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Abstract—Image dehazing can be described as the problem
of mapping from a hazy image to a haze-free image. Most
approaches to this problem use physical models based on
simplifications and priors. In this work we demonstrate that a
convolutional neural network with a deep architecture and a large
image database is able to learn the entire process of dehazing,
without the need to adjust parameters, resulting in a much more
generic method. We evaluate our approach applying it to real
scenes corrupted by haze. The results show that even though our
network is trained with simulated indoor images, it is capable of
dehazing real outdoor scenes, learning to treat the degradation
effect itself, not to reconstruct the scene behind it.

I. INTRODUCTION

When capturing outdoor images, we are often faced with
a partially opaque covering over more distant regions of the
scene. This effect is known as haze and it occurs when
light propagates through the particles in suspension. In this
situation, the light rays can be absorbed or scattered. Both
of these phenomena cause an information attenuation which
increases exponentially with distance. This effect is described
by the Beer-Lambert law. In addition, scattering also adds
noise to the image, producing two effects: Forward Scattering
and Backscattering. The first one occurs when light rays
coming from the scene are scattered in small angles, reaching
neighboring pixels, which creates a blur in the image. This
phenomenon is usually neglected because of its little impact. In
the second one, light rays coming from outside of the scene are
scattered into the camera creating a partially opaque covering
on the scene.

An image dehazing procedure takes a hazy image as input
and removing the degradation effect, resulting in a haze-free
image. There are several approaches to this task.

Most dehazing methods rely on a simplified physical model
of the image formation, as shown in Eq. 1. In this model, the
image is described as a superposition of scene radiance and
the scattering effects and is widely adopted to hazy image
modeling [1].

I(z) = J(x)t(z) + (1 — t(x))A, ()

where I is the hazy image, J is the scene radiance, A is the
global atmospheric light, and ¢ is the medium transmission
that determines the amount of light that reaches the observer.

These methods attempt to estimate a transmission map using
heuristics and priors developed through the observation of
haze-free images. This transmission map is then used to
restore the image. [2] assumes that the transmission can be
defined as the source of covariance. Later, [3] revealed that
this assumption only works for low degradation levels and
proposed a method to estimate the transmission that uses a
color line assumption [4]. [5] proposed a model based on the
Dark Channel Prior that obtains good results. However, the
method fails in objects that presents high grayscale levels.

Even though these methods achieve satisfying results, they
are based on strong assumptions and require diverse param-
eters related to the image formation, which are not always
available. It is due to the unpredictability of the scene’s
conditions, causing them to fail in situations where the priors
used are not true, such as underwater environments [6], [7] or
scenes where the haze is not perfectly white.

Convolutional Neural Networks (CNNs) have been applied
successfully to complete many image processing tasks, such
as image denoising [8], image colorization [9], image super
resolution [10], depth prediction [11] and recently, [12], [13]
adopted CNNs to estimate a transmission map in order to
dehaze images. Based on it, we developed a new end-to-end
deep learning model trained entirely with hazy and haze-free
image pairs to successfully dehazing images.

Unlike previous approaches that use deep learning, our
model takes a hazy image as its only input and outputs a
fully restored image, requiring no additional pre or post-
processing techniques. Also, it does not rely on human-
developed priors. We take advantage of the capability of CNNs
to automatically learn complex input-output relations based
on data observation, allowing more complex heuristics which
were unable to be noticed by humans to be learned. This could
result in better restoration results in a wider range of situations.

Contributions: We propose a new end-to-end solution to
the single image dehazing problem, directly using a CNN to
fully restore hazy input images. Also, despite our model being
trained entirely with pairs of simulated hazy indoor images, it
is able to restore images from real outdoor hazy images. This
shows that our proposal is able to learn the phenomenon itself,
making our model effective for a larger range of scenes.

The remainder of this paper is organized in the following



way: Section II presents a more in-depth description about
the main dehazing models; III explains the methodology used
to train the network, to acquire data for training and the
implementation details; Section IV evaluates our approach
on real hazy scenes and presents a comparison with other
methods. Finally, in Section V, we summarize the paper’s
contributions and present the future research directions.

II. RELATED WORKS

Neural networks have already been used in the process of
single-image dehazing [12], [13]. These methods use CNNs
to learn the process of given an image, estimate a medium
transmission map. The network architecture used in [12], for
example, takes a small 16216 patch and estimates a trans-
mission for one pixel in that patch, feeding multiple patches
through the network to estimate one image’s transmission
map. This approach allows the usage of a simpler architecture,
with less weights compared to a network used for end-to-end
restoration.

Ren et al. [13] proposes a coarse-to-fine CNN for transmis-
sion estimation. The Multi-Scale CNN network is composed
by two subnetworks: (i) for coarse transmission estimation
and (ii) for fine transmission estimation. The first network
is trained first, and its output is used to feed the latter. The
network uses large convolutional filters, such as 11 x 11, 9x 9
and 7 x 7.

A CNN is also used to estimate a transmission map in [14],
however, this map is used with another purpose. It is used to
estimate the distance between the objects and the observer.
This information is then used to achieve vision-based obstacle
avoidance applied to Autonomous Underwater Vehicles.

Although computationally cheaper and faster, estimating
only the transmission map with a CNN does not solve the en-
tire problem present in physical models. It still requires priors
to estimate the medium parameters as the global atmospheric
light. Furthermore, it uses simplifications, since it does not
estimate the ambient light neither the minimum transmission
and also uses the simplified model described in Eq. 1.

Differences to this work: Previous methods use a transmis-
sion map and a simplified model to dehaze an image. Instead,
we propose a pure learning approach, where our network is the
only thing between a hazy image and its haze-free version. Our
goal is to understand whether an end-to-end neural network
is capable of learning the entire process of image dehazing,
without the support of additional methods and computations.

III. METHODOLOGY

Deep learning is a branch of machine learning based on
data-driven models composed by many processing layers of
non-linear transformations. A network is a composition of this
layers. Our method is divided in two main parts: Subsection
III-A explains the process of training a convolutional neural
network to dehaze images without prior information. Then,
subsection III-B describes how we surpassed the problem of
acquiring data to train our network. Lastly, subsection III-C
explains the implementation details in our algorithm.
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Fig. 1. The network’s full architecture, it is composed chained inception
modules combined with some convolutions.

A. Training CNNs for Image Dehazing

Our approach is to train a CNN to the point that it is able to,
given a hazy image patch, produce another version of the same
scene where the haze is reduced or even removed. This is a
complex task, so we trained our network for 120 epochs. We
used a learning rate of 1 x 10~°. The model was trained with
batches of 32 square patches. After each batch is processed, we
evaluate the model’s performance comparing its output with
the clear ground truth patches using a loss function L.

We use L as the Mean Squared Error function combined
with the Feature Loss [15], which is a loss function focused
in securing that the compared images have similar features.
This function uses a neural network that has its first layers
designated to extract the features and the last layers to output
a loss value. The network’s output is put into the function ¢
described in Eq. 2.

g?ejat = CI;W

J7EaND

where ¢; is the jth network layer, C, H and W are

the feature map’s depth, height and width, respectively. g
represents the desired output and y is the layer’s output.

Lastly, we use the Adam [16] Optimizer to readjust the
weights, repeating this process to minimize the loss L. The
parameters used in the optimizer were 5, = 0.9, 82 = 0.999
and e = 1 x 1078.

The architecture of our dehazing CNN is based on [17]’s
classification model. However, we have made some adjusts to
best fit it to our problem. In our case, the desired output is
an image with the same resolution as the input, therefore, it
is desirable to keep as much as information from the input as
possible. Aware of that, we do not use any type of dimension
reduction operations, such as pooling. Also, since all our
feature maps present the same resolution as the input, it is
necessary to reduce the number of feature maps per layer
in order to maintain the memory use and processing time at
reasonable levels. Our network is also much shallower than
state-of-the-art classification architectures.

Our network is composed of inception modules similar to
the ones presented in the Inception-ResNet-v2 [18] archi-
tecture. However, our modules are built exclusively with 16

16;(3) — ¢;(W)|I3, )
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Fig. 2. These modules are based on the Inception-Res-V2 design [17]. Although we use less channels, due to GPU’s memory constraints.

feature maps as an input and expect 16 feature maps as the
output. The detailed structures of our modules are shown in Fig
2. Overall, our network, as presented in 1, has the following
structure: We take a W x H x 3 image as an input and
apply sixteen 3 x 3 convolutions on it, followed by a batch
normalization [19] layer. The resulting feature maps are run
through three consecutive inception modules, then, we apply
three 3 x 3 convolutions to the resulting feature maps, ending
up with an W x H x 3 output image, where W and H represent
the original image’s width and height, respectively. Finally, we
apply the BReLU [12] activation function to the output.

Convolutional Neural Networks require large sets of labeled
data to be trained. In our case, pairs of hazy and haze-free
images are required. It is crucial that both images in each
pair are composed by the same scene captured under the
same lightning conditions. The problem is: the feasibility of
gathering these pairs of images in a quantity large enough
to train a neural network is low. How can we capture a
large number of pairs that meet the requirements to train our
network? Subsection III-B explains how we overcame this
obstacle and achieved a dataset that fits our needs.

B. Data Used for Training

Knowing the adversities of collecting data that suit our
needs, we decided to generate synthetic data, capturing haze
free images and applying simulated haze. In order to ac-

complish that, we need the scene’s global illumination color,
atmospheric attenuation coefficients and it’s depth map. The
global illumination color and the attenuation coefficients can
be calculated based on patches extracted from real hazy images
containing only regions where the transmission is minimal.
Since we capture images with the Kinect camera, we are also
able capture the scene’s depth map.

Duarte et al. [20] proposed a simulator that, given an clear
image, generates a turbid underwater image of the same scene
based on the depth map and a turbidity patch. Our data is
synthesized using the same model, but, instead of a turbidity
patch that represents the water medium, we use a hazy patch.

Based on the data available, we are able to simulate haze
effects using the image formation model described in Eq. 1,
using the depth map acquired using the Kinect camera to
estimate each pixel’s transmission. Thus, we are capable of
generating more than one hazy pair for each clean image,
applying several levels of degradation produced by the haze.

Fig 3 shows some image samples synthesized using the
simulator. These images are examples of the images we used
in the training of our network.

An ideal dataset for our network would be composed en-
tirely of outdoor images with their corresponding high quality
depth maps. However, we were unable to find such dataset
in the literature, since all currently available outdoor datasets
with depth maps present problems that make them unusable
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Fig. 3. Examples of images generated by the simulator to train our network. First row: Clear images used as ground-truths. Second row: Transmission maps
used to estimate the depth of the objects present in the scene. Third row: Hazy images synthesized by the simulator used as the network input.

to train our network. These problems are low resolution depth
maps, limited maximum range and mismatching alignment
between the depth map and the optical image.

We end up with two options: (a) using a dataset composed
of indoor images or (b) using outdoor images with unknown
depth. The first option allows us to produce images with more
realistic degradation effects, but these images are considerably
different from the outdoor images we intend to restore. The
second option permits us to create a larger, more diversified
dataset composed with images closer to outdoor hazy images,
but result in a lack of spatial variation in haze intensity.

It is preferable to synthesize a realistic haze effect in
an inaccurate context than generating hazy images in the
right context with an imprecise representation of the haze
degradation. It is due to our goal is to learn to remove the haze
itself and not to recreate what is behind it. Thus, we adopted
indoor images with accurate depth maps to the generation
of our datasets. Although we use the depth information to
generate the dataset, it is important to note that our deep
learning model is trained entirely with RGB images only.

C. Network’s Implementation

Image processing tasks are already very costly computa-
tionally and when training a deep neural network where each
layer processes multiple images, the usage of Graphic Pro-
cessing Units(GPUs) is crucial. For this reason, our model is
implemented entirely using Tensorflow [21], a framework that
enables us to implement GPU-friendly algorithms, boosting
our training performance. Using nVidia’s Titan X with the
Pascal architecture, we are able to run large scale experiments,
speeding up the project’s development.

Fig. 4. Left: Hazy image used as input. Right: Our model’s dehazed output.

IV. RESULTS

Even though our network is trained entirely with simulated
images, the data adopted in the experimental results contains
only images captured in real hazy environments. It is important
to remember that we do not apply any type of correction or
calibration to the hazy image before or after it is processed
by the neural network.

Due to the usage of nVidia’s Titan X GPU, our model
takes 0.055 seconds to dehaze a 224 x 224 image. This fast
processing permits our model to be used in live low-resolution
videos, dehazing in real-time, which can be useful in systems
that operate in environments with poor visibility.

Object distance is an important factor when talking about
haze. The degradation effect caused by haze increases expo-
nentially depending on the object‘s distance, due to the amount
of particles between the object and the observer. Fig 4 is a
perfect example of this phenomenon, where the signs that are
farther experience degradation due to the haze and the objects
near the observer are perfectly visible.



Fig 5 presents a scene with objects also distant from the
camera, but with a lot of occlusion due to the haze. Even
though, the scene behind the haze becomes considerably more
visible. The improvement is more noticeable in areas with a
lot of degradation, such as the buildings, which are the farthest
objects from the observer.

Fig. 5. Left: Hazy image used as input. Right: Our model’s dehazed output.

Fig. 6. Top: Hazy image used as input. Bottom: Our model’s dehazed output.

To exemplify our model’s capacity to detect the objects’

distances, Fig 6 shows a slightly hazy image with objects
in distinct distances from the camera. Our model not only
successfully dehazes the mid-range objects (bigger structure)
but detects the closer objects (bush) do not need restoration
and more distant objects (small house in the back) need a
stronger restoration.

Meanwhile, Fig 7 shows an image with distant objects with
a little degradation. In that case, our model improves the
visibility, increasing image contrast and level of detail.

Fig. 7. Top: Hazy image used as input. Bottom: Our model’s dehazed output.

Since our training set is composed entirely of indoor images,
simulating realistic hazy images with haze-free pairs to train
our network allowed our model to learn to remove the haze
effect itself. Also, it learned the correlation between level
of degradation and distance, even though the network is not
presented the scene’s depth map.

V. CONCLUSIONS AND FUTURE WORK

Neural networks are capable of learning several image pro-
cessing tasks, and dehazing is one of them. For the completion
of this task to be possible, it is important that (i) the network



architecture has a large capacity, (ii) the training set is large
enough and (ii) the image database is composed of pairs of
haze-free and realistic hazy images. A well engineered haze
simulator and convolutional neural networks implemented on
GPUs that are specifically designed for large processing tasks
fulfill these requirements.

In this paper we proposed a novel end-to-end convolutional
neural network architecture method for image dehazing. Based
on a hazy image and no previous knowledge about the
environment or the objects distances, our approach is capable
of removing the haze in the scene, significantly increasing
visibility and level of detail. Also, this entire process was
achieved with a image database containing only indoor im-
ages, indicating that our method is able to remove the haze
effect.

As future work, we intend to improve our network’s ar-
chitecture and synthesize an even more realistic dataset, in
order to increase our method’s performance. Furthermore,
we believe that our model can be applied to underwater
turbid images merely by changing the training data, since the
degradation effects caused by haze and water are very similar.
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