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Abstract—The popularity of applications using Augmented
Reality, especially due to the dissemination of smartphones with
high processing power, introduces the need for Fiducial Markers
that can be detected quickly, with good accuracy and can
deal with partial occlusion. Fiducial Markers can have different
shapes, sizes, structure and colors, and are inserted into a scene
to facilitate the detection and consequent projection of virtual
objects. In particular, this paper proposes a new Color-based
and Recursive Fiducial Marker (CRFM), which is constructed
by square-based geometric forms and uses different colors to
produce a recursive structure that was designed to still work
under partial occlusion. We describe the CRFM design and how
its detection mechanism works. Our evaluation results show that
CRFM achieves a good level of accuracy. Moreover, we show that
the detection of the CRFM can be as fast as a board of ArUco,
where only black and white colors are used.

I. INTRODUCTION

Augmented Reality (AR) is a technological concept [1] that
has been around for quite some time, but has recently been
giving a lot of attention. In particular, due to the increase
of processing power of smartphones and the dissemination of
applications for them [2].

One of the key research topics in Augmented Reality
include techniques for detecting elements in a given image.
Detection enables the projection of virtual objects over the
original image. In this work, we focus on the use of Fiducial
Markers [3], synthetic elements that are inserted as references
for facilitating the projection of virtual objects [4] [5] [6] [7].

Usually, markers are composed of geometric forms, which
enables a fast and accurate detection over the image. For
instance, square markers provide the possibility of calculating
the camera pose from the location of one of its 4 vertices
[8]. While using circular markers, the camera pose can be
calculated considering the marker contour [9]. In this work,
we focus on the use of square-based geometric forms.

More specifically, we propose the use of a Color-based
Recursive Fiducial Marker (CRFM). The use of color is key
to the definition of a recursive structure in the CRFM. With
a recursive marker, we are able to deal with partial occlusion
that may occur over the marker. Moreover, we can deal with
different detection sizes for the marker, depending on the
viewing distance to the marker, we can focus on the detection
of different levels of the recursive marker. This provide an
optimized detection over traditional (fixed size) markers.

Fig. 1. The proposed marker (CRFM) and a binary marker (ArUco [10]).

This paper is organized as follows. Section II describes
related work. In Section III we provide a description of the
CRFM proposed in this paper. Section IV shows how to
detect the CRFM in an image. Both detection accuracy and
performance evaluations are presented in Section V. Finally,
Section VI presents final remarks and future work.

II. RELATED WORK

Figure 2 presents Fiducial Markers that are similar to the
work described in this paper, differing mainly by not using
colors in its structures.

Fig. 2. Fiducial Markers similar to our work.

Many proposed fiducial markers systems consist of using
techniques in order to segment and identify patterns encoded
within the marker area. ArUco [10] uses a binary identification



algorithm. ARToolKit [4] uses image correlation for marker
detection, while the ARToolKit Plus [11] also focuses on
binary detection.

Nested Marker [12] proposes a structure organized into
recursive layers, where each layer allows identification at
different distances of the camera, while also allowing iden-
tification under a partially occluded marker.

Fractal Marker Field (FMF) [13] is a fractal structure marker
system, which aims to solve limitations of markers regarding
their scale. This marker enables a larger area for camera
detection due to the possible size of its nested markers. It
is based on the structure proposed by the Nested Marker [12].

The work of ArUco [10] does not provide a recursive struc-
ture, but provides a robust detection method, which addresses
partial occlusion by creating different types of boards (each
board containing a set of binary markers). Although ArUco
does not use color in its markers, we use part of its technique
for contour detection and filtering in our work.

There are several studies that propose markers of different
types and formats, but there are no studies that use colors,
specifically, into the implementation of its marker structure.
Also, hierarchical or recursive markers do not appear to be a
highly explored topic.

The marker structure and detection algorithm proposed in
this work aims to explore the use and detection of colors, as
well as recursive structures.

III. COLOR-BASED AND RECURSIVE FIDUCIAL MARKER

In the Color-based and Recursive Fiducial Marker (CRFM)
structure, each marker (and its sub-markers) is composed of a
main block border color and four internal colored blocks that,
together, make up a unique identifier (ID) for a given marker.
This relationship between the main block and its children
blocks is also called a hierarchy. Each one of the internal
blocks of a given marker can also contain another hierarchy,
giving a recursive design to the marker. The relationship
between the colors that compose a hierarchy are never repeated
– each hierarchy maintain its own unique ID. On any given
hierarchy, the lower and rightmost block, must have the same
color of its main block, indicating its position and orientation.
This can be seen in Figure 3 (I) and (II).

A CRFM is generated following a proportionality pattern
(Figure 3 (II) and (III)) between the border thickness of the
main block, its children and a blank space, which is added to
generate extra contrast between blocks (improve the rectangle
detection). The thickness of a child block is 45% the thickness
of its parent block and the blank space is 20% of the child
block thickness. Following this proportion, for every generated
hierarchy, we are able to create an area of interest that allows
the identification the color of each block in a given hierarchy
(Section IV). These proportions were determined using an
empiric method, based on an initial marker model, and adapted
according to testing results.

CRFM is composed of a recursive structure, having 2 layers
(of markers) and 3 levels (of blocks), defined by a hierarchy
that has one marker color at the top layer and four markers on

Fig. 3. The [AB] region is equivalent to 20% of region [A] and 10% of
region [B]. The thickness of each sub-marker border [B] is 45% the thickness
of its parent marker.

its inferior layer (Figure 4). Currently, four colors are used to
generate a marker: black, blue, green and red. Considering that
each hierarchy is composed of a block and its four children,
it is possible to define a marker combining these colors.

In order to find a given target on a captured image, we
must first generate its corresponding N-ary tree as depicted in
Figure 4. Then, when the detection algorithm is executed, we
cross data from the target N-ary tree with the detected markers
from the image. The main block color and the sequence of its
children colors are not repeated into other hierarchies of target
markers.

Fig. 4. Corresponding N-ary tree for the CRFM.

Therefore, due to the existence of the N-ary tree, we do not
need to find all target markers in an image. It is possible to
estimate a pose with only one target (marker or sub-marker),
thus, allowing the CRFM to handle partial occlusion situations.
This is exemplified in Figure 5, where the detection of only one
marker is enough to determine the position in the hierarchy.

The recursive structure also allows the marker to be detected
from greater distances (Figure 6). If a marker is observed from
a greater distance, it will be able to be detected its outer-most
marker (Figure 6 (b)) but, probably, not its inner-most markers.
Using the N-ary tree, it is able to map the marker according
to its hierarchy. The same idea applies when the marker is
observed from a shorter distance but, instead, for the inner-
most markers (Figure 6 (c)).

IV. DETECTION OF THE CRFM

The flowchart for the detection algorithm used in the CRFM
is presented in Figure 8. We can identify three main steps
executed by the detection algorithm: (a) candidate detection;



Fig. 5. Target marker (left) and detected marker considering partial occlusion
(right).

Fig. 6. CRFM with a two-layer hierarchy (a). Possible hierarchy detection
from greater (b) and shorter (c) distances to the marker.

(b) color filtering; and, (c) identification. The algorithm begins
its process by detecting and filtering candidate contours.
After the candidate detection, each candidate is inserted and
organized in an N-ary tree, where its corresponding color is
analyzed and filtered accordingly. In the last step occurs the
identification of the marker. Where a search over the N-ary
tree occurs, looking for potential matches from a previously
determined target marker tree. These steps are discussed in
more details.

A. Candidate Detection

The candidate detection algorithm consists of a slightly
modified version of the ArUco detection algorithm, which can
be abridged into the following steps:

• Binary-Threshold: Consists on applying a local adaptive
thresholding technique [10], which iterates over the gray-
scale converted image being analyzed. The number of
iterations affects both the performance and reliability for
the candidate detection.

• Finding Contours: The Suzuki and Abe contours detec-
tion algorithm [14] is used on each thresholded image,
generating a number of contours to be further analyzed.

• Filtering Square Contours: After combining detected
contours from its multiple thresholds, the contours are
then applied to the Douglas–Peucker algorithm [15], in
order to reduce the number of vertices. To obtain only
rectangular and square shaped contours, it is kept only
contours containing four vertices.

• Filtering Close Contours: In order to remove possibly
duplicated contours, contours too close to each other are
removed, keeping the outer-most one only.

• Generate the N-ary Tree: The remaining contours are
then added to an N-ary tree that, during insertion, are
organized into a parent-child/sibling hierarchy, according
to the rectangles (obtained from the contours) position
and size.

B. Color Filtering

After the candidate contours are filtered, only rectangle-
shaped contours remain. For every rectangle-shaped contour,
we need to determine it corresponding color. In order to
determine the color of the rectangle, we analyze an area of
pixels inside the rectangle. These steps are described in more
details.

1) Generation of Sampling Areas: In order to reduce the
processing required by the algorithm, we define a reduced area
of the rectangle to be analyzed. The generation of the sampling
areas are calculated based on the four vertices of the detected
rectangle (Figure 7).

In order to define the sampling areas, we start by delimiting
the centroid (PC) of the rectangle. We draw lines originating
from each of its vertices (Px), with its intersection point being
the centroid (PC). For each one of these lines, we perform two
operations. First, we find the central point (P0C1) between the
vertex and the centroid (PC). Second, we repeat the previous
calculation, now using the previous central point (P0C1) and
the starting vertex (P0), resulting the (P0C2) point. We use
the calculated Px and PxC2 points in order to generate our
resulting samplings areas.

Fig. 7. Definition of sampling areas (a), and the resulting sampling areas (b).

After the sampling area is determined, we convert it into
8 corresponding rectangles. By increasing the number of
rectangles, and determining each of their colors separately, we
are able to reduce the number of errors in the color detection.
These errors are usually caused by light changes, reflexes and
shadows over the marker.

2) Raster Sampling Areas: Since the rectangles can be
positioned over any orientation in the image, we must raster
the selected areas. We implemented the raster algorithm using
Bresenham’s line algorithm [16] in order to iterate over the
sampling areas more efficiently.



Fig. 8. Flowchart for the CRFM detection.

3) Generate RGB-Mean Value for the Sampling Areas and
HSV Conversion: The next step consists of iterating over the
pixels of the sampling area and calculate the mean RGB value
of the whole region. The average value of the area consists in
a single pixel value. This RGB pixel value is converted into
an HSV pixel value. We use this technique since handling
colors in the HSV format is more robust when determining
pixel colors. Since converting from RGB to HSV is a costly
operation, we do not convert the whole area, but only the mean
value for the area.

4) Color Decision Making: Having determined the HSV
pixel value for the mean value of the area, we must analyze
its values in order to determine its correct color. An HSV
pixel is composed of three values: Hue, Saturation and Value
(brightness). To determine the color, we must create a set
of intervals into which the HSV values are compared to,
ultimately determining its color.

This set of rules was created using a histogram. We capture
and analyzed patches of colors under different levels of
brightness and noise, then joined these patches together into a
single image and generated its histogram. For each analyzed
patch, we interpreted the corresponding histogram into rules
for each color.

Fig. 9. Red patches sampling (left) and its corresponding histogram (right).

Figure 9 shows that for an HSV value to be considered red,
the values must be within the following intervals: Hue [350 to
360] and [0 to 10]; Saturation [70 to 100]; and, Value [20 to

65]. This process has been repeated through all the colors that
are used in the CRFM (red, green, blue, black and white).

5) Color Validation: After all rectangles colors have been
determined, the color that has the most occurrences is chosen.
We also check if at least 5 rectangles, from the set of 8
rectangles, correspond to the same color. Otherwise, we set an
undefined color for the block in order to avoid false-positives.

C. Identification and Pose Estimation

This step consists of search over the N-ary trees, finding
matches between the target N-ary tree and the detected N-
ary tree. The pose estimating uses an algorithm based on the
Levenberg-Marquardt algorithm [17] [18].

V. EXPERIMENTAL EVALUATION

For the experimental evaluation, we compare both detection
accuracy and performance of the CRFM against two boards
of the ArUco marker. We used the ArUco marker in the
comparison due to its fast performance and high detection
accuracy, providing a good benchmark for the CRFM. The
markers used in the evaluation are shown in Figure 10. A two-
layer CRFM, composed of three levels, was defined (Figure 10
(a)). For comparison purposes, two ArUco boards with 3x3 (9
markers) and 4x4 (16 markers) sizes (Figure 10 (b) and (c),
respectively) were generated. All markers have a square shape
of 14cm of size.

Fig. 10. Markers used in the experimental evaluation.

In order to generate a data-set of images, each marker was
printed in an A4-size sheet and pictures of the sheets were



Fig. 11. Sample of images from the data-set.

taken at different distance ranges and angles (samples can be
found Figure 12). Both marker position and light conditions
were the same for all pictures in the data-set. Pictures were
taken using a tripod, and located indoors, with an average
luminance (lux) measurement of 200.

Pictures of the sheets (containing the markers) were taken
ranging the distance of the camera from 25cm up to 200cm
(moving the camera 25cm between each picture) – 8 pictures
in total. Moreover, pictures from 3 different angles were
also taken 0o (no inclination), 45o and 70o of inclination –
generating a total of 24 pictures for each marker. Figure 12
presents a sample of the pictures used in the data-set.

All pictures in the data-set were taken from a Novatek
NY99140, 30fps, 1280x720 resolution USB-camera. The eval-
uation experiments were executed in a laptop with the follow-
ing specifications: Intel Core i7 6500u dual-core / four threads
processor, 8gb 1600mhz DDR3 single-channel memory and
Windows 10 64-bit. The CRFM algorithm, as well as the
OpenCV [19] library (containing the ArUco algorithm) were
implemented and compiled using Microsoft Visual C++ 12.0
compiler.

A. Case Study

Our case study consists of employing the CRFM into a prac-
tical Augmented Reality application. This application consists
of projecting a 3d model of the AV-LMU-MK6 (Universal
Multiple Launcher) military vehicle, over a CRFM marker,
verifying the employability of the algorithm into an actual
simulation environment for training purposes. This activity
is part of the SIS-ASTROS Project between the Federal
University of Santa Maria and the Brazilian Army. One of
the key scopes of the project is to research and develop tools
for training military personnel in the ASTROS system.

Two videos were recorded and processed using the CRFM
detection algorithm, with the camera moving from different
positions and distances. Samples from the videos are available
on the internet [20].

Figures 14 and 13 shows the detection rate considering all
the frames from the videos. We recorded an average of 91%
to 95% detection rate over the course of the videos. The main
cause for failure in detecting the markers was due to fast

Fig. 12. Algorithm detection and projection at varying distances.

Fig. 13. Detection rate according to each video sample analyzed.

Fig. 14. Detection rate according to the number of markers detected per
frame.



movement of the camera (generating blurred images), or the
marker being seen from a wide-angle of view.

B. Detection Accuracy

For evaluating the detection accuracy for each marker, we
considered the following metric. At least one valid hierarchy
should be detected in the CRFM and one valid marker in the
ArUco boards. We used this metric as it is enough to correctly
estimate the projection pose in each marker.

Figure 15 presents an example of the detection accuracy
with a picture at 200cm of distance and 70o of inclination. In
this example, we can see that the CRFM algorithm is capable
of detecting at least one hierarchy, while the ArUco boards
have a detection of 7 markers (3x3 grid) and 4 markers (4x4
grid). As the size of the ArUco grid get bigger, the markers
become smaller, reducing the detection accuracy of the board.

Fig. 15. Example of detected markers at 200cm of distance and 70o of
inclination

Figure 16, shows the overall detection accuracy from the
markers, according to their distance range and inclination
angle. The only case where no detection was possible occurred
with two pictures from the CRFM under 70o of inclination.
The failure to detect a marker hierarchy can be attributed
to the fact that, under higher inclinations, the white border
separating the colors in CRFM have their visibility reduced
due to certain light conditions, thus, affecting the contour
detection algorithm. Such problem can be avoided by either
increasing the border thickness or the number of threshold
iterations of the algorithm. In the first solution, both design
and size of the CRFM is affected. In the latter, more processing
time is needed to decode the marker.

Fig. 16. Detection accuracy for the images in the data-set.

C. Performance

For the performance evaluation, all images in the data-set
are processed over 300 iterations. The first 100 iterations are
ignored in order to generate more stable and reliable results,
due to the nature of dynamic clocking speeds of current
Intel processors (Intel R© Turbo Boost Technology 2.0). The
processing time for the performance evaluation measures the
time between the start and end of the decoding of the marker
in the image. The evaluation does not take into account the
required time to load and write images from the storage device.

The average run-time (in milliseconds) for decoding the
markers in the data-set are presented in Figure 17 considering
the images for 0o (no inclination), 45o and 70o of inclination,
respectively, charts (a), (b) and (c). As shown on the charts, it
can be deduced that both algorithms performance are affected
by distance they are from the marker. We can see that the
CRFM has a better performance against ArUco boards in all
images of the data-set, except at the images at 25cm with 0o

(no inclination), 45o and 70o of inclination. The reason this
occurs, is a result of the markers being bigger in terms of pixel
quantity. The closer the camera is to the marker, the greater
is the necessary processing power required for each marker.
CRFM is affected the most, due to its increased processing in
order to determine the color of the areas.

Figure 18 presents the overall performance considering all
the images in the data-set. In both best and average cases,
CRFM is faster the ArUco boards. Moreover, looking only at
the average case, CRFM is 4,88% faster than ArUco 3x3 and
8,04% faster than ArUco 4x4.

VI. FINAL REMARKS AND FUTURE WORK

The use of fiducial markers for augmented reality enables
the quick identification (reducing processing time), which is
required for running application in embedded systems, for
instance, smart-phones. In this work, we proposed CRFM, a
Color-based and Recursive Fiducial Marker. We explored the
use of black, red, green and blue colors for the definition of
CRFM. However, the idea behind using a color-based marker
is to explore other colors that can increase the possible range of
hierarchies that can compose the marker. The recursive nature
of CRFM enables it use under partial occlusion images. A key
component for the fast and accurate projection in augmented
reality applications.

When using color for the definition of markers, we have
to deal with problems that may not arise over gray-scale
markers, since light conditions have a higher impact over the
identification and decoding of the marker. In this sense, we
used a mixture of RGB and HSV color codifications in order
to maintain both processing speed and detection accuracy in
CRFM. In our evaluation results, we showed the decoding
process for CRFM is generally faster than gray-scale markers,
such as ArUco. Nevertheless, the detection accuracy may be
worse than gray-scale markers due to light conditions.

As future work, we intend to provide better analysis over the
use of CRFM under partial occlusion, including both accuracy
and performance details. We also intend to use other colors



Fig. 17. Average run-time in milliseconds.

Fig. 18. Overall performance for all images in the data-set.

for the definition of the markers. In this line of work, we
are considering the definition of a dynamic algorithms for the
analysis and calibration of colors. This is a way of dealing,
dynamically, with the problem of light conditions.
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