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Abstract—Face verification approaches aim at determining
whether two given faces are from the same person. This scenario
has several applications, such as information security, forensics,
surveillance and smart cards. Several works extract features
independently from each face image, i.e., any sort of relation
between the two faces is not modeled a priori to either training
or classification stages. In this work, we propose an approach
that compares a pair of faces by extracting relational features,
assuming the hypothesis that modeling the relation between
two faces can be useful for increasing the robustness and
performance of the face verification task. Then, we employ
multiple classification models based on Partial Least Squares to
verify whether a given pair of images belongs the same subject
(genuine) or belongs to different subjects (impostor). We validate
our approach on the Labeled Faces in the Wild (LFW) and on
the Public Figures (Pubfig) datasets, using only few images for
training. According to the experiments, our approach achieves
results up to 0.966 of area under the curve (AUC) for the LFW
dataset using its unrestricted, labeled outside data protocol and
an average equal error (EER) of 13.65% on PubFig dataset.

I. INTRODUCTION

Face recognition has been one of the most important tasks in
computer vision during the last decades. Due to the wide range
of applications in several environments (e.g., social medias,
surveillance systems, access control) and the accessibility of
feasible technology in the last years, face recognition tasks
received significant attention from the scientific community.
Furthermore, the approaches developed for face recognition
still have some limitations caused by the conditions of real
applications, such as partial occlusion, illumination variation,
and camera resolution [1].

The face recognition problem can be divided into three main
categories [2]: face verification, where the goal is to determine
whether a pair of images corresponds to the same subject;
face identification, when we assume that every queried subject
was previously cataloged, ensuring that the probe face holds a
corresponding identity in the gallery set; and watch-list, which
is similar to face identification with the difference that it does
not guarantee that all query subjects are registered in the face
gallery (open-set task). Several researchers have developed
approaches to improve the performance of automatic face
recognition [3]–[8].

The face verification task can be described as a 1:1 matching
problem. In this task, the main goal is to determine whether
two given faces are from the same subject (i.e., genuine)
or from different subjects (i.e., impostor). This scenario has

several applications, including to check whether a person is
the owner of an informed bank account or whether a specific
person can access a restrict place. There are several works
addressing face verification tasks [8]–[10]. Most of these
works extract features independently from each face image.
Therefore, any sort of relation between the two faces is not
modeled a priori to either training or classification stages.

Assuming the hypothesis that modeling the relation between
two faces can be useful for increasing the robustness and
performance for face verification tasks, in this work we
propose an approach that compares a pair of faces that extracts
relational features by computing the absolute difference
between their feature vectors. We believe that any pair of
features of the same subject would present small differences.
Consequently, this difference increases when we deal with
images from different persons. In our method, we consider
the difference of features as a new feature vector for a
pair of different faces and categorize this new array into
one of two classes: same person (genuine) and different
persons (impostor). Such categorization is performed using
multiple classification models based on Partial Least Squares
(PLS) [11]–[13], each learned from a subset of the data.

According to experimental results, our approach reports
competitive matching accuracy in comparison with other state-
of-the-art works on two well-known datasets, Labeled Faces
in the Wild (LFW) [14] and Public Figures (PubFig) [15]. We
achieved up to 0.966 of the area under the curve (AUC) on
the LFW dataset using the unrestricted, labeled outside data
protocol and an average equal error (EER) of 13.66% on the
PubFig dataset.

II. RELATED WORKS

Face recognition has been broadly studied in the past decade
[5], [16]–[22]. For that reason, this paper is engaged in
estimating the similarity between two face images despite
their pose variations, illumination changes, age discrepancies,
expression diversities, occlusions. We focus on the face
verification task with unconstrained face images, that is, an
environment whose images were taken having no standard
expression, pose, or lighting condition.

Ouamane et al. [23] adopt a rich multi-scale facial texture
representation to enhance performance. They propose a
new dimensionality reduction technique that transforms the
problem of face verification under weakly labeled data into a



generalized eigenvalue problem. Barkan et al. [24] build high-
dimensional face representations using hand-crafted feature
descriptors such as LBP and SIFT. Then, they employ different
dimensionality reduction techniques in LFW’s supervised
and unsupervised cases [25]. In the final step, multiple
representations and image features are combined together
using uniform weighting of cosine similarities. Chen et
al. [26] propose a two-step scheme to obtain sparse linear
projections. They compress the original space into a low-
dimensional feature so that a sparse matrix, which maps high-
dimensional features into a low-dimensional representation,
can be learned. Ouamane et al. [27] partition the image into
many patches. Thus, features are extracted and summarized as
histograms that are concatenated to form a high-dimensional
feature vector. They reduce the dimensionality to increase
their approach’s performance. In general, methods comprised
of high-dimensional spaces bring along several obstacles that
may prevent further exploration, such as training, computation
and storage issues.

Simonyan et al. [28] detect facial landmarks in favor of
aligning and cropping face images before extracting compact
feature descriptors derived from fisher vectors on densely
sampled SIFT features. Ding et al. [29] design a new feature
descriptor that computes the first derivative of Gaussian
operator to lessen illumination effects before detecting feature
patterns at both holistic and landmark levels. Landmark
detection-based methods may attain higher performance at the
cost of massive labeled training data, which seldom is available
in practical applications.

The work of Hassner et al. [30] generates frontal face
views of unconstrained photos. The authors approximate the
shape of all input images using single 3D unmodified surfaces.
First, they detect facial landmarks to render textured 3D
models. Then, these 3D models are rotated to a desired pose
and a new normalized 2D image is generated. Similarly,
Zhu et al. [31] present a method that normalizes poses
and expressions in pursuance of canonical-view face images.
They also search for facial landmarks that are later used
for meshing the entire image into a 3D object. Taigman et
al. [32] come up with a facial alignment algorithm found
on fiducial points detection and facial 3D modeling. They
also introduce a deep neural architecture with nine layers
to represent face images in a generalized manner. Three-
dimensional models tend to work well, but depending on the
subject’s pose, information rendered from 3D techniques may
end up hindering the recognition performance. Besides, if the
faces contain occluded regions, these regions are generally
mirrored, resulting in poor normalization results.

Köestinger et al. [33] present a method that learns
distance metrics from constraints of equivalence, derived from
inference perspective. They manage to escape optimization
issues in order to revolve costly computational iterations. Hu
et al. [34] present a deep metric learning method that aims
to learn a Mahalanobis distance metric, maximize inter-class
variations and minimize intra-class variations. A deep neural
network learns hierarchical nonlinear transformations to fit a

pair of face images into the same feature subspace so that
discriminative information can be spotted. Zheng et al. [35]
propose a linear cosine similarity metric learning method
based on triangle inequalities and gradient functions. Cost and
gradient functions are handled as a mathematical problem,
which is solved with an optimization algorithm. Metric
learning methods do not usually hold the nonlinear manifolds
faces images lie on. Furthermore, nonlinear mapping functions
are not explicitly acquired, causing scalability problems.

Sun et al. [9] introduced a hybrid convolutional network
that learns relational visual features so that identity similarities
can be pointed out. Their network compute local visual
features from two face images that are processed through
multiple layers for the sake of extracting high-level holistic
features. The work of Schroff et al. [8] contemplates a deep
convolutional neural network in an approach that projects
face images into a compact Euclidean space in such a way
that distances correspond to face similarity measures. Ding
et al. [10] proposes a deep learning framework to represent
faces using multi-modal information. The framework is made
up of complementary convolutional neural networks that
extracted features, which are concatenated with a three-layer
stacked auto-encoder. Neural networks are usually hard to
train and regularly require the tuning of numerous parameters.
Depending on the problem, there are simpler and faster
alternatives that may attain better performance, such as support
vector machines and decision trees.

As detailed in this section, face verification methods first
extract features from two query images separately. Some
approaches compute low-level features [36]–[38] whereas
others generate mid-level features [39], [40]. Notably, most
face verification approaches extract features independently
from each face image. Therefore, any sort of relation between
the two faces are not modeled prior to the training or
classification stages. Unlike the majority of works in the
literature, we approach a pair of face images by extracting
relational features as we compute the absolute difference
between their feature vectors. We further detail the proposed
approach in the next section.

III. METHODOLOGY

In this section, we describe our proposed face verification
approach1. Figure 1 illustrates the designed face verification
process, described in details in the next sections.

A. Partial Least Squares Model

Partial least squares (PLS) is a fast and effective regression
technique based on covariance [11], [12]. It captures
the relationship between observed variables through latent
variables and associates aspects from principal component
analysis and multiple regression. In addition, it works very
well when the number of explanatory variables is both high
and likely to be correlated and does not require a large number
of training samples. The latter aspect is our main motivation

1https://github.com/rafaelvareto/HPLS-verification.
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Fig. 1. Overview of the proposed face verification approach. Training: Disparity feature vectors are obtained for all pair of subjects before they are partitioned
into genuine (same) and impostor (not same) sets. Then, different classification models are learned containing different feature samples in each subset. Testing:
The disparity features are extracted from a pair of testing images to compose a feature vector which is then classified by all PLS models and their response
values are used to estimate the label (genuine or impostor), based on a majority voting scheme.

for employing PLS in this work, since there are not many
samples available for learning the models, preventing the
employment of deep learning techniques in the process [41].

The goal of PLS [11] is to build latent variables as a linear
combination of the predictor zero-mean variables X and Y .
More precisely, X describes a matrix of feature descriptors
whereas Y portrays a vector of response variables. Then,
PLS seeks for latent vectors so they can be simultaneously
decompounded into X = TPT + E and Y = UQT + F in
order to determine the maximum covariance between variables
T and U . Matrix Tn×p characterizes latent variables from
feature vectors and matrix Un×p denotes latent variables from
target values. Variables Pp×d and Q1×d can be compared
to the loading matrices from principal component analysis.
Eventually, variables E and F represent residuals.

We employ the Non-linear Iterative PLS (NIPALS) [12]
algorithm to estimate the low-dimensional data representation.
NIPALS computes the highest covariance between latent
variables T and U and produces a matrix of weight vectors
Wd×p. Then, it determines the regression coefficients vector
β using least squares as follows: β = W (PTW )−1TTY . The
PLS regression output for query image’s feature vector is given
by ŷ = ȳ + βT (x− x̄) where ȳ is the sample mean of Y and
x̄ the average values of X .

Each classification model encompasses a binary PLS
regression model. In other words, every single PLS comprises
a binary classifier: genuine and impostor. The genuine class
holds the absolute difference of feature vectors for matching
pairs of identities and the impostor class comprises “new
generated” feature vectors that result from the combination
of features of different subjects. We attribute the target value

1 to samples lying in the genuine class and values equal to 0
when samples belong to the impostor class.

The PLS models here described could be replaced by a
variety of binary classifiers such as SVM (Support Vector
Machines) [42] and a Fully Connected Networks (FCN).
However, they might not be the best fit in this case because
they would require a large number of samples in training stage,
while PLS efficiently takes over scarce number of feature
samples [17].

B. Feature Extraction

Different from considering a feature vector for each image
independently, we extract relational features for pair of faces
as follows. First, we extract deep features for all images
employing VGGFace convolutional neural network descriptor.
Then, we compute the absolute difference between them and
use this new feature vector to build and execute the classifier.

Our main hypothesis lies on the fact that two face images
of the same subject hold small differences. However, this
difference increases when we cope with a pair of images
from different subjects. Feature vectors that represent a pair
of faces from the same person are labeled as same person
(genuine) and feature vectors extracted from a pair of faces of
different people are labeled as not same persons (impostor).
Figure 2 illustrates this process. From now on, we refer
to feature vectors derived from the absolute difference as
disparity feature vectors or simply disparity features.

C. Training Stage

The training stage randomly samples disparity feature
vectors that were previously distributed into two disjoint sets
same, and not same, while the former relate to pairs of samples
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Fig. 2. Feature extraction overview for a pair of face images.

from the same subject, the latter refers to pairs of samples
from different subjects. In pursuance of a balanced division,
these disparity feature samples are drawn from a uniform
distribution. The positive class contains only samples selected
from the same collection and the negative class only contains
samples selected from the not same collection. Then, a binary
PLS model is learned considering the selected samples.

The generation of binary classifiers is repeated k times (the
number of models is a parameter defined by the user) by
selecting different disparity feature vectors from the classes
same and not same, to capture different aspects of the data
and allow the complementarity among the classifiers.

D. Testing Stage

In the testing stage, the method computes the disparity
feature vector between the target and query samples and
presents the feature to each of the k PLS classifiers, which
results the response value ri, where i = 1, 2, . . . , k. In the end,
it computes the majority voting to find which label must be
designated to the probe, i.e., genuine or impostor. The former
label is attributed when the pair of samples is classified as
belonging to the same subject.

Rather than just outputting same or not same binary labels,
the algorithm computes the ratio between the number of
positive matches to the total number of PLS classification
models. Therefore, we obtain a probability estimate of the
positive class (target score), which is used to compute the
Receiver Operating Characteristic (ROC) curves.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our algorithm, which generates
several binary Partial Least Squares (PLS) models coupled
with majority voting to determine whether two faces
belong to a same subject. We summarize the datasets in
Section IV-A. Section IV-B details the feature descriptor
employed. Evaluation metrics and protocols are detailed
in Section IV-C. In Section IV-D we specify algorithm
parameters. Finally, Section IV-E presents all results, including
our comparison with methods available in the literature.

A. Datasets

For the sake of demonstrating the effectiveness of our
approach, we chose two challenging datasets with different
characteristics, ranging from pose variations and illumination
changes to images with age discrepancies and expression

diversities. We evaluate our method on the Labeled Faces
in the Wild (LFW) [14], [25] and on the Public Figures
(PubFig) [15].

1) Labeled Faces in the Wild (LFW): The LFW2 [14],
[25] dataset can be considered the genuine state-of-the-
art benchmark for face verification. It also comprises face
images aligned with an unsupervised deep feature algorithm,
commonly known as LFW-A or deep-funneled LFW [43].
This dataset contains approximately 13, 000 uncontrolled face
images of more than five thousand individuals. In contrast
to the majority of existing face datasets, these images were
taken in entirely unconstrained situations with non-cooperative
individuals. Thus, there is also large divergence in pose,
lighting, expression, scene, and camera. For fair comparison,
the creators of LFW suggest reporting performance as a
10-fold cross validation using splits they have randomly
generated. As other works, we used deep-funneled LFW face
images (LFW-A).

2) Public Figures (PubFig): The PubFig3 [15] dataset is
larger than the LFW in terms of image samples, consisting of
nearly 60, 000 images of 200 subjects gathered from across
the Internet4. The database is considered as very difficult as it
evidences vast variations in pose, lighting, facial expression,
age, gender, and ethnicity. The PubFig dataset is divided into
two units, the evaluation set with 140 subjects, designed to
evaluate methods, and the development set with 60 individuals,
which holds no overlap with the evaluation set.

B. Feature Descriptor

In this work, we employ the VGGFace CNN descriptor,
computed using the implementation of Parkhi et al. [44] and
based on the VGG-Very-Deep-16 CNN architecture [45], a
descriptor that comprises a long sequence of convolutional
layers. Furthermore, we do not employ any sort of fine tuning
towards LFW or PubFig. Instead, we consider the network
already learned using the standard training protocol proposed
by Parkhi et al. [44], which considers a dataset with more than
two million images and approximately 2, 700 identities.

C. Evaluation Protocol

The Receiver Operating Characteristic (ROC) curve reports
true positive rate (on the y-axis) as a function of the false
positive rate (on the x-axis). That indicates the top leftmost
corner as the optimal point. Accurate face verification systems
present true positive rates close to 1 even at very low false
positive rates. A measure extracted from the ROC curve and
commonly employed, is the Area Under Curve (AUC), which
ranges from 0.5 to 1 (the closer to 1, the better).

The Equal Error Rate (EER) is another measure employed
on face verification and biometrics in general. It indicates the
value where the false rejection rate (i.e., fraction of genuine

2http://vis-www.cs.umass.edu/lfw/
3http://www.cs.columbia.edu/CAVE/databases/pubfig/
4The PubFig dataset was released long ago and they do not distribute image

files due to copyright issues. Thus, only 26, 787 out of 58, 797 images remain
available as links to these files are gradually disappearing over time.



samples classified as impostor) is equal to the false acceptance
rate (i.e., fraction of impostor samples classifier as genuine).
The lower the equal error rate, the higher the accuracy of the
biometric system.

For the evaluation performed on the LFW dataset, we
use the protocol unrestricted, labeled outside data for all
experiments. We show the ROC curve, its AUC and the
standard deviation error (STD) on the deep-funneled LFW. The
unrestricted protocol allows researchers to exploit identities in
the training set so that it is possible to generate more training
pairs and add them to the training stage. For the PubFig, we
present the equal error rate and the standard deviation.

Differently from many approaches that achieve state-of-the-
art results following LFW’s unrestricted, labeled outside data
protocol, we do not focus on grouping millions of images
in the interest of learning discriminative face representations
using convolutional neural networks [8], [10], [32], [48].
Furthermore, many works [10], [32] make use of additional
face datasets to train same/not-same classifiers as they claim
that employing either LFW-A or PubFig to produce more
training pairs substantially overfits the training data due to
their redundant characteristics. On contrary, we carry out a
minimal training, that is, we only work with pairs of images
recommended by the dataset. The only outside data we use are
the samples required in the learning process of the VGGFace
CNN descriptor [44].

D. Experimental Setup

All experiments were performed on a Intel Xeon E5-2630
CPU with 2.30 GHz and 16GB of RAM using Ubuntu 14.04
LTS operating system, no more than 6 GB of RAM was
required though. Our method has mainly three parameters:
the number of PLS classification models (hm), the number
of positive and negative disparity features per PLS model (hs)
and the number of PLS dimensions in the latent space (d). We
conducted experiments varying hm and hs from 100 to 500 in
steps of 100. The best results were achieved with hm and hs
equal to 300. Moreover, we also ranged d from 4 to 30 in
a 2-step increase to conclude that it had little impact on our
algorithm’s performance. Therefore, we set d to 10.

E. Evaluation and Comparisons

The algorithm proposed in Section III is evaluated with
LFW-A and PubFig datasets following the unrestricted,
labeled outside data protocol. Our experiments are grouped
in two categories: same-dataset evaluation and cross-dataset
evaluation. In the former, we follow the LFW and PubFig splits
strictly with no use of additional labeled training examples
to increase the amount of data available when learning our
PLS models, as we understand that outside datasets only for
the purposes of extracting features is significantly different
than using outside data to train classifiers. In the latter, we
conduct experiments in a cross-dataset scenario. We trained
our classifiers using PubFig development set and evaluated
the performance on LFW splits for cross validation. We used
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Fig. 3. Average ROC curves for the LFW-A dataset and its respective
area under the curve (AUC). Some curves represent experiments conducted
with deep funneled face images. We repeat our experiments ten times for
each setting. The plot considers the following methods: DeepFace [32],
MMDFR [10], Pose+Shape+Exp [48] and a commercial recognition system
called SkyTop.

the PubFig development set because it is entirely disjoint of
LFW identities and PubFig evaluation set individuals.

Table I shows the results on PubFig whereas Figure 3 shows
the experiments on the LFW-A dataset. The cross-validation
evaluation is adopted among the available folds, and we report
the averaged results. Our approach was evaluated for different
settings, described as follows.

• Cross: it categorizes a cross-dataset verification, in which
the training stage uses images from PubFig development
set and LFW folds are used during the testing stage.
PubFig development set does not have a list of same/not-
same training pairs. Therefore, training tuples were
symmetrically sampled in a random manner.

• Dev-Eval: it is analogous to the cross-dataset experiment,
but it comprises PubFig development set in the training
stage and its evaluation set for testing. Thus, it does not
constitute a cross-dataset experiment.

• One-F-M: the number of PLS models is associated with
the number of folds in the cross validations scheme – one
fold per PLS binary model. Particularly, in each iteration
we pick a fold to test and each one of the remaining folds
comprises a PLS model. Since the datasets have ten folds,
we only generated nine PLS classification models.

• Random: it randomly allocates same/not-same training
pairs into each PLS binary model as explained in
Section III-C, ensuring that all training pairs are evenly
distributed among all models.

According to our observations, running our algorithm
ten times for every setting, except for One-F-M once it
is deterministic, provides fair stability and small standard
deviation error. According to the results showed in Table I
and Figure 3, our method achieves comparable performance
on both benchmarks making use of much less data during the



TABLE I
AVERAGE EQUAL ERROR RATE (EER) AND STANDARD DEVIATION (STD)

FOR THE PUBFIG DATASET. TOP ROWS INDICATE APPROACHES WITH
STATE-OF-THE-ART PERFORMANCE, OUR PERFORMANCE IS SHOWN IN
MID ROWS AND BOTTOM ROWS PRESENT OTHER RELEVANT METHODS.

Approaches EER (%) STD
DRM-WV [49] 2.78 0.57

RNP [50] 10.79 0.83
OURS-Dev-Eval 13.65 2.11
OURS-Random 14.73 2.02

OURS-One-F-M 16.63 3.05
CHISD [51] 19.15 0.71
GEDA [52] 23.90 1.29

training stage and applying no preprocessing algorithm.

It is worth mentioning that even fixing the number of
disparity feature samples in each PLS model to 100, the
approach achieves good results. To check how our method
responds to some parameter adjustments, we analyzed our
approach behavior by varying the number of PLS classification
models for both LFW-A and PubFig datasets under the
Random and Cross setting. Table II shows how this parameter
affects our method.

According to the results presented in Table II, there is a
large improvement when the number of PLS classification
models is increased from one to 100, indicating the need for
multiple PLS models. However, there is no clear improvement
when the number of models is increased from 100 to 500. The
small AUC improvement for both datasets with increasingly
classification models between 100 and 500 may be justified
by the fact that algorithms trained with few-sample or few-
subject gallery sets – LFW and PubFig, respectively – are
inclined to remain invariable because most PLS models may
be very similar to one another. Then, adding more PLS models
only increases computational time.

The cross-dataset setting can also be analyzed according to
Table II. We can see a slightly decrease since training data (i.e.,
PubFig development set) are not aligned and the testing dataset
images (i.e., LFW-A), are aligned. Such alignment lessens
undesired pose variations though actual systems cannot count
on the cooperation of people being framed in order to assist
the recognition process. However, the cross-dataset evaluation
of PubFig development set and LFW folds demonstrates that
our system can consistently achieve promising results while
maintaining very good generalization ability.

Although the proposed method has not outperformed state-
of-the-art methods, the experiments show that the proposed
verification system attains favorable results. Furthermore,
the approach remains stable even under different domains
with limited number of training samples. Overall, this work
confirms that there is no need of large amount of data in
pursuance of quality results on the chosen benchmarks. With
few thousands of face images, simple but robust algorithms
can achieve very accurate results.

TABLE II
EVALUATION OF OUR METHOD’S PERFORMANCE (AUC) ON DIFFERENT
DATASETS WITH AN INCREASINGLY NUMBER OF PLS CLASSIFICATION

MODELS AND SUBJECT SAMPLES FIXED TO 100.

Number of Models
Approaches 1 100 300 500

OURS-Cross-LFW-A 0.620 0.886 0.897 0.899
OURS-Random-LFW-A 0.880 0.959 0.960 0.960
OURS-Dev-Eval-PubFig 0.801 0.941 0.942 0.942
OURS-Random-PubFig 0.810 0.936 0.937 0.938

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we designed and developed an approach to
determine whether two face images belong to the same subject
(face verification task). In addition, we also presented a feature
extraction able to capture relational features between two
samples.

Results have shown that our method achieves competitive
results in comparison to state-of-the-art approaches even
though being straightforward and simple. A literature
comparison indicates an AUC of 0.966 using the LFW
deep-funneled face images. We also performed a cross-
dataset experiment to analyze how robust our algorithm can
be when adapting its domain, achieving promising results.
It is important to emphasize that most literature methods
use additional face images from external datasets in spite
of boosting their classification performance. Our algorithm
belongs to a small group of approaches in the LFW benchmark
that handles just pairs of images provided by the selected
datasets (it uses outside images only for feature learning due
to the use of the VGGFace CNN), yet it was able to achieve
accurate results.

As future directions, we intend to perform experiments
comprising the addition of massive datasets to the
training stage for the sake of accomplishing better facial
discrimination. Besides, since very few approaches learn a
neural network from scratch, we intend to fine-tune some of
the higher-level layers of the VGGFace CNN descriptor. We
believe that these adjustments might boost our performance.
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