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Abstract—Automatic License Plate Recognition (ALPR) is an
important task with many applications in Intelligent Transporta-
tion and Surveillance systems. As in other computer vision tasks,
Deep Learning (DL) methods have been recently applied in the
context of ALPR, focusing on country-specific plates, such as
American or European, Chinese, Indian and Korean. However,
either they are not a complete DL-ALPR pipeline, or they
are commercial and utilize private datasets and lack detailed
information. In this work, we proposed an end-to-end DL-
ALPR system for Brazilian license plates based on state-of-the-
art Convolutional Neural Network architectures. Using a publicly
available dataset with Brazilian plates [1], the system was able
to correctly detect and recognize all seven characters of a license
plate in 63.18% of the test set, and 97.39% when considering
at least five correct characters (partial match). Considering the
segmentation and recognition of each character individually,
we are able to segment 99% of the characters, and correctly
recognize 93% of them.

I. INTRODUCTION

Automatic License Plate Recognition (ALPR) is an im-
portant task in Intelligent Transportation and Surveillance,
which has many practical and relevant applications such as
automatic traffic law enforcement, detection of stolen vehicles
or toll violation, traffic flow control, etc. It has been studied
in the past decades and still is an open problem due to the
large variability in image acquisition conditions (illumination,
capture angle, distance from camera, etc.) and license plate
(LP) layouts, which vary from one country to another.

The ALPR problem can be divided into the following
three subtasks: License Plate Detection (LPD), License Plate
Segmentation (LPS) and Character Recognition (CR). These
subtasks compose the common pipeline for ALPR systems
found in the literature [2]–[4], and many works are focused on
only one or two of the subtasks [1], [5]–[7]. Furthermore, LPS
and CR are highly related to Optical Character Recognition
(OCR), which is a noticeably known research field in computer
vision and presents several solutions [8]–[11].

Even though a single CR approach could work for a variety
of ALPR systems, the same is not true for LPD and LPS. An
ideal LPD method should be capable of extracting cars and
license plates regardless of the camera setup (static or mobile)

and environmental conditions. However, many surveillance
systems assume the camera to be static, performing poorly
on mobile cameras. The opposite is also true when systems
consider the camera to be mobile as they do not take advantage
of the small angle and scale variance found in static camera
setups. In LPS, the layout and number of characters usually
change from one country to another – and sometimes even
inside the same country, as in the USA. This variation in
conditions and layout motivated the creation of many small
license plate databases around the world, such as Greek,
Chinese, Indian, American, European, Brazilian. Here we used
the Brazilian SSIG Database [1], which consists of 2,000 high
definition pictures from 101 different cars taken from a static
camera.

With the rise of Deep Learning (DL) techniques [12]–
[15], the accuracy of many pattern recognition tasks was
greatly improved. In computer vision tasks, it is common to
see methods that explore some kind of Convolutional Neural
Network achieving state-of-the-art performance. However, the
problem with DL techniques is that they need tons of data to be
trained from scratch. The more data you have, the deeper your
network can be, allowing the recognition of progressively more
complex patterns. This is particularly a problem for ALPR
systems, since there is no large database available (in particular
for Brazilian license plates).

One of our main contributions is the introduction of a
complete DL-ALPR system based on state-of-the-art regional
CNNs. The system presents two considerably fast and small
YOLO-based networks, operating in a cascaded mode, with
weights transferred from extensively trained networks. As far
as we know, the ALPR system presented here is the first DL-
based method focused on Brazilian license plates.

To overcome the lack of annotated car labels in the SSIG
database, another contribution is the detection of cars in mostly
frontal views without using any external dataset to aid car
detection. We simply took advantage of the fully annotated
LP regions present in the dataset to estimate good training
regions around them, generating a full set of weakly labeled
data. Since the estimated regions comprise the car headlights,



licence plate, and front tires, there is enough information
for our Deep CNN to find more than 99% of them on the
validation set. As the estimated frontal views are in average
19× larger than license plates, detecting them is easier, faster
and less prone to false positives than LP detection itself.

The final important contribution is a carefully designed and
trained network to perform character detection and recogni-
tion, achieving very good recall and precision rates with an
average execution time of 2.2ms in our GPU.

This work is organized as follows: Section II provides a
brief description of traditional methods for ALPR in all three
subtasks. The proposed system is presented in Section III,
detailing the car frontal view detection approach, network
architectures, and training procedures. The overall ALPR
performance, state-of-the-art comparisons and independent
evaluations for each subtask are shown in Section IV. Finally,
Section V presents our conclusions and future work plans.

II. RELATED WORK

This section revises a few basic concepts about deep learn-
ing and it relationship with ALPR. It also presents other
computer vision and pattern recognition methods commonly
used for ALPR (or its subtasks).

A. Deep Learning (DL)

In 2014, Yosinski et al. [16] studied the transferability of
weights from largely trained networks to new networks. For
example, the filters found by a large network trained for days
on a huge dataset of millions of images, can be transferred
to a smaller network and refined for a specific domain. This
motivated us to employ DL on ALPR using an open dataset.
Furthermore, in the past two years, different regional CNN
methods for fast and precise object detection were developed,
such as YOLO [14] and Faster-RCNN [13]. However, to the
best of our knowledge, only in [2] and [17] these networks
were used in the context of ALPR. In the former, the training
details and datasets are not available, since it is part of a
commercial product; in the latter, they perform only LPD and
no detailed information was written in English (the paper is
in Korean).

B. Automatic License Plate Recognition (ALPR)

Most of ALPR-related methods tackle only a subset of
the required tasks: LPD, which aims to detect the region
that contains the plate; LPS, which focuses on segmenting
individual characters within a detected plate; and CR, which
recognizes each segmented character and provides the final
plate string. Some methods that tackle these subtasks are
revised next.

License Plate Detection (LPD). Detecting the car before
the plate is a common strategy in the LPD pipeline, aiming
to reduce the search region and the number of false positives.
To perform these detections, approaches using Histogram of
Oriented Gradients (HOG) as feature descriptors and Support
Vector Machine (SVM) for classification are popular [5],
[6], [18]. Another feature descriptor successfully used in

this context is Local Binary Patterns, employed by Ope-
nALPR [19] to detect European and USA license plates. In [2],
the authors used three deep CNNs to perform LPD, LPS and
CR, respectively. Their results outperform OpenALPR by a
substantial margin. However, this is a commercial method and
no detailed description about the network architecture and
training procedures were given. Moreover, they used large
private databases to train the networks, while OpenALPR is
a totally open source project. Having such databases is a
considerable advantage because DL performance is directly
connected to the amount of data used.

License Plate Segmentation (LPS). Individual character
segmentation is usually performed by some kind of binariza-
tion method in order to separate the foreground from the
background, following the application of connected compo-
nents analysis to extract the bounding boxes [20]. This is
highly dependent of the chosen binarization method and non-
uniformity of the plate (e.g. due to textured background, low
contrast between the background and the characters, or non-
even illumination). Furthermore, those methods tend to fail
(or require additional post-processing) when two characters
are connected or one character is broken or divided. In [21],
the authors extract the Extremal Regions [8], which is a known
technique for text segmentation [9], [10].

Character Recognition (CR). It is a crucial task in ALPR
systems, since a single error can invalidate an entire LP. More-
over, some characters have a similar shape (e.g. O/0, I/1, A/4,
K/X, C/G, D/O, 2/Z, 5/S, 8/B) and may be even more similar
when distorted [4], [20]. Thus, having a CR method with high
accuracy is mandatory. In [18], the authors used one SVM per
character, leading to a total of 36 SVMs. Gou et al. [21] used
HoG features with Restricted Boltzmann Machines (RBM),
which is similar to Deep Belief Networks [12], to recognize
Chinese characters – which generally are more complex than
Roman characters. They argue that RBM is more reliable
then SVM for this task. Deep CNNs were used for character
recognition in [3] and [2]. In [3], the authors used a 16-layer
CNN based on Spatial Transformer Networks [22], aiming to
make CR less sensitive to spatial transformations.

In general, we noted that the use of DL in ALPR systems is
still limited, and just a few works in fact explore it in an end-
to-end fashion. Most of the methods found in the literature
rely on hand-engineered features, like HoG and LBP. The
data-driven features provided by DL techniques are generally
more discriminative and can be coupled with classification in
a single network. Furthermore, recent networks like Faster R-
CNN and YOLO are capable of performing detection without
the need for pyramids of images and features to test multiple
scales, achieving high accuracy rates at limited execution
times.

III. THE PROPOSED SYSTEM

As mentioned earlier, the traditional ALPR pipeline typi-
cally involves car detection. Although it might be an optional
task for some methods, it is essential in our approach: all
images in the dataset have high resolution (1920×1080 pixels)
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Fig. 1. Proposed System pipeline.

and the cars do not occupy a large portion in the scene
(they might be relatively far from the camera). Moreover, the
average size of LPs is 0.26% of the full image area. Thus, the
computation resources demanded to analyze an image of that
size looking for such a small object is considerably high.

Taking into account that we are using DL techniques
known to be computationally expensive, avoiding small objects
becomes even more important when one seeks for a real-
time application. Shrinking the image is not an alternative
because the plate may become excessively small to the point
of being undetectable. Considering the fact that the available
database does not provide annotated car labels or bounding
boxes, detecting cars using only its training information turns
out to be a challenging task.

We propose a simple method to extract the frontal portion of
the cars only based on the annotated LP. Basically, assuming
the LP is always attached to a car (and roughly aligned
horizontally), we decided to use the region around it to train
a detection network, as described in Section III-A.

One of our biggest concerns was to come out with a real-
time ALPR system, without the need for expensive hardware.
Therefore, we need to use a deep network capable of perform-
ing detection and recognition in a very short time. In order
to accomplish those objectives, we choose to use a YOLO-
based network [14]. As far as we know, these are the fastest
networks reported in the literature – even faster than Faster-
RCNN [13] that perform object detection/recognition using
region proposals, without the need of (costly) image pyramid
and sliding windows.

In our tests, the FAST-YOLO network was capable of
performing a 20-class detection and classification in 800×600
image in less than 5.5ms1, or around 180 frames per second
(FPS). The precision reported for this network was 57.1%
on VOC [23] database, which is not much when compared
to other deeper networks like YOLO (76.8%) and Faster-
RCNN (76.4%). However, YOLO has 3× more parameters
than FAST-YOLO, which makes it slower and data-hungry
for training.

As our intention is to tackle a two-class problem (car
frontal views and plates) instead of twenty, we hypothesized

1Hardware used: Intel Xeon E5620 2.4GHz processor, 12GB of RAM
memory, and NVIDIA TITAN X GPU.

that refining the FAST-YOLO network would be enough. Its
architecture and the training procedure adopted are described
in Section III-B.

For the detection and recognition of characters, we built
a new network inspired on the YOLO architecture, with
fundamental technical differences to accommodate 35 classes
(0-9, A-Z except the letter O, which is detected jointly with the
number 0) and outputs a feature map having the same aspect
ratio of LP (width is three times larger than height). Please
refer to Section III-C for more details.

Finally, we perform a post-processing step in order to swap
highly confused letters to digits and digits to letters, since
the Brazilian license plate is formed by exactly three letters
followed by four digits.

A. Frontal-View Extraction

One problem with DL techniques is that they struggle to
detect small objects [24], and this indeed happened in our
experiments. We trained a FAST-YOLO network to detect only
LPs, and the result was a low 82% of recall (which tends to
be further reduced after CR).

The YOLO and FAST-YOLO networks have fixed input im-
age dimensions, which in both cases are defined as 416×416.
Since in SSIG Database all images have 1920× 1080 pixels,
a shrinking step is required. When the car is sufficiently far
from the camera, that step reduces the LP size to the point of
being undetectable.

In order to overcome this problem, we extracted larger
regions around the LP, namely car Frontal-Views (FV), by
scaling and translating the annotated LP bounding box. The
parameters for this spatial transformation were estimated using
the following procedure:

1) Randomly selected a set of Nlp images from the training
dataset, excluding images from buses and trucks because
their fronts are too large;

2) Manually labeled these images with a rectangular
bounding box around the license plate, where each
bounding box have the smallest region possible com-
prising the car headlights and tires (refer to the yellow
dashed rectangle in Fig. 2);

3) Considering a 4-dimensional vector ~p containing the
top-left point (px, py), width pw and height ph of the



annotated LP, we want to find two translation parameters
(αx, αy), and two scaling parameters αw and αh that
relate the LP bounding box ~p with the FV bounding
box ~v. This transformation is described by a function

~v = ~f(~p, ~α) =


px + αxpw
py + αyph
αwpw
αhph

 (1)

where ~α contains the scaling and translating parameters.
4) To find ~α, we maximized the sum of the Intersection

over Union (also known as Jaccard Similarity) over the
Nlp labeled images:

~α∗ = argmax
~α

Nlp∑
i=1

IoU (f(~pi, ~α), ~vi) . (2)

5) With the estimated parameter ~α∗, the FV bounding
boxes for all remaining images in the dataset were
labeled automatically, generating a weakly (but large)
labeled set. An example of the weakly labeling process
is illustrated in Fig. 2.

Despite discarding buses and trucks images in the training
to estimate the transformation parameters, the network where
this labels were used was still capable of detecting these kind
of vehicles.

Related approaches can be found in [25], [26], where plate
regions where used to estimate car frontal-views in order to
recognize their model/manufacturer.

Fig. 2. Frontal-View illustration: The dashed yellow rectangle represents a
manually annotated FV, and the red solid rectangle is the weakly labeled FV
based on the LP (in blue).

B. Frontal-View and License Plate Detection CNN

In this work, the car FV and its LP are detected using a
single classifier arranged in a cascaded manner (see Fig. 1):
the first layer (arrows 1 and 2) detects the FV from the input
image, and the second layer (arrows 3 and 4) extracts the LP
from the detected FV image.

To achieve a good compromise between accuracy rates and
running times, our classifier is based on the FAST-YOLO
network architecture. This network was built (and trained) to
handle 20 different classes of objects, and runs at 200 FPS

on a good GPU. Thus, we hypothesized that the FAST-YOLO
network customized for 2 classes could have the capacity to
accommodate both tasks in a single network when executed
in a cascaded way.

The FAST-YOLO architecture used is shown in Table I. The
only modification to the original was made in layer 15, where
we reduced the number of filters from 125 to 35 in order to
output 2 classes instead of 20 (please refer to [14] for more
information about the detection layer).

TABLE I
FRONTAL-VIEW AND LICENSE PLATE DETECTION NETWORK

(FV/LPD-NET): BASICALLY A FAST-YOLO NETWORK ADJUSTED TO
OUTPUT 2 OBJECT CLASSES.

no Layer Filters Size Input Output

1 conv 16 3 × 3 / 1 416 × 416 × 3 416 × 416 × 16
2 max 2 × 2 / 2 416 × 416 × 16 208 × 208 × 16
3 conv 32 3 × 3 / 1 208 × 208 × 16 208 × 208 × 32
4 max 2 × 2 / 2 208 × 208 × 32 104 × 104 × 32
5 conv 64 3 × 3 / 1 104 × 104 × 32 104 × 104 × 64
6 max 2 × 2 / 2 104 × 104 × 64 52 × 52 × 64
7 conv 128 3 × 3 / 1 52 × 52 × 64 52 × 52 × 128
8 max 2 × 2 / 2 52 × 52 × 128 26 × 26 × 128
9 conv 256 3 × 3 / 1 26 × 26 × 128 26 × 26 × 256

10 max 2 × 2 / 2 26 × 26 × 256 13 × 13 × 256
11 conv 512 3 × 3 / 1 13 × 13 × 256 13 × 13 × 512
12 max 2 × 2 / 1 13 × 13 × 512 13 × 13 × 512
13 conv 1024 3 × 3 / 1 13 × 13 × 512 13 × 13 × 1024
14 conv 1024 3 × 3 / 1 13 × 13 × 1024 13 × 13 × 1024
15 conv 35 1 × 1 / 1 13 × 13 × 1024 13 × 13 × 35
16 detection

Training: first, the weights from layers 1 to 14 were
transfered from a pre-trained network2. Then, we refined the
weights by adding samples of annotated FV and LP images.
More precisely, training data is provided as a combination
of two subsets: (i) full resolution images (1920× 1080) with
only annotated FVs, obtained with the weak labeling process
described in Section III-A; and (ii) cropped regions depicting
only the FVs, with their respective annotated LP provided in
the SSIG database. Examples of input images used to train the
proposed FV/LPD-NET are illustrated in Fig. 3. We did not
mix validation, training and test sets in order to create set (ii).

License Plate Detection: we run the same network two
times, or one for each of the first two layers in the cascade.
The process is as follows:

• The first pass involves the whole image and looks only
for FVs. Any LP found is discarded;

• The detected FVs are then cropped and fed to the same
network, and only the output related to LP is used. If
multiple LP are found, only the one with the highest
probability is kept, since each vehicle is expected to
present a single LP.

2Pre-trained YOLO models for Darknet framework are available at https:
//pjreddie.com/darknet/yolo/.
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Note that if we have N license plates in the scene, the
network is expected to run N + 1 times: one to detect the
N FVs, and N to detect LPs (one for each FV). However, in
several ALPR applications, such as parking or toll monitoring,
there is only one vehicle at a time.

C. Character detection and recognition

The National Traffic Council (CONTRAN) in Brazil dic-
tates how the LP format must be all over the country. Their
specifications have very few exceptions (e.g. presidential and
consular cars) that do not follow the 7 characters format.
The vast majority of LPs share common features: uniform
background color, fixed font size and LP dimensions, and 7
characters divided into two groups: a first group of 3 letters
and a second group of 4 digits, as illustrated in Fig. 4. This is
a nice characteristic for pattern recognition, since it has less
variability than license plates found in other countries, mak-
ing the character detection and recognition problems slightly
easier. However, the Roman numerals and letters have some
similarities between many characters, for instance, the pairs
O/Q, 0/D, 1/I, 5/S, 2/Z, B/8, C/G, A/4 are often confused
due to some distortion or occlusion [20]. In OCR applications
for text, many of these confusions can be fixed by using
adjacency information and semantic analysis, assuming that
detected characters form valid words. This is harder for LPR,
since semantic information is inexistent.

3 letters 4 digits

Fig. 4. Brazilian LP layout: 3 letters followed by 4 digits.

The YOLO and FAST-YOLO networks have fixed input and
output aspect ratio and granularity. Their aspect ratio is 1 : 1,
and yet they both present a good detection performance on
portrait and landscape images, as demonstrated in [14]. How-
ever the Brazilian LPs present an aspect ratio of approximately
3 : 1, being too wider for these networks as our tests indicated.
Therefore, we changed the network parameters in order to
match the LPs aspect ratio.

Another difference is related to the network input and output
granularity. We noted that the 13 × 13 YOLO output was
not dense enough to capture seven big objects (characters)
horizontally spread side by side. In order to amend this issue,
we almost triplicated the horizontal granularity, letting the final
network output as 30×10. This slight decrease in vertical size
output did not affect the network performance, since the LPs
have no vertical sequence of objects to detect.

For the input, we chose to use 240×80 images, which is ap-
proximately two times the average plate size on the database,
and reduces the chance of losing important information. Just
for the record, we also tried different input and output sizes,
such as 144 × 48 → 18 × 6, 192 × 64 → 24 × 8 and
288 × 96 → 36 × 12. The first 2 networks performed worse
than the chosen one, and the later performed equally but is
more complex.

Using a smaller input than the original proposal (240× 80
against 416×416) implied in some architecture modifications.
First we need to cut down the number of max pooling layers
from five to three, in order to keep the fine output granular-
ity by avoiding many dimensionality reductions. Second, to
maintain the network depth equals to FAST-YOLO and yet
being allowed to use as much transfer learning as possible,
we used the first eleven layers of YOLO network, stopping
on the twelfth layer, since it contains the fourth max pooling
in that network. If we applied the same idea of capturing
all layers before the fourth max pooling to FAST-YOLO, we
would end up using just seven layers, reducing the network
depth. Lastly, four more layers were added and trained from
scratch to improve non-linearity.

The final architecture of the proposed network is provided
in Table II. The training procedure was similar to FV/LPD-
NET presented on Section III-B, and some training samples
are shown on the right of Fig. 3.

D. Heuristics

Based on the fact that Brazilian LP as formed by three letters
followed by four numbers, we used two heuristic rules to filter
the results produced by the LPS/CR-NET: i) if more than
seven characters are detected, only the seven most probable
are kept. ii) the first three characters are assumed to be letters,
and the following four digits. This assumption is used to swap
letters by numbers and vice-versa, depending on the character
position. In summary, if a letter is recognized in the LP block
related to digits, it is swapped by the digit that presented the
largest occurrence in the confusion matrix obtained with the
training data. A similar process is applied when a digit is



TABLE II
LICENSE PLATE SEGMENTATION AND CHARACTER RECOGNITION

NETWORK (LPS/CR-NET): ALL LAYERS FROM 1 TO 11 WERE
TRANSFERED FROM YOLO-VOC NETWORK. THE INPUT IMAGE IS A
240× 80 COLORED LP PATCH, AND THE 30× 10 OUTPUT ENSURES

ENOUGH HORIZONTAL GRANULARITY FOR THE 7 CHARACTERS.

no Layer Filters Size Input Output

1 conv 32 3 × 3 / 1 240 × 80 × 3 240 × 80 × 32
2 max 2 × 2 / 2 240 × 80 × 32 120 × 40 × 32
3 conv 64 3 × 3 / 1 120 × 40 × 32 120 × 40 × 64
4 max 2 × 2 / 2 120 × 40 × 64 60 × 20 × 64
5 conv 128 3 × 3 / 1 60 × 20 × 64 60 × 20 × 128
6 conv 64 1 × 1 / 1 60 × 20 × 128 60 × 20 × 64
7 conv 128 3 × 3 / 1 60 × 20 × 64 60 × 20 × 128
8 max 2 × 2 / 2 60 × 20 × 128 30 × 10 × 128
9 conv 256 3 × 3 / 1 30 × 10 × 128 30 × 10 × 256
10 conv 128 1 × 1 / 1 30 × 10 × 256 30 × 10 × 128
11 conv 256 3 × 3 / 1 30 × 10 × 128 30 × 10 × 256
12 conv 512 3 × 3 / 1 30 × 10 × 256 30 × 10 × 512
13 conv 256 1 × 1 / 1 30 × 10 × 512 30 × 10 × 256
14 conv 512 3 × 3 / 1 30 × 10 × 256 30 × 10 × 512
15 conv 80 1 × 1 / 1 30 × 10 × 512 30 × 10 × 80
16 detection

recognized in the LP block related to letters. The specific
swaps are given by

• Swap rules for the first 3 positions (letters): 5⇒ S, 7⇒
Z, 1⇒ I , 8⇒ B, 2⇒ Z, 4⇒ A and 6⇒ G;

• Swap rules for the last 4 positions (numbers): Q ⇒ 0,
D ⇒ 0, Z ⇒ 7, S ⇒ 5, J ⇒ 1, I ⇒ 1, A ⇒ 4 and
B ⇒ 8.

This last heuristic is only applied when the network outputs
exactly seven characters. Otherwise, the LP is wrong anyway
and correctly recognized characters can be swapped, worsen-
ing the result.

IV. EXPERIMENTAL RESULTS

In this section we separate the evaluation into two steps.
First, we performed individual assessments in each ALPR
subtask to verify their performance and set values for fixed
parameters. Second, we evaluated the full ALPR system and
compared to a state-of-the-art system.

To train our LPD network, the following parametrization
were used: 10k iterations on Stochastic Gradient Descent
algorithm, with mini-batch size of 64, and learning rate of
10−3 for the first 1k iterations, and 10−4 after them. The
validation set was used to select thresholds to filter the outputs.
Basically, all segments found by adopting a threshold λ, were
submitted to a Non-Maximal Suppression algorithm in order
to filter out overlapped detections.

In Fig. 5 we show the LPD precision and recall curves
considering different IoU acceptance values (from 0.4 to 0.7).
The curves were extracted using a fixed FV threshold λfv =
0.2, and varying the LP threshold λpl uniformly in the range
[0, 1]. As can be observed, our method is not much sensitive for
threshold variations, except for very high or very low values.

In fact, if λpl assumes any value between 0.1 and 0.5, there
is no significant difference (ρ = 0.05) in the results.

It can also be observed that our method achieved very high
recall and precision rates for IoU up to 0.6. For instance,
considering an IoU threshold of 0.5 (that is used in simi-
lar problems, such as pedestrian detection [27]), it reached
99.51% recall and 95.07% precision rates in the validation
set, considering λfv = 0.2 and λpl = 0.5. When analyzing
the precision errors, we noted an issue in the test database
named Track101. There is a sequence of 15 frames in that
test (almost 4% of the validation set) with a second car totally
visible in the scene, including its license plate, but without any
annotation. This represents the majority part of the precision
error.

Recall
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Fig. 5. License Plate Detection: precision and recall curves for IoUs ranging
from 0.4 to 0.7.

For the license plate segmentation and character recognition
network, no parameter tunning was needed since, according
to the heuristic described in Section III-D, only the seven
most probable detections will remain. In this way, our network
achieved more than 99% of recall and precision (considering
and IoU of 0.5) to segment the characters, with just a few posi-
tion mistakes. We compared our LPS to the method presented
in [18]3, and the F-measure (which combines precision and
recall) for different IoU acceptance thresholds are shown in
Fig. 6. In particular, for an IoU of 0.5, our network achieved
and F-measure of 99.82% against 41.96% of [18], showing
that it successfully performed segmentation on the majority of
the characters.

Regarding the proposed full ALPR pipeline, we compared
our results with Sighthound4 [2]. On one hand, our method
was tuned specifically for Brazilian plates, while Sighthound
was devised for American and European license plates. On the

3Their work was tested on a newer and larger database which is not publicly
available yet, but the authors kindly provided their results using the SSIG
Database.

4State-of-the-art commercial system, which has a cloud service available at
https://www.sighthound.com/products/cloud.. The results presented here were
collected on June, 2017.
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Fig. 6. Character Detection performance: F-Measure comparison with the
segmentation method presented in [18].

other, Sighthound was trained using much larger and private
datasets than ours, which is very important for DL techniques.

The final results are presented in Table III. Our system
successfully recognized 63.18% of the license plates on the
test set, resulting in a relative improvement of 13.9% when
compared to Sighthound. Also, it was capable of correctly
identifying at least 5 characters in 97.39% of the LPs, which
might be helpful to prune candidate plates based on additional
information, such as vehicle manufacturer/model. Some exam-
ples of ALPR results produced by our method are presented
in Figure 7.

TABLE III
FINAL OUTPUT EVALUATION. ACCURACY CONSIDERING: FULLY

CORRECTED LPS, AT LEAST 6 CORRECT CHARACTERS AND AT LEAST 5
CORRECT CHARACTERS.

ALPR All correct ≥ 6-characters ≥ 5-characters

Sighthound 55.47% 80.47% 87.94%
Ours 63.18% 90.55% 97.39%
Ours (only letters) 63.43% – –
Ours (only numbers) 93.03% – –

Another important consideration is regarding the recognition
of numbers and letters, which is shown in the second half of
Table III. Our system was able to correctly recover all four
the numbers in a LP in 93.03% of the test set cases. However,
only in 63.43% all three letters were correctly recognized.
Hence, the main accuracy bottleneck of the proposed approach
is letter recognition, which might be explained by the database
unbalance between characters: there are a lot more number
samples than letter samples. Moreover, in letter classes, there
are some characters that appear much more often than others
due the country zone where the database were recorded. For
example, the least frequent digit is ’2’, with a little more than
200 samples, while the least frequent letter is ’V’, with 16
samples.

Our final evaluation is related to execution time. In Table IV
we show the average time needed for each network to process
an input, and the total time for the whole system (assuming
that a single vehicle is being processed). Our ALPR system
runs at 76 FPS using a high-end GPU, and it can achieve
around 9 FPS with a cheaper mid-end GPU, which is also
feasible in several applications such as parking and toll mon-
itoring systems.

TABLE IV
EXECUTION TIME: NETWORKS FEED FORWARD TIMES FOR HIGH AND

MID-END GPUS.

Network
Time (FPS)

High-end GPU Mid-end GPU
(NVIDIA TITAN X) (GeForce GT 750M)

FV/LPD-NET 5.4ms (185) 47.2ms (21)
LPS/CR-NET 2.2ms (448) 20.1ms (47)

Total
(2× FV/LPD-NET + LPS/CR-NET)

13.0ms (76) 114.5ms (9)

V. CONCLUSION

In this paper we proposed an end-to-end ALPR system for
Brazilian license plates based on Deep Learning. Two YOLO-
based CNN networks were created: the first (FV/LPD-NET)
detects car frontal-views and license plates operating in a
cascaded mode, and the second (LPS/CR-NET) detects and
recognizes characters within a cropped license plate.

To overcome the lack of car bounding boxes in the available
database, a simple method to generate a large set of weakly
annotated car bounding boxes from a few manually annotated
ones was also introduced in the paper.

The FV/LPD-NET, which is an adaptation of the FAST-
YOLO network, achieved 99.51% of recall coupled with a high
precision (95.07%) in the LPD task, given an IoU threshold
of 0.5. For LPS, we proposed a new network architecture
designed to be fast and precise. This network (LPS/CR-NET)
shares similar aspect ratio to LPs, and is as deep as FAST-
YOLO, but faster to execute. It was able to recover 99.84%
of the characters considering an IoU of 0.5, outperforming the
baseline by a large margin.

Considering the full ALPR system running end-to-end,
63.18% of the LPs on the database test set were correctly rec-
ognized (all seven characters), even with a highly unbalanced
training database of characters (in particular, letters). When
considering partial matches (at least five characters correctly
recognized in a given LP), the proposed method presented an
accuracy of 97.39%.

For future work, we intend to improve our ALPR system by
firstly using a more solid method for character recognition. A
good recognizer for letters can significantly boost the final ac-
curacy. We also want to try different CNN models like Spatial
Transforming Networks [22] and Parts-Based Networks [28],
[29]. Both can be applied to LPS, being the former particularly
interesting because it can capture rotated patterns, potentially
improving generalization. The later can be used to detect
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Fig. 7. Examples of ALPR produced by the proposed method.

objects inside objects, for instance a LP attached to a car
or a character in the LP, or to explore the expected spatial
distribution of characters within a plate for LPS.

Finally, we want to include car manufacturer/model recog-
nition in the ALPR pipeline. For this, the above mentioned
parts-based models can be of great help.
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