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Abstract—In this work we propose an implementation ap-
proach to a feature-based algorithm that stitch images which
comes form MicroScanner, a low cost digital microscope created
at Mogai Information Technology. This program solve the trade-
off problem between field of view and resolution. These codes
were developed in C++ language, with help of OpenCV library.
The sequence of pictures taken is used by the program to reduce
computing costs and increase reliability of the resulting mosaic. In
addition, the results achieved maintain the quality from original
images, and presents better quality and more effective results
than previous related works.

I. INTRODUCTION

Since its invention in the end of sec XVI, the optical
microscope has its fundamental role in many different science
fields, in the discovery of diseases, proofing scientific methods,
in cellular studies, among many others applications in biology,
medicine, and exact sciences [1]. Since the second half of
the twentieth-century microscopes have been also used in the
assembly of electrical, electronic and mechanical microsys-
tems and will continue to be an indispensable tool for the
advancement, growth, and development of these areas [2].

In the last decades, the evolution of the optical microscope
has begun to decrease due to the fact that optical limits were
reached. It has been found that the maximum resolution of
an optical microscope is half the wavelength of light that
illuminates the sample; unless fluorescence techniques are
used [3]. For example, if the light in used has a wavelength of
400ηm (blue light) the maximum resolution of the microscope
will be 200ηm, but these values are rarely obtained due to
limitations of the material of the lenses.

In1931 the German physicist Ernst Ruska developed the
electronic microscope that does not use light to focus the sam-
ple, but rather electron beam, which increased the resolution
and surpassed the optical limits. Today there are electronic
microscopes that reach resolutions up to 0.1ηm [2].

However, the optical microscopes are still being widely
used, but most of the time users are forced to trade-off between
a high resolution, with lenses capable of increasing the size of
things in tens of thousands of times or to have a bigger field
of view, with lenses that extend less. Although, the advent of
computers, fast processors, big memory and abundant storage
space, made possible the development of digital microscopes,
and a possibility of solution to the problem between viewed
area and resolution through image stitching algorithms [2].

The biggest problem of the digital microscopes now avail-
able in the market is that they are considerably expensive [3].
Seeing a market opportunity, the company Mogai Information
Technology raised founds to develop the MicroScanner a
low-cost microscope with final price estimated to be ten
times cheaper than its actual competitors.The idea behind
MicroScanner’s is to have an optical/digital microscope con-
nected to a cloud. The device can be taken to remote places,
such as in the interior of the Amazon, to photograph the
samples and upload then automatically to a cloud, allowing the
images to be accessed via a browser anywhere in the world by
a computer, tablet or smart phone, as long it is connected to
the internet. Other than being cheaper, this product solves the
displacement problem of specialized labor, which is expensive.
Instead, a technician can go to this remote places to collect
the samples, and a specialist can analyses it in another country
for example, reducing research costs and avoiding sanitary
barriers.

Fig. 1. Matrix with 10x10 images with 2 Mpixels each scanned form a sample
of industrial sewer.

In this work we present an implementation approach to
a feature-based stitching algorithm to create mosaics with
MicroScanner’s images to solve the issue among viewed area
and resolution. This software will be supposed to run on a
cloud server and stitch automatically images that will come
in, such as the 100 images shown in Fig. 1, maintaining the
quality of the original images, in other words, the final mosaic



will have a bigger resolution than the original images. To
achieve the results we are presenting in this paper were used
C++ coding and methods from OpenCV library [4].

There is an extensive number of mosaics work already
published, such as [5], [6], [7], [8], and some commercial
applications [9], [2], [10]. However, in this work we aim to
obtain more precise mosaics, and with smoother transitions
than [7], trying to achieve a result similar to [10].

II. PROPOSED APPROACH

The stitch code we developed in this work follows the
schematic presented in Fig. 2. Each step will be discussed in
the following subsections.

Fig. 2. Steps of the stitching process.

A. Image Acquisition

The MicroScanner works scanning samples of regions such
as the one presented in Fig. 1. In this matrix of images, initially
10 pictures were taken form reader’s left to reader’s right, then
the sample is moved one step down, and this time 10 pictures
are taken from reader’s right to reader’s left. This process
is repeated while the 100 images from Fig. 1 are not taken.
Differently form [10] that has an algorithm to automatically
find neighbor images, our work uses this sequence to know
which images are neighbors. This procedure does not only
reduces computer costs, but in fact, it was necessary to stitch
a great number of images successfully because inconsistencies
appeared when tested with more than 5 images in the approach
proposed in [10].

In the algorithm the names of the images are imported into
the program and ordered the way they will be stitched, then
they are loaded. It is important to point out that at this point
each image is an RGB three-dimensional matrix, which means
that this process consumes a lot of memory depending on the
number of images.

B. Feature Detection

As mentioned before, this work is a feature-based stitching
method. However, before begin describing this approach, it
is worth mention that there is a direct alignment approach
proposed in [11], which works well stitching images on

sequential video frames because of its cheaper processing
costs. Although, this method has a small convergence limit,
which can leave non-filled gaps between images.

In contrast, the method of features detection and matching
has significant robustness when there are enough features
because it makes possible finding alignment between two
images, and it is effective closing gaps [12], which makes it
an interesting approach to the MicroScanner application. On
the other hand, this method has the disadvantage of became
imprecise and ineffective when there are not enough features
[13].

A generic feature detection method can be divided into three
main parts:

1) Patches and Keypoints Detection: Patch is known as a
region around a keypoint, and they are easier to be found
in regions with a big difference of contrast or defining it
mathematically, it is where the gradients are bigger. In Image
processing, gradient is a two variable function that results, for
each pixel of the image, a vector that points out to the bigger
color change [13].

2) Descriptors Extraction: In this stage the patches, already
extracted, are converted and grouped to more compact and
invariant forms, in other words, they are transformed in
descriptors. This process consists basically of rotate, scale and
sometimes apply some affine transformations in the pathces. It
is important to point out that the descriptors must be distinct,
robust to noise and to geometric and photometric deformations
[12].

3) Descriptors Pre-Matching: Finally, a pre-selection of
the descriptors is made to eliminate the bad candidates to
future matches. It can be done using a threshold value to the
euclidean distance between descriptors from different images.
Since the descriptors are scale and rotation invariant, changing
the size of the images will not change the absolute value of
this distance [13].

Knowing that a feature-based approach works following
the three steps presented above, it is possible to present
the Speeded-Up Robust Features (SURF) method, a very
robust, fast and effective algorithm, that uses the Hessian
matrix to compute position and scale of the keypoints, and
a neighborhood of 20x20 around them, to be divided into 25
sub-regions of 4x4 pixels, and for each of this is applied a 2D
Haar Wavelet transformation to extract descriptors [14].

Fig. 3. Matching order, and how homographies are estimated.



One of the downsides of SURF is that it is not very
robust against light variations and changes in points of view
[14] when compared to the Scale-Invariant Feature Transform
(SIFT) algorithm [15]. However, to the MicroScanner appli-
cation, it is not a problem since the illumination is constant
and there is no change in the point o view.

In this work, we used SURF to detect the keypoints and
extract the descriptors, but the descriptors pre-matching step
was implemented independently by us using the order of the
pictures (Fig. 3) to reduce processing time and increase the
reliability of the results. It was done in two parts. The first one
analyses a pair of horizontal neighbor images; if a descriptor
is inside a threshold value of pixels, above or below, it is
considered a good match. Empirically was discovered that 50
is a good number, although it could be changed to attend a
different set of samples. Fig. 4 illustrates how is is done.

Fig. 4. Pre-matching features horizontally.

The second step consists in comparing the euclidean dis-
tance between two descriptors in vertical neighbor images if
this distance is smaller than a threshold value it is considered
a good match. Again, we discovered empirically that 200
pixels is a good distance to the samples used. It is worth to
mention that this process of matching features between vertical
neighbors could be done the same way it is done to horizontal
neighbors. However, the use of the euclidean distance was
used in this part to increase the robustness of the match.

C. Features Matching
To finally match the features, was used the RANdon SAmple

Consensus (RANSAC) algorithm due to its robustness and
low computing cost. This algorithm works in an opposite
way when compared with other refinement algorithms because
instead of using a bigger number of descriptors to have a
better result, it takes a sample of k reliable features and use S
attempts to obtain a probability p of success in each attempt,
and a total probability P of success [16].

To represent it mathematically, it was considered the prob-
ability of S attempts fail, as shown in equation (1).

1− P = (1− pk)S (1)

So the minimum number of attempts S that could give an
effective result can be found with equation (2).

S =
log(1− P )
log(1− pk)

(2)

In [17] is given examples of some heuristics and the number
of attempts S to obtain a 99% probability P of success. After

applying a heuristic S times, it is possible to determine which
features have correspondence, in other words, the inliers, and
which features do not have correspondence or outliers [16].

D. Finding The Homography Matrix

The homography matrix is used in point transformations in
a space, such as rotation, translation, and affine [13]. In 3D it
can be represented as shown in equation (3).x2y2

z2

 =

H11 H12 H13
H21 H22 H23
H31 H32 H33

×
x1y1
z1

⇔ Hx1 (3)

In this work, we need to project all images in the same
composing plane and with its respective overlap. To achieve
that, the homography matrix can be projected in 2D. Solving
the equation (3) in homogeneous coordinates, ( i.e., x′2 = x2

z2
and y′2 = y2

z2
), equations (4) and (5) are obtained.

x′2 =
H11.x1 +H12.y1 +H13.z1
H31.x1 +H32.y1 +H33.z1

(4)

y′2 =
H21.x1 +H22.y1 +H23.z1
H31.x1 +H32.y1 +H33.z1

(5)

As can be seen, equations (4) and (5) have 9 variables,
which means that it is necessary at least 3 points to calculate
the homography matrix. These points are the positions of the
descriptors found by SURF and selected by RANSAC. The
OpenCV method findHomography [18] is the method used
in this work to apply RANSAC and discover the Hs, and it
returns a 2D homography matrix in homogeneous coordinates
following the model shown in equation (6). Where Tx and Ty
are translations in x and y respectively, and rot + proj are
rotations plus projections values [13].

H =

rot+ proj rot+ proj Tx
rot+ proj rot+ proj Ty

0 0 1

 (6)

Equation (7) shows an output example from the code. As
can be seen, the two first values from the third line are small
enough and can be considered zero. This happens due to the
numerical iterative approximations.

H =

 1.00725 −0.00313 −1002.11567
0.00140 1.00156 23.08991

4.04535e− 6 −3.42769e− 6 1

 (7)

It is important to point out that for each neighbor image
there is one homography matrix, which means that images are
matched in pairs. Fig. 3 illustrates this process, in addition,
it is worthy to explain that image 5 can have a homography
matrix defined from image 1, another form image 2, another
from image 3, and finally another form image 4. It means that
image 5 can have its global position defined by 4 homography
matrices. However, in this work, we used only two of them,
one form the horizontal (i.e image 4), and another form the
vertical neighbor (i.e. image 2). This reduces processing time
in the next step.



E. Bundle Adjustment

In the last section was said that each image has its position
defined by 2 homography matrices, which means that it is
necessary a global alignment step in the process. This avoids
errors mainly when the number of composing images rises
up. This process is known as bundle adjustment [19]. This
function works with camera intrinsic parameters and its matrix
is represented in equation (8), where fx and fy are focal
lengths in x and y axis respectively, which represents 3D
distance values from the composing plane until the camera
sensor. Whereas cx and cy determine the focal center of the
camera [19].

H =

fx 0 cx
0 fy cy
0 0 0

 (8)

At this point, it is valid to remember that each image’s
position was defined by homographies matrices. OpenCV
have the estimator [20] method to transform homographies in
intrinsic parameters matrices. In addition, OpenCV’s bundle
adjustment function considers that all images were taken by
the same virtual camera, which was just rotated, and not
translated [4]. To improve the results, the composing surface
considered in the intrinsic parameter matrix is re-projected
behind and more distant from the camera to reduce the angles
between images, and consequently reducing projections errors
[13]. Equation (9) shows the new form from of the intrinsic
parameters matrix.

H =

−afx 0 c′x
0 −bfy c′y
0 0 0

 (9)

The bundle adjustment algorithm used as an after the
process of feature detection suffer from two main problems.
First, the presence of outliers detected as inliers by RANSAC
may delay convergence of the algorithm. Second, the fact that
a feature can be used to calculate more than one homography

matrix, making the feature overestimated
(
m
n

)
times, where

m represents how many times the feature was counted, and
n the number of homography matrices that is was used.
This means that an outlier used to estimate a big number of
homographies can produce an ineffective result.

F. Data Register

This section does not represent a step in the stitching
process. However, it is worth mention that until this point all
that was done was collect data from the images, and calculate
how it could be composed, although, nothing was projected
in no surface. The next sections will discuss the composing
parts.

If the quality of the images were to be reduced to save
memory, it is interesting to use an anti-aliasing filter to
remove distortions generated in the compressing process [13].
Although, we did not use this filter in this work because what
is intended to be obtained is an image bigger than the original.

One last thing worth comment is that a wave correction
[10] step could be used before start composing. It is useful to
correct accidental camera inclinations occurred when a picture
is being taken by a photographer. Furthermore, MicroScan-
ner’s camera stays steady all the time, eliminating this way
the necessity of this step.

G. Defining Projection Surface

Choosing a projection surface is a process that involves
keeping local appearance and, at the same time, obtain a
uniform composition. For a microscopy application a flat
surface is the one which better represents the environment
photographed, and the one used in this work. However, when
the number of the images increase in this plane surface it
is difficult to maintain the local appearance without stretching
too much the images. This size expansion occurs mainly when
there is no much matched features in the composition, and
its main consequence is memory overflow, which crashes the
software. In situations like these sometimes a solution could
be the use of a cylindrical or spherical surface [13].

H. Seam Correction

To smooth seam marks in overlapped regions OpenCV esti-
mates masks just for these regions and apply a seam correction
algorithm [21] just on this masks, to reduce processing time.
It works computing differences between pixels and decides
what erase, such as objects that moved leaving ghost effects,
and what to keep. This is done basically applying a weighted
arithmetic mean leaving the more intense pixels [21]. This step
is necessary because living things in the sample analyzed can
move, and it also helps reduce low features correspondence
issues in the final mosaic.

I. Blending

After the correction of seam marks, there is still the need
to correct exposure differences and some remaining problems
where there is low features correspondence. In this step was
used the multi-blending process [22], which uses a Laplacian
pyramid where each level selects a frequency band to smooth
visual images differences. The main advantage of this algo-
rithm is that it can act in low or high frequencies indepen-
dently, and the number of bands is defined automatically by
the OpenCV blending algorithm [4]. Differently from the seam
correction step that uses masks, the blending process is applied
in the entire image [22].

In case the exposure differences are too big, algorithms such
as [23] can help improve the results. However, illumination
and exposure time of the pictures were constant and there
were no need to use it.

III. RESULTS

In this work, the samples which the images were taken are
from an industrial sewer, and in the results presented were
used the 100 images shown in Fig. 1, each with resolution
of 2MP (1920x1080), the objective magnification value of
the MicroScanner’s lens was 10x, and the computer used to



process these images was an intel i5 2GHz with a cache of
3MB and 8GB of RAM memory.

Fig. 5. 10x10 image projection having its position defined only by one
homography matrix form its previous neighbor. It was not used bundle
adjustment, seam correction or blending.

The MicroScanner movement followed the same idea pre-
sented Image Acquisition section. Initially, in Fig. 5 is shown a
projection of these images using only one homography matrix
per image from its previous neighbor to determine its position.
Images were just warped and projected into a flat surface
without bundle adjustment, seam correction or blending. The
idea used in this process was similar the one used in Fig. 6
[7], but it clearly shows problems with features matching, in
addition, it presents seam marks and exposure time differences
and gaps between images.

Fig. 6. Example of a result obtained in [7].

Improving the results, Fig. 7a shows a mosaic created
with 20 images, using bundle adjustment, but neither seam
correction nor blending were used. Fig. 7c gives a zoom in
Fig. 7a and shows that due to bundle adjustment step, images
are better positioned and warped when compared with Fig. 5.

Finally, Fig. 7b presents an ideal result, where were used the
bundle adjustment, seam correction, and blending steps. Fig.
7d gives a zoom in Fig. 7b. When Fig. 7d is compared with
Fig. 7c it is possible to see how smoother transitions between
images are, and how little features misplacement are corrected
in Fig. 7d.

However, when the number of features is increased the final
mosaics start to get more distorted as can be seen in Fig. 8a.
The main reason for this problem is a low number of features
matched in at least one of the images. This makes the bundle
adjustment algorithm stretch too much some images, the ones
on the left, in this case, to close gaps between them [13].

The stitching process although, involves an artistic effort
as much as a computational one [13]. Motivated by this af-
firmation, an attempt to reduce the vertical euclidean distance
parameter from 200 to 170 pixels returned the Fig. 8b, which is
a much more acceptable result. This happened because when
this threshold value was reduced it reduces the number of
pre-selected features sent to RANSAC match, and as it works
better when there is a more reliable sample of features instead
of a bigger number of then, the final mosaic consequently
looks better.

Finally, it is important to discuss the algorithm’s conver-
gence time, which still has space to get smaller. This gets
worse as the number of images is increased. We observed that
at least 70% of the time spent by our stitching code is in the
bundle adjustment step, and this proportion rate gets bigger
when the number of images increases. This happens because
OpenCV’s bundle adjustment function does not allow varying
its internal convergence parameters. A possible solution and
suggestion to future work is the use of CERES library [24],
which have a more flexible bundle adjustment function, to
implement this part of the code.

IV. CONCLUSION

Based on the data and analyzes presented, it is possible to
affirm that the creation of feature-based mosaics is a medium
to high complexity task, especially when the number of images
to be stitched increases, and that this process involves an
artistic and empirical effort as much as computational one.

The several techniques of image processing and computer
vision used in this work were presented and discussed, such
as feature detection and matching, homography estimation,
bundle adjustment, seam correction, and blending.

Our work presents an approach specialized to the Mi-
croScanner device which is a product that promises reduce
equipment and labor costs, as well as easily deal with sanitary
barriers issues. As initially proposed, the results obtained do
not reduce the quality from original images, and have better
quality and more effective results than previous presented
works, especially for smaller sets of images. Finally, it solves
the issue between field of view and resolution.
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