by interpolating materials in the original space. In
addition, we present a technique to navigate in this reduced space
that enables the creation of several different materials from two
materials in the basis. This approach provides a wide range of
new materials based on real measurements without the need to
acquire new BRDFs. We show that our navigation is coherent
and that it yields a smooth transition between materials.

I. INTRODUCTION

In computer graphics, one of the factors that define the
appearance of a material is the way it interacts with light under
different settings. This interaction can be represented through
Bidirectional Reflectance Distribution Functions (BRDFs). A
BRDF is generally a function of the directions of incoming
(ωi) and reflected (ωo) light (Figure 1), and describes the
reflectance of a point on a surface through the quotient
between the reflected radiance and the incoming irradiance
at this point.

Different approaches can be used to characterize a real
material through a BRDF. A material can be represented
through a dense set of measurements, taken from different
directions of incoming and exitant light. These samples are
then stored as a tabular representation and retrieved when this
material is rendered. Devices such as gonioreflectometers [2],
[3] and image-based methods [4], [5] are used to perform this
task. If the material is densely sampled, this representation is
very detailed and represents the appearance of a material with
high precision. However, collecting samples is a consuming
task that demands storage space and generally requires long
acquisition time.

Analytic models [6]–[10] are an alternative to the tabular
BRDFs previously described. These models aim a compact

Fig. 1. Parameters of a BRDF: ωi = (θi, φi) and ωo = (θo, φo). The vector
n is the surface normal; the vector t is the surface tangent. Figure extracted
from Weyrich et al. [1].

representation of the appearance of materials at the cost of a
potential loss in high frequency details. The formulation of
these models is generally derived from the analysis of light
behavior and from measured data.

Despite the cost that comes along with measuring real
samples for a BRDF, tabular measurements provides BRDFs
which are important computer graphics. Besides providing real
measurements for research and analysis, it contributes to the
creation of realistic images, representing real-world objects
and scenes.

A solution proposed by researchers is to define a material
through the combination of known BRDFs [11]–[14]. The
materials can contain more details with accurate measurements
and, as they are based on already existent measurements,
present stable material behavior. In this paper, we present an
approach to create unknown materials from a basis of BRDFs,
aiming to provide a tabular representation of a new material
without the need of measurements.

We use a basis of 100 materials composed of isotropic
BRDFs at high resolution, acquired by Matusik et al. [5].
To create a new material, linear dimensionality reduction is
applied in this basis using Principal Components Analysis
(PCA). This way it is possible to generate a BRDF space,
keeping it at a high resolution and at a compact represen-
tation. In addition, Delaunay triangulation is applied in this
reduced space, to interpolate the materials using barycentric



coordinates. Thus, a new tabular representation of a BRDF
is obtained through the interpolation of the materials in the
original space, based on values provided by this compact and
triangulated space.

Our approach creates new BRDFs from a basis of tabular
representations of BRDFs, which can be synthetic or measured
from real materials. The main contributions of this paper are:

• A compact representation strategy for a basis of tabular
BRDFs;

• Tabular representations of BRDFs for new materials;
• A navigation strategy in the reduced space of BRDFs that

enables the creation of different materials and illustrates
the morphing of a material into another.

The new materials contribute to increase the variety of
tabular BRDF representations that are required in computer
graphics areas, such as realist rendering. Furthermore, a wide
range of materials can be created according to the appearance
desired by artists and product designers. They provide also a
realism that is required in entertainment production.

II. RELATED WORK

The acquisition of BRDFs is usually an expensive task;
it is time consuming and large memory space is required to
store a database at high resolution. Thus, the dimensionality
reduction of a data set of acquired BRDFs has been studied by
researchers in order to keep this set at high resolution while
obtaining a more compact representation.

Linear decomposition is an approach that can be used to
reduce the dimensionality of a data set. The application of
this technique can be seen in Weistroffer et al. [12], who used
linear decomposition to perform basis decomposition from a
set of scattered measurements, presenting an efficient method
to decompose a data set. Following a different approach,
Kautz and McCool [15] used the singular value decomposition
(SVD) to decompose each BRDF and used it on interactive
rendering.

The linear decomposition provides a space of BRDFs with
low dimensionality. Matusik et al. [5] present an approach to
generate isotropic BRDFs based on reflectance measurements.
They apply linear and nonlinear dimensionality reduction and
use the generated space to create new BRDFs through inter-
polation. In the linear and nonlinear approaches, respectively
Principal Component Analysis (PCA) and Charting [16] were
used.

Nielsen et al. [17] present a method to rebuild an acquired
BRDF that is similar to the data-driven approach presented
by Matusik et al. [5], but differs in the fact that it requires a
smaller amount of measurements. The reconstruction of the
BRDF data is based on the principal components from a
acquired BRDF basis. The basis is pre-processed using a log-
relative mapping and PCA is applied, considering a predefined
set of samples. They show BRDF slices generated from the
first 5 principal components of the resulting basis, where they
observed that the contribution of each component represent a
feature of the BRDF: specular peak, diffuse region, specular
shape, Fresnel factor, and Fresnel factor with shape.

Serrano et al. [18] are also inspired by the approach pro-
posed by Matusik et al. [5]. Their work extends Matusik’s
database in order to create 306 new BRDFs. To this end, PCA
is used to project the convex hull of 94 BRDFs measured by
Matusik in a space with five dimensions. A sampling technique
approximates a uniform distribution within the convex hull.
Novel BRDFs are synthesized inside the polytope defined by
the 5D convex hull as a convex combination of the three
nearest original MERL BRDFs. Using this extended set of
400 materials, perceptual attributes rated by users guide the
creation of networks of radial basis functions. These networks
are then able to map the perceptual ratings of each attribute
to the underlying principal component basis coefficients of a
PCA-based representation.

III. CREATING NEW MATERIALS THROUGH
INTERPOLATION

A new tabular representation of a BRDF can be obtained
through the interpolation of a basis of materials. We ap-
ply linear decomposition using PCA in the MERL isotropic
BRDF database aiming to generate a space of materials,
represented by tabular representations of BRDFs. Authors as
Matusik et al. [5], Nielsen et al. [17] and Serrano et al. [18]
also presented similar approaches to create new materials.
Following a different path, this paper applies PCA in all 100
materials from MERL database. After the PCA, Delaunay
triangulation is performed and the barycentric coordinates
generated from triangulation are used to interpolate materials
in the original space.

A. Principal Components Analysis

Principal Components Analysis (PCA) is a technique that
aims to linearly reduce the dimensionality of a data set. This
method calculates the matrix of covariance from input data,
as well as their associated eigenvalues and eigenvectors. This
way, considering the dimension D of this data set, containing
an Euclidean space with D dimensions, PCA searches k
orthonormal vectors in RD that better represent the data set
with k ≤ D producing minimum square error [19].

The MERL BRDF database contains 100 different isotropic
materials acquired by Matusik et al. [5]. As each material
contain 3 channels (red, green and blue), 3 matrices were
created representing each channel with dimension RN×p ,
where N = 100 represents the number of materials, p =
90×90×180 = 1, 458, 000 is the number of samples for each
material, and each row of theses matrices represent a material
as a vector in Rp. The PCA was applied in the transpose of
these matrices individually in the following way.

Determine the centroid C by:

C =
1

N

N∑
i=1

pi. (1)

Translate the origin of the coordinate system to point C:

ui = pi − C. (2)



Fig. 2. Application of Delaunay triangulation in 100 materials from MERL
BRDF database. Each two-dimensional point represents a material that re-
sulted from the application of the PCA in this database. The triangulation
is applied in the three channels; this figure illustrates the results for the red
channel.

Calculate the covariance matrix:

R =

N∑
i=1

uiu
T
i . (3)

The eigenvalues are then arranged in descending order
and their respective eigenvectors are used to construct a
base β obeying that order. The eigenvectors of the base
β = {v1, v2, . . . , vD} are called principal components. Thus,
to select the most significant k components (k ≤ D), it is
enough to take the first k eigenvectors of the base β, that
is, βk = {v1, v2, . . . , vk}, so it is possible to represent the
projected data in the space generated by βk [19], [20].

B. Triangulation

The triangulation Γ transforms a set of points on the plan
into a coherent set of triangles through the attribution of a
set of edges between these points. However, there can not
be two crossed edges and if a new edge is added to the set,
it would not cross another edge in the set [21]. In general,
a triangulation creates a convex hull from the data and is
composed of simplexes σj = [pj1 , pj2 , . . . , pjk+1

], where each
pji is a different point, with i = 1, . . . , k + 1 representing a
vertex of a simplex σj . In the case which the points are three-
dimensional, the simplexes are tetrahedron. For dimension
larger than three the simplexes are called by polytopes.

An important triangulation technique is called Delaunay
triangulation. This technique provides a triangulation with fat
angles maximizing the smallest angle of all internal angles
of the resulting mesh [22]. Figure 2 shows the application
of Delaunay triangulation in the MERL BRDF database. For
more details about this technique refer to Janke [21] and
Figueredo and Carvalho [22].

C. Barycentric Coordinates

The barycentric coordinates are weights whose sum must
be 1 and each of them must have real value between 0 and 1.

TABLE I
MEAN RELATIVE ERROR FOR RECONSTRUCTION OF THE MERL BRDF
DATABASE USING DIFFERENT NUMBERS OF PRINCIPAL COMPONENTS.

Number of components Mean relative error

3 0.211647

5 0.152568

15 0.063301

30 0.027881

36 0.019620

45 0.010056

Thus, to find the value of a intermediate point p added in the
simplex σj = [pj1 , pj2 , . . . , pjk+1

], we will have:

p =

k+1∑
i=1

αi pji ,

k+1∑
i=1

αi = 1 and 0 ≤ αi ≤ 1,

(4)

where (α1, α2, . . . , αk+1) are the barycentric coordinates of
point p.

D. Interpolation of Tabulated Materials

New tabulated materials are obtained through the interpola-
tion of existing tabulated materials. To reach this goal, a set
of 100 materials from MERL BRDF database is used, but our
approach extends to any database. A new material results from
the combination of all techniques previously presented in this
section.

When the PCA is applied in this basis, the most significant
eigenvalues and their respective eigenvectors are chosen, i.e.
the principal components are selected to represent the data. It
this way a reduced space is obtained without loss of relevant
data. Figure 3 shows the number of components needed to
select the most significant eigenvalues to construct the basis.
Notice that with only 36 components, eigenvalues with values
less than 0.001 for the three channels are obtained, meaning
that remaining eigenvalues have little contribution to the basis.
Furthermore, the mean relative error for reconstruction of
this basis with 36 components is equivalent to 0.019620 (see
Table I).

By applying the Delaunay triangulation in this reduced
space, any new material added to this space can be created
through the interpolation of materials in the original space
(original basis). The triangulation provides a facility to find
barycentric coordinates in this reduced space that will be used
to interpolate the materials.

Figure 4a exemplifies the application of this technique on a
set of materials. The dimension of the original space is repre-
sented by D and the reduced space dimension is represented
by d. In this example, given a new material p̃ ⊂ σ̃j ∈ Rd,
it has barycentric coordinates from simplex σ̃j = [p̃1, p̃2, p̃3].
Thus,

p̃ = α1p̃1 + α2p̃2 + α3p̃3,
α1 + α2 + α3 = 1 and 0 ≤ αi ≤ 1.

(5)



Fig. 3. Plot of the most significant eigenvalues resulting from the application
of PCA using 1 to 100 components. The range from 30 to 40 illustrates the
link between the eigenvalues and the mean errors relative to 1% and 2% (see
Table I).

These barycentric coordinates are used to reconstruct the
material p ∈ RD through simplex σj = [p1, p2, p3] in the
original space, such that p = α1p1 + α2p2 + α3p3.

E. Navigation Strategy

The reduced space can be navigated, and using this re-
flectance model a wide range of different materials are pro-
vided. This navigation can be made from one material of
the basis to another. Thus, assume materials p̃ and q̃ form
a segment connecting one material to another inside of the
convex hull. Here, the intermediate materials s̃(t) are created
based on the parametric line equation:

s̃(t) = (1− t)p̃+ q̃t, (6)

where t ∈ R and 0 ≤ t ≤ 1. Then, each intermediate material
is reconstructed. Figure 4b illustrates a navigation inside a
set of materials. The two materials are represented by p̃ and
q̃ and their intermediated materials are represented by s̃1, s̃2
and s̃3, where each sr = s(tr) and 0 ≤ tr ≤ 1, r = 1, 2, 3.
In the original space the navigation is linear by parts while
in the reduced space the navigation is only linear. We search
for the simplex σ̃j of the triangulation Γ which contains the
intermediate points s̃(t) of Equation 6. We determine the
barycentric coordinates of the point s̃(t) within σ̃j , that is,
s̃(t) = (α1, α2, α3) and then use these coordinates for the
reconstruction:

s(t) = α1s1 + α2s2 + α3s3.

Furthermore, notice that in the original space the triangles
(simplexes) are formed only from materials that contribute
in the interpolation while in the reduced space the triangles
(simplexes) appear throughout the basis.

In the general case, the navigation is made for any amount
of intermediate materials, that is, for two materials represented
by p̃ and q̃, the intermediated materials are s̃1, s̃2, . . . , s̃r, with

sr = s(tr) and 0 ≤ tr ≤ 1, r = 1, . . . , w, where w represent
the amount of intermediate materials. Thus, using barycentric
coordinates from the simplex σj of the triangulation Γ that
contain the intermediate material s̃(t), that are α1, . . . , αk+1,
the reconstruction using these coordinates is given as follow-
ing:

s(t) =

k+1∑
i=1

αi si,

k+1∑
i=1

αi = 1 and 0 ≤ αi ≤ 1.

(7)

Thus, any material is calculated using this general case
(Equation 7).

IV. RESULTS

Our linear dimensionality reduction approach was applied in
the MERL BRDF database [5]. Here, we perform a navigation
in this basis using three pairs of materials, each pair defining
a starting and an ending material, respectively: cherry-235
and tungsten-carbide; light-brown-fabric and blue-fabric; and
alum-bronze and color-changing-paint2. Each new material
obtained through this navigation takes an average time of 2
minutes and 67 seconds to be generated, and about 19 minutes
to be rendered. All the renderings were made using the second
version of the pbrt rendering system [23]. The experiments
were performed in a desktop computer with a processor Intel
Core i3-4130 CPU @ 3.40GHz x 4, 4GB RAM, and Intel
Haswell graphics.

Using blue-fabric and light-brown-fabric a smooth transition
was made through the navigation in the reduced space. PCA
was applied in this basis using only 3 principal components.
Figure 5 shows this navigation through the rendering of teapots
using these materials under high dynamic range environment
lighting (Galileo’s Tomb). The softness illustrates that this
transition is coherent, indicating a valid navigation. A total
of 51 tabular BRDFs were generated from our approach,
including the reconstruction of the two original ones. Thus,
this navigation provides 49 new materials.

In addition, this same experiment was made using two
specular materials: alum-bronze and color-changing-paint2
(Figure 6). Notice that a smooth transition is also present,
and specularity is consistent between the transition from one
to another. Furthermore, using only 6 intermediate materials
it is possible to make a smooth transition, illustrating that our
navigation is also coherent for specular materials. When all 51
materials are analyzed, small details can be perceived during
all the transition between renderings. A video that contains
the illustration of these two experiments and a comparison
between the our technique and a linear interpolation is avail-
able in https://youtu.be/nQCvL9wPI2s.

The navigation between two materials that are far from each
other generates abrupt change. In this way, more intermediate
materials are necessary to provide softness in the transition.
Figure 7 illustrates the transition from cherry-235 to tungsten-
carbide. Notice that, starting from cherry-235, when few



(a) (b)

Fig. 4. Creation of new tabulated materials. (a) A new material p is created through the interpolation of existing materials. (b) Navigation in a set of materials.
The new materials s̃1, s̃2 and s̃3 are defined in the reduced space from the materials p̃ and q̃. They are reconstructed in the original space and are represented
by s1, s2 and s3 in this space.

intermediate materials are reconstructed the transition is abrupt
(Figures 7a - 7f). This can be improved through the use of
more intermediate materials, i.e. an interval of t that contain
more points. For example, Figures 7g - 7l show a smoother
transition, using t = [0.0001, 0.0002, . . . , 0.9999, 1].

To illustrate one of the contributions of our approach,
Figure 8 shows a rendering of a complex scene using the
Dragon model, high dynamic range environment light and
three new tabular BRDFs obtained from the transition between
cherry-235 and tungsten-carbide.

V. CONCLUSIONS

We present a technique to create new materials from a basis
of tabular representation of BRDFs without the need of new
measurements. It provides an increase in variety of materials,
providing valid and coherent tabular BRDFs.

We present a compact representation of tabular BRDFs
through the application of the PCA in the basis of BRDFs.
Moreover, we show how to use the number of principal
components to obtain a representation of the basis with respect
to their eigenvalues. In this context, we show that with 36
components we can represent the MERL BRDF database, and
that the remaining components dot not have significant contri-
bution. We also show that with 36 components a mean relative
error of 0.019620 is produced during the reconstruction of the
basis.

Using the PCA with only 3 principal components, barycen-
tric coordinates and Delaunay triangulation, we developed a
navigation method that provides different tabular BRDFs based
on the transition between two materials. In addition, we show
that the transition from one to another is coherent and smooth
for both matte and glossy materials. We also show one of the

possible applications of our approach, using some of our new
materials in a rendering of a complex scene and yielding a
coherent result.

As future work, we hope to extend our model to anisotropic
materials. Furthermore, we intend to improve Equation 6 so
that navigation can be reparametrized on criteria inherent to
the data.
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