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Abstract—Visual tracking is a challenging task due to a
number of factors, such as occlusions, deformations, illumina-
tion variations and abrupt motion changes present in a video
sequence. Generally, trackers are robust to some of these factors,
but do not achieve satisfactory results when dealing with multiple
factors at the same time. More robust results when multiple
factors are present can be obtained by combining the results
of different trackers. In this paper we propose a multiple
tracker fusion method, named Symbiotic Tracker Ensemble with
Feedback Learning (SymTE-FL), which combines the results of a
set of trackers to produce a unified tracking estimate. The novelty
of the method consists in providing feedback to the individual
trackers, so that they can correct their own estimates, thus
improving overall tracking accuracy. The proposal is validated by
experiments conducted upon a publicly available database. The
results show that the proposed method delivered in average more
accurate tracking estimates than those obtained with individual
trackers running independently and with the original approach.

Index Terms—Object tracking, tracking fusion.

I. INTRODUCTION

The basic task of visual tracking is to estimate the state (po-
sition and extent) of arbitrary objects along image sequences.
Many automated applications such as video surveillance,
human-computer interaction, and smart traffic monitoring, rely
on the information delivered by a tracker in order to help ma-
chines to understand real-world environment, recognize object
behavior and take particular actions when necessary. The target
objects are, however, prone to changes in appearance due
many factors such as occlusions, deformations, illumination
variations and abrupt motion changes, which make visual
tracking a challenging problem in real-world scenarios.

Over the past two decades, several tracking algorithms
have been proposed in the pursuit of accuracy and robustness
(e.g. [1]–[4]) but with limited success in the presence of
the different aforementioned variations [5]. In fact, a tracker
may be designed for dealing with specific situations, but
would fail when facing different conditions [6]. In this sense,
fusion techniques have been emerging as a way to improve
overall tracking performance, as they have the capacity to
exploit complementary information among trackers aiming at
more accurate results [7]. However, most of the available
fusion techniques limit themselves to provide more accurate
consensus outcomes and do not exploit this result to improve
individual trackers’ performances.

In this context, we propose a multiple tracker fusion ap-
proach, which exploits the fusion results in order to enhance
the performance of the individual trackers. The fusion is
expected to provide a more consistent result by resubmit-
ting its results to each tracker in the attempt of improving
their performances. The proposed method is based on the
Symbiotic Tracker Ensemble introduced by Gao et al. [8],
which considers trackers as black-boxes and combines their
results based on intra-tracker and inter-tracker correlation. The
main contribution in this work is the inclusion of a feedback
mechanism, which updates object representation by correcting
the state of the target object or by updating the appearance
model of each individual tracker.

The rest of this paper is organized as follows. Section II
reviews previous methods for the fusion of trackers’ estimates.
Section III describes the fundamentals of Gao’s Symbiotic
Tracker Ensemble [8]. Section IV introduces the method-
ology adopted to include the feedback mechanism into the
fusion approach in order to enhance the individual trackers’
performances. In Section V, we briefly describe the three
state-of-the-art tracking algorithms used in this work, namely,
Tracking-Learning-Detection (TLD) [9], Kernelized Correla-
tion Filters (KCF) [10] and Circulant Structure of Tracking-by-
Detection with Kernels (CSK) [11], and we discuss the results
obtained with the individual trackers and with the fusion
approaches on the TB-50 dataset [12], and finally, Section VI
summarizes our conclusions and suggestions for future work.

II. RELATED WORK

The massive volume of information currently produced by
a multitude of video sources, including cameras and built in
mobile devices, enable many important applications in fields
as diverse as security, health, sports, transportation, and so on.
Such wealth of information exposes an unquestionable demand
for robust automatic visual tracking methods.

Although exhaustive research has been made in order to
produce accurate and robust tracking algorithms [13]–[15],
the task of visual tracking remains challenging due to the
presence of perturbations during image acquisition, such as de-
formations, illumination changes, occlusions, cluttered scenes,
low frame rate, abrupt motion, etc. The works of Wu [5],
Smeulders [6] and Kristan [16] reveal that individual trackers
cannot cope with all kinds of perturbations; furthermore,



the performance of the evaluated trackers decreases when
simultaneous perturbations occur. However, their results also
suggest that trackers might complement each other, as some
of trackers perform well in situations where others perform
poorly.

Several authors have proposed fusion techniques in an
attempt to improve tracking performance. Shearer et al. [17]
proposed a method that allows switching between estimates of
two trackers: a region tracker and an edge tracker, according
to a confidence measure, but it requires user intervention
when possible drifts are detected. Leichter and co-workers
[18] devised a method that combines several tracking estimates
through the exchange of their final state pdf (probability
density function); the method is, however, limited to trackers
of the same nature. As a way to combine trackers in a more
general framework, Stenger et al. [19] proposed to select
the best suited trackers for a given application, based on
error distributions learned from a representative training set.
Stenger’s approach is, nevertheless, limited to a certain number
of trackers and to a range of perturbations present solely during
training. The disagreement-based fusion approach proposed
by Li et al. [20] have similar restrictions with respect to the
number and type of trackers. In a limited, yet interesting fusion
approach, Bailer et al. [21] combined the estimates of a set
of trackers through a trajectory optimization scheme, where
tracking results for a given video sequence were known in
advance.

The method introduced in this paper is based on the
symbiotic tracker ensemble proposed by Gao et al. [8], which
is a fusion algorithm that depends only on the trackers’
estimates regardless of their design, i.e., treating trackers as
black-boxes. Although Gao’s approach is fairly general, it
does not support updating the object’s representation of the
individual trackers. In this sense, Leang et al. [22] evaluated
different strategies for updating or re-initializing trackers by
combining fusion outputs and drift predictions. However, each
tracker’s contribution is given by a binary confidence level,
which considers tracker’s performance from the previous and
current frames instead of the accumulated performance during
tracking. Zhong et al. [23] also proposed that the fusion of
tracking estimates can be used to update individual trackers
in order to improve their accuracy. Finally, Biresaw et al. [24]
proposed a fusion framework that enables individual tracker
correction based on estimates provided by other trackers, but
the method is restricted to Bayesian trackers.

III. ORIGINAL SYMBIOTIC TRACKER ENSEMBLE

The Symbiotic Tracker Ensemble [8] is a fusion framework
that explores the relationships among the estimates from a set
of trackers regardless their particular designs, i.e., trackers are
treated as black-boxes.

The fusion process considers spatiotemporal characteristics
of the individual trackers’ outcomes (Figure 1) in two iterative
stages. First, intra-tracker correlation is used to evaluate the
tracking consistency, i.e., trajectory smoothness between track-
ing estimates for consecutive frames. Then, inter-tracker corre-

lation is used to calculate the confidence level of each tracker,
through a pair-wise tracker interaction. In the following we
describe a set of relationships between tracking estimates, and
we give a brief explanation of intra-tracker and inter-tracker
correlations, and of the computation of the final estimate.
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Fig. 1. Symbiotic Tracker Ensemble.

A. Relationships Between Tracking Estimates

A key problem in designing a fusion method for tracking is
to define how to express numerically the relationships between
two tracking estimates, R1 and R2, which can be represented
by bounding boxes in the form R = (x, y, width, height). For
this purpose, Gao et al. [8] introduce two similarity metrics,
formally:
• F (R1, R2): which measures the similarity between R1

and R2 as:

F (R1, R2) =
2× Pr(R1, R2)×Re(R1, R2)

Pr(R1, R2) +Re(R1, R2)
(1)

where F (R1, R2) ∈ [0, 1], and Pr(R1, R2) and
Re(R1, R2) represent precision and recall, respectively.

• r(R1, R2): which quantifies the congruence between R1

and R2 according to:

r(R1, R2) = exp(−D
2(R1, R2)

σ2
) (2)

where r(R1, R2) ∈ [0, 1], D(R1, R2) represents the
Euclidean distance between the centers of R1 and R2,
and σ stands for the standard deviation of D(R1, R2).

B. Intra-Tracker Correlation

The first stage of the fusion approach evaluates individual
tracker consistency. For each tracker, estimates from suc-
cessive frames are used to compute a temporal correlation
measure, which determines its initial credibility. In a more
formal way, given two tracking estimates Ri,n−1 and Ri,n,



corresponding to the i-th tracker at (n−1)-th and n-th frames,
the initial credibility is defined by:

C0
i,n = ξiCi + (1− ξi)Θ(Ri,n−1, Ri,n)Cf

i,n−1 (3)

where, Ci is a general confidence coefficient, Cf
i,n−1 repre-

senting the final credibility coefficient from previous frame,
ξi is a regularization parameter that ranges between 0 and 1,
and Θ(·) is a relation coefficient of the i-th tracker that may
be computed using either F (·) or r(·) similarity metric.

C. Inter-Tracker Correlation

The second stage of the fusion approach computes individ-
ual trackers’ confidences by comparing all trackers’ outputs for
a single frame. The individual credibility is estimated trough
an iterative pair-wise correlation, as presented in Equation 4,
where Cs−1

i,n represents the credibility coefficient for the i-th
tracker after the s iteration, ηi ∈ [0, 1] is a weighting coeffi-
cient that controls the importance of the temporal correlation,
I denotes the total number of trackers, Rj,n and Ri,n are the
tracking estimates for the i-th and j-th trackers, respectively,
and Φ(·) is a relation coefficient between the i-th and j-th
trackers, which may be computed using either F (·) or r(·)
metric.

Cs
i,n = ηiC

0
i,n +

1− ηi
I − 1

∑
i 6=j

Φ(Rj,n, Ri,n)Cs−1
i,n (4)

Notice that after convergence the credibility coefficients
Cs

i,n becomes the final credibility coefficients Cf
i,n.

D. Estimates Combination

The last stage in the fusion approach computes the final
estimate through a weighted sum of the trackers’ outputs,
formally:

Rfusion =
∑
i

πiRi (5)

where the weighting coefficient πi for the i-th tracker is based
on the credibilities coefficients as follows:

πi =
Cf

i,n∑
j C

f
j,n

(6)

IV. SYMBIOTIC TRACKER ENSEMBLE WITH FEEDBACK
LEARNING

The symbiotic tracker ensemble, as described in the previ-
ous section, is based on a spatiotemporal correlation of track-
ers’ estimates, and is fairly robust to different perturbations in
a video sequence. However, it does not address directly two
important issues that might compromise performance:

1) Drifting, which is a consequence of the independent
execution of the trackers, as they are prone to add
information into the representation of the object that
does not correspond with the target.

2) Perspective bias, which is a consequence of considering
only the centroids to compare two tracking estimates
disregarding their sizes [25].

In this work, we attempt to overcome the first issue by
assuming that the fusion estimate tends to correspond to the
real state of the object. Thus, we can use this information
to correct eventual drifts of individual trackers. Therefore,
we included a feedback mechanism into the original fusion
scheme, as depicted in Figure 2, which is used to correct the
state of the object and, if applicable, update the appearance
model of the trackers that take part in the ensemble.
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Fig. 2. Symbiotic Tracker Ensemble with Feedback Learning.

Additionally, we take advantage of the structure of the
tracking algorithms – first estimate the object’s state and then
update the object’s appearance model – to keep the trackers
updated with information delivered by the fusion output. The
basic processing steps of the proposed approach is presented
in Algorithm 1. They consist of four steps: execution of the
individual trackers; fusion of trackers’ results; correction of
trackers’ states; and update trackers’ appearances models.

Notice that the proposed method remains general in the
sense that any tracker, whether adaptive [9] or tracking-by-
detection [26], can be used in the fusion scheme. A small
modification of the trackers’ code is, however, required to
enable the feedback process.

Finally, we use a normalized version of the Eu-
clidean Distance to redefine r (·) in Equation 2 in or-
der to attenuate the perspective bias effect. Formally,
given two tracking estimates in the form of a bound-
ing box, R1 = (x1, y1, width1, height1) and R2 =
(x2, y2, width2, height2), and the centroids (u1, v1) and
(u2, v2) corresponding to R1 and R2, respectively, the Nor-
malized Euclidean Distance (NED) is defined as:

NED(R1, R2) =
√
d2(u1, u2) + d2(v1, v2) (7)

where,
d(u1, u2) =

u1 − u2
width1

(8)

and,
d(v1, v2) =

v1 − v2
height1

(9)



Algorithm 1 Symbiotic Tracker Ensemble with Feedback Learning
Input:
frames - sequence of images.
T ← {Ti} - tracker ensemble.
R0 - initial state.
C, ξ, η - fusion parameters.
θ, φ - relationships’ estimates in Θ (·) and Φ (·), respectively.

Procedure:
1: n← 1;
2: frame← GetFrame(frames, n);
3: InitializeTrackers(T , R0, frame);
4: InitializeFusion(C, ξ, η);
5: for each frame n from frames do
6: frame← GetFrame(frames, n);
7: for each tracker i from T do
8: Ri ← ExecuteTracker(Ti, frame);
9: C0

i,n ← ComputeIntraTrackerCorrelation(Ri, C
f
i,n−1, θ); . Equation 3

10: Cf
i,n ← ComputeInterTrackerCorrelation({Ri}, C0

i,n, φ); . Equation 4
11: end for
12: Rfusion ← CombineTrackingEstimates({Ri}, {Cf

i,n}); . Equation 6
13: CorrectTrackersStates(T , Rfusion);
14: UpdateTrackersAppearances(T , frame, Rfusion);
15: end for

In this way, we redefine r (·) as:

rNED(R1, R2) = exp(−NED
2(R1, R2)

σ2
) (10)

V. EXPERIMENTAL DESIGN AND RESULTS

In this section, we evaluate the proposed method, the Sym-
biotic Tracker Ensemble with Feedback Learning (SymTE-
FL), using a collection of video sequences publicly avail-
able. Three state-of-the-art tracking-by-detection algorithms:
Tracking-Learning-Detection (TLD) [9]; Kernelized Correla-
tion Filters (KCF) [10]; and Circulant Structure of Tracking-
by-Detection with Kernels (CSK) [11], compose the ensemble.
We compare the results delivered by the proposed method
with those achieved by the original Symbiotic Tracker En-
semble (SymTE) [8] and by each individual tracker running
independently, i.e. without the feedback learning. The exper-
iments were carried out on an Intel(R) Core(TM) i7-3930K,
3.20GHz CPU with 32GB of RAM running Windows 7, and
implemented with MATLAB R2016a.

We evaluate tracking performance by first computing the
errors in precision and distance associated to each tracker
estimates, and by analyzing the areas under the curves of
precision plots, as explained later in this section.

A. Dataset

In the experiments we used the TB-501 dataset, which is
a collection of difficult and representative video sequences

1Available in: http://cvlab.hanyang.ac.kr/tracker benchmark/datasets.html.
Last accessed in June 2017.

commonly used in tracking evaluations [5]. The dataset con-
tains 50 sequences in which the targets are subjected to
challenging situations like illumination variations, occlusions,
deformations, motion blurriness, in-plane and out-of-plane
rotations, background clutters, and low resolutions. The se-
quences have approximately 71∼1918 frames; the resolution
of the frames varies between (128∼768)×(96∼640) pixels;
and targets’ initial widths and heights vary from (12∼132) to
(13∼210) pixels.

B. Trackers

As mentioned before, we used three state-of-the-art
tracking-by-detection algorithms: TLD, KCF and CSK, which
codes are publicly available. We have adjusted the trackers’
codes as mentioned in Section IV, and used predefined pa-
rameter settings for each tracker. Additionally, we modified the
KCF and CSK algorithms to make them capable of handling
scale variations of the targets.

1) Tracking-Learning-Detection (TLD): TLD [9] is a
framework conceived to perform long-term tracking of ar-
bitrary objects; it combines adaptive tracking and online
detection techniques in order to acquire and exploit temporal
information about the target and, thus, overcome possible
appearance changes of the object during tracking. As the
name suggests, TLD decomposes long-term tracking into three
stages, namely:
• Tracking: estimates the object’s state in incoming frames.
• Learning: analyzes the responses from the tracking and

detection stages in order to identify detection errors and
generate reliable data for training.



• Detection: locates the object, either to correct tracking
trajectory or to re-start tracking after failure.

2) Circulant Structure of Tracking-by-Detection with Ker-
nels (CSK): CSK [11] is a tracker-by-detection algorithm that
uses a non-linear mapping process to discriminate potential
image patches as the foreground (object’s appearance model)
or the background. The classifier is trained during tracking
execution using a set of samples collected within an area near
to the last estimates of the target’s position. Image patches
relatively close to the target’s estimates are labeled as positive
samples, while those farther away are considered negative
ones.

3) Kernelized Correlation Filters (KCF): KCF [10] is a
tracking algorithm built on the CSK tracker basic design.
Differently from CSK, this method extends the use of Gaussian
kernels to linear and polynomial kernels. Furthermore, the
target object is represented by more complex features, such
as the histogram of gradients, in a multi-channel image repre-
sentation. Finally, KCF uses the whole frame extent to extract
image patches in order to feed the classifier with positive and
negative samples.

C. Fusion Parameters

The use of Θ (·) and Φ (·) in Equations 3 and 4, respectively,
enables four variants of the proposed method (SymTE-FL), as
well as four variants of the SymTE method.

We identify the variants as: FF, FD, DF and DD. The first
letter refers to the similarity metric used to compute intra-
tracker correlation (Θ (·)), and the second, to the metric used
to compute inter-tracker correlation (Φ (·)). The letter F is used
to denote the F (·) metric, and the letter D is used to denote
the rNED(·) metric.

For the rNED(·) similarity metric, we set the value of σ
equal to 1/3, which was determined empirically. Additionally,
the values of ξi and ηi were both set to 0.1 according to
the reported values in [8]. Finally, we chose equal confidence
coefficients (Ci) for each tracker in the ensemble.

D. Evaluation measures

We used the Normalized Euclidean Distance Error, eNED,
and Precision Error, eP , to evaluate tracking performance.
The former measures the deviation of a tracker estimate (R)
from the reference (Rgt), and the latter measures similarity in
position and extent between R and Rgt. Formally, eNED and
eP are defined as follows:

eNED(Rgt, R) = 1− rNED(Rgt, R) (11)

eP (Rgt, R) = 1− Pr(Rgt, R) (12)

where, rNED(·) is the distance-based metric defined in Section
IV; and Pr(·) is the precision between a pair of bounding
boxes.

We computed the area under the curve (AUC) of the
precision curves, for both eNED and eP , to evaluate tracking
performance in a given video sequence. The precision curves

are commonly used in literature [3], [5] to represent the
proportion of frames in a sequence where the target is assumed
to be correctly tracked, i.e., where tracking error is below a
given threshold. We observe that a good tracker performance
is associated to a high AUC values.

E. Results

Figures 3 and 4 present the average results for the area
under the curve of the precision curves related to eNED and
eP , respectively, considering all the sequences in the TB-50
dataset.
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Fig. 3. Precision plot for eNED errors in all the TB-50 sequences.
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Fig. 5. AUC’s ranking for (a) eNED and (b) eP errors in all the TB-50 sequences. Diamond markers indicate the method with the highest score in the
sequence.

These Figures show that, in average, the worse variant of the
proposed method (SymTE-FL(DD)) outperforms the best vari-
ant of SymTE with respect to both measures, AUC(eNED)
and AUC(eP ). The performance of the proposed method also
surpasses consistently the performances of the TLD and CSK
by approximately 10%. In comparison with KCF, the SymTE-
FL(DD) obtained similar results for the FF variant and worse
results for FD, DF and DD. These facts can be analyzed in
more details when looking at Figure 5.

Figure 5 illustrates the trackers’ performances, regarding the
similarity to the reference, for each sequence. Warmer colors,
like red, are associated to better performances in contrast to
colder colors, like blue, which show a high estimate deviation
from the reference. Additionally, diamond markers indicate the
method with the highest score for a given sequence. For the
sake of clarity, we did not show FD, DF and DD variants
on the graph, since their results are relatively similar to the
ones obtained by FF .

The figure clearly shows that each individual tracker out-
performs the others in at least some sequences. KCF is the
best one for 18 sequences, while TLD and CSK achieve the
best results for 8 and 6 sequences, respectively. The original
fusion method, SymTE, appears only 2 times at the first rank,
whereas the proposed method, SymTE-FL, 16. These results
indicates that KCF was much superior to the other trackers,
which made the fusion process to be unbalanced, tending to
favor the KCF outcomes. For this reason, SymTE-FL achieved
results comparable to those of KCF.

Figure 5 also allows to analyze not only the best trackers,
but the difference among them in each sequence. For instance,
we can observe that KCF is fairly better for sequences 8, 11
and 47; while CSK is for 12, 37 and 39; and TLD is for 9,
10 and 31. However, there are some sequences in which the
trackers have performed quite similar, like 2, 3, 25, 30, 42.

In this sense, Figure 5 shows that, in general, the proposed
method produced results similar to the best individual trackers
for most of the video sequences. In fact, our approach achieved
not only the best average results, but also obtained much
higher scores in some individual sequences like in 1, 4, 7, and
so on, indicating that the feedback learning tends to increase
the individual trackers’ performances. However, notice that in
some cases the original fusion approach was superior to ours,
as in 17, 36 and 45, showing that the feedback is not always
advantageous.

In order to present some visual examples, Figure 6 shows
the tracking and fusion estimates of three video sequences
from the TB-50 dataset. The images on the top, middle,
and bottom rows correspond to different frames on BlurBody
(sequence 4), Box (sequence 9), and Jumping (sequence 31)
sequences, respectively.

The trackers’ estimates vary a lot in BlurBody sequence. For
instance, KCF is a little bit far from the reference in frame
226 and gets closer to it in frames 295 and 321. In contrast to
it, CSK is close to the reference in frames 226 and 295, but
drifts away in frame 321, making the SymTe to drift too. In the
Box sequence, KCF and TLD are close to the reference and



Frame: 226 Frame: 295 Frame: 321

Frame: 186 Frame: 230 Frame: 533

Frame: 70 Frame: 105 Frame: 274

Fig. 6. Tracking and fusion estimates of three sequences from the TB-50 dataset. Images on the top, middle, and bottom rows present estimates’ examples
on the BlurBody, Box, and Jumping sequences, respectively.

CSK is slightly drifted in Frame 186. However, as the object
moves, the trackers start to lose the correct reference. In frame
533, only our proposed method is tracking correctly the object.
Lastly, in Jumping sequence, TLD keeps tracking the object
correctly through the frames, but the CSK and KCF drifts
away, making the SymTE to drift too, while our proposed
method remains very close to the reference. These examples
show that, in contrast to the fusion estimate from SymTE, our
method manages to keep on following the objects of interest,
since the trackers are improved through the feedback learning
process.

Finally, the whole experimental results suggests that adding
more trackers that are robust to different variations, and that
tuning of the fusion parameters should improve the symbi-
otic tracker ensemble with feedback learning even further. A
greater number of different trackers should achieve a more

variation on the best trackers for each sequence, thus it would
contribute to the fusion method to be more consistent and to
obtain, on average, the best performance.

VI. CONCLUSION

In this paper we proposed a multiple tracker fusion method,
the Symbiotic Tracker Ensemble with Feedback Learning
(SymTE-FL), which combines the results of the individual
trackers to produce a unified tracking estimate. The method
was based on a previously proposed fusion method [8] and
includes a novel feedback mechanism that corrects the out-
comes of the individual trackers that compose the ensemble.

A set of experiments were conducted upon the TB-50
publicly available database. In the experiments we compared
the performance of the proposed method with that of the
original method, using the same individual trackers: TLD,



KCF and CSK. We also compared the performance of the
proposed method with those of the individual trackers running
independently.

The results show that in general, the proposed method
achieved a performance similar, if not better, compared to the
best trackers for most evaluated video sequences. In terms
of the average area under the curve (AUC) of the precision
curves considering the whole dataset, the proposed method
outperformed the original method (using the same individual
trackers) and the TDL and CSK trackers by approximately
10%. The KCF tracker, however was slightly superior in terms
of the AUC, using the normalized Euclidian distance error
measure.

We observe that the setup of the proposed method for the
experiments gave equal importance to all the trackers in the
ensemble, and sometimes a poor tracking estimate produced by
a particular tracker may impair the performance of the fusion
scheme and even worsen the outcomes of the individual track-
ers. This fact is more noticeable in the performed experiments
due to the small number of trackers (three) that take part in
the ensemble. We expect to achieve more accurate and robust
results by using a larger number of trackers.

This study is part of an ongoing research, in which we
foresee the inclusion of additional mechanisms to improve
the tracker ensemble performance. In the near future, we also
plan to experiment with different ensembles, using a larger
number of different individual trackers, over a variety of video
sequence databases.
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