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Abstract—Approximately 50, 000 to 60, 000 new cases of
Parkinson’s disease (PD) are diagnosed yearly. Despite being
non-lethal, PD shortens life expectancy of the ones affected
with such disease. As such, researchers from different fields
of study have put great effort in order to develop methods
aiming the identification of PD in its early stages. This work
uses handwriting dynamics data acquired by a series of tasks and
proposes the application of a deep-driven graph-based clustering
algorithm known as Optimum-Path Forest to learn a dictionary-
like representation of each individual in order to automatic
identify Parkinson’s disease. Experimental results have shown
promising results, with results comparable to some state-of-the-
art approaches in the literature.

Index Terms—Parkinson’s disease, Optimum-Path Forest,
Handwriting Dynamics

I. INTRODUCTION

The cure for neurodegenerative diseases has been constantly
researched by Medicine, mainly with respect to Parkinson’s
disease (PD), which affects nearly 1 million people only in
the United States, and around 7 to 10 million people might
be living with PD worldwide. Also, the number of new cases
diagnosed each year ranges between 50, 000 to 60, 000 indi-
viduals according to the National Parkinson’s Foundation [1].
Parkinson’s disease is characterized by motor dysfunctions, it
is a chronic, progressive and multilesion disease caused by the
loss of a neurotransmitter called Dopamine [2]. Such illness
is usually diagnosed through a clinical exam by a neurologist
with expertise in movement analysis. The PD is considered
non-lethal, but people with PD have a shorter life expectancy
than the general population.

More often in the elderly population, PD produces alter-
ations in gait and posture that may increase the risk of falls
and lead to mobility disabilities. As such, it impacts daily
activities and reduces the quality of life concerning patients
and their families [3]–[5], especially because it does not have
cure to date. Drugs known as dopaminergic medications and
therapy are currently used to treat PD symptoms, being the
Levodopa (L-dopa) the most widely used for such purpose.
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Another treatment that has been widely employed is the Deep
Brain Stimulation, which is a surgical procedure that delivers
electrical pulses to brain cells in order to reduce the effects of
the symptoms.

The science does not measure efforts in order to make the
quality of life of PD patients better. In computer science,
for instance, techniques such as image processing, neural
networks and others have been widely applied in the pursuit
of better results in both treatment and diagnosis. Spadotto
et al. [6], for instance, introduced the Optimum-Path Forest
(OPF) [7], [8] classifier to aid the automatic identification of
Parkinson’s disease. Later on, the same group proposed an
evolutionary-based approach to select the most discriminative
set of features that helped improving PD recognition rates [9].

Most works that address automatic PD recognition deal with
voice-based data. Procedures to identify voiced and unvoiced
(silent) periods have been actively pursued to analyze con-
tinuous speech samples, since most techniques that quantify
periodicity and regularity in voice signals are applied in the
voiced regions only [10]. Das [11] presented a comparison of
multiple classification methods for the diagnosis of PD, such
as neural networks, regression and decision trees. Several eval-
uation methods were employed to calculate the performance
of the classifiers, being the experiments conducted in a dataset
composed of biomedical voice measurements from 31 people,
in which 23 were diagnosed with Parkinson’s disease. The
best results were achieved by neural networks (around 92.9%
of PD recognition rate).

Recently, Pereira et al. [12], [13] proposed to extract fea-
tures from handwritten exams using visual features, which
are learned from some drawings the patients were asked to
perform, being the data used in the work made available in a
dataset called “HandPD”1. Later on, Pereira et al. [14] drove
its approach to a deep learning application using the signals
(time series) captured by the biometric pen BiSP R© [15], which
were further converted to the image domain with different

1http://wwwp.fc.unesp.br/∼papa/pub/datasets/Handpd/



resolutions and used as input to a Convolutional Neural
Network.

Another interesting methodology to learn discriminative
features from data is related to the well-known Bag-of-words
(BoW), though being quite difficult to establish the size of
the bag (dictionary), as well as another open problem is how
to choose the words that will compose that bag. Some years
ago, Afonso et al. [16] proposed to use the unsupervised
OPF [17] to learn proper dictionaries since it does not require
the number of words beforehand, thus becoming an useful tool
for BoW purposes. Later on, Afonso et al. [18] presented a
deep-hierarchical OPF (dOPF) clustering algorithm to make it
way more efficient, and validated it in the context of seismic-
geological data classification.

Although BoW usage is not new in the context of time series
for biomedical purposes [19], to best of our knowledge, it has
not been applied for the identification of Parkinson’s disease
along with graph-based clustering algorithms so far, which
turns out to be the main contribution of this work. Another
main contribution is to use dOPF to learn dictionaries in a
hierarchical way, where different layers of knowledge are used
to compose the final dictionary. In short, the main idea of this
work is to employ dOPF in the context of BoW applied for
Parkinson’s disease detection using the time series data from
the HandPD dataset. The remainder of this work is organized
as follows: Section II describes the theoretical background
related to both OPF and dOPF. Our proposed approach is
detailed in Section III. The experimental setup, dataset and
results are presented in Section IV. Finally, Section V states
conclusions and future works.

II. OPTIMUM-PATH FOREST CLUSTERING

The main problem in unsupervised learning is to identify
clusters in a dataset Z , in which samples belonging to the same
group should share some level of similarity. The Optimum-
Path Forest clustering algorithm handles this problem as a
graph partition task, where a competitive process among
prototype samples (a subset from Z) offers optimum-cost
paths to the remaining samples in order to “conquer” them.
The outcome of this competition process is a collection of trees
(forest) rooted at each prototype, in which each tree represents
a different cluster.

Given the dataset Z , we can create a graph (Z,Ak), where
Ak is a k-nearest neighbors adjacency relation, and each
sample x ∈ Z encodes a graph node in <n, i.e., it basically
stands for a feature vector extracted from a dataset sample. Let
d(s, t) be the distance between graph nodes s and t, being the
edge connecting such samples (i.e., (s, t)) weighted by that
distance. Also, a given node s is weighted by a probability
density function (pdf) ρ(s) defined as follows:

ρ(s) =
1√

2πσ2|A(s)|

∑
∀t∈A(s)

exp

(
−d2(s, t)

2σ2

)
, (1)

in which σ =
df
3 , and df is the length of the longest edge

in (Z,Ak). The choice of this parameter considers all nodes

for density computation since a Gaussian function covers most
samples within d(s, t) ∈ [0, 3σ]. The Parzen-window method
is the most common method to estimate a probability density
function, and is provided by Equation 1 based on the isotropic
Gaussian kernel when the arcs are defined by (s, t) ∈ Ak if
d(s, t) ≤ df .

This approach, however, presents some issues with the
differences in scale and sample concentration, which can be
solved by adaptive choices of df depending on the region of
the feature space [20]. By choosing the best value for the
k-nearest neighbors within [1, kmax], for 1 ≤ kmax ≤ |Z|,
it is possible to tackle both issues of different concentration
and scale reduction. Rocha et al. [17] proposed a solution by
considering the minimum graph cut provided by clustering
results for k ∈ [1, kmax], according to a measurement
suggested by Shi and Malik based on graph cuts [21].

Let πt a path in (Z,Ak) that can be defined as a sequence of
adjacent nodes that starts in a root R(t) and ends at a sample t,
being πt = 〈t〉 a trivial path, and πs ·〈s, t〉 the concatenation of
πs and arc (s, t). The main point is to find a path whose lowest
density value is maximum among all possible paths πt with
roots on the maxima of the pdf. Thus, each maximum should
define an influence zone (cluster) by selecting samples that
are more strongly connected to it than to any other maximum.
Formally, this process can be defined as the maximization of
f(πt) for all t ∈ Z , such that

f(〈t〉) =

{
ρ(t) if t ∈ S
ρ(t)− δ otherwise

f(〈πs · 〈s, t〉〉) = min{f(πs), ρ(t)} (2)

for δ = min∀(s,t)∈Ak|ρ(t)6=ρ(s) |ρ(t)− ρ(s)| and S being a root
set with one element for each maximum of the pdf. High
values of delta reduce the number of maxima. This work
sets δ = 1.0 and scales real numbers ρ(t) ∈ [1, 1000]. In
summary, the OPF algorithm maximizes f(πt) such that the
optimum paths form an optimum-path forest — a predecessor
map P with no cycles that assigns to each sample t /∈ S its
predecessor P (t) in the optimum path from S or a marker nil
when t ∈ S.

A. Deep-Hierarchical Optimum-Path Forest

One of the main advantages of OPF concerns its capability
in computing the number of clusters on-the-fly, which means
such information is not required beforehand. On the other
hand, its bottleneck is to set the exact number of clusters
when one knows that information. One possible solution is
to consider different values for the parameter kmax in order
to reach the desired number of clusters. However, the larger
the dataset, the more costly this process will become.

In order to overcome the aforementioned issue, Afonso
et al. [18] proposed a multi-level clustering algorithm based
on the OPF approach. Each level (layer) computes an OPF
through the very same process as previously described using
the roots (prototypes) from the OPF computed in the predeces-
sor layer as new inputs. The number of layers is user-defined



and set according to the number of clusters that is supposed to
be reached (or close to) in the last layer. Since the prototypes
are located in the highest density regions, they are very suitable
to represent nearby samples, as argued in the works conducted
by Castelo and Calderón-Ruiz [22] and Afonso et al. [23].

Let Si be the set of prototypes at layer Li, i = 1, 2, . . . , l,
in which l stands for the number of layers. Since each root
will be the maximum of a pdf (Equation 1), we have a set
of samples that fall in the same optimum-path tree and are
represented by the very same prototype (root of that tree) in
the next layer. In summary, the higher the number of layers,
the less prototypes (clusters) one shall have, i.e., |S1| < |S2| <
. . . < |Sl| < . . . ≤ 1. Therefore, at layer l, one shall find only
one cluster when l → ∞. Figure 1 displays the OPF-based
architecture for deep-driven feature space representation.

Fig. 1: Architecture of an lth-layered dOPF.

At layer L1, it is observed four clusters (optimum-path
trees), in which the black filled nodes stand for the set of
prototypes at that layer, i.e., S1. Some of these prototypes
will become new prototypes at L2, and others not (we can
observe both filled and unfilled nodes at layer 2). This process
is carried out up to the lth layer specified by the user. Notice
at the coarsest scale, i.e., Ll, we shall find only one cluster.
Therefore, the user can halt the process as soon as the number
of desired clusters (or close to it) is met.

III. PROPOSED APPROACH

This section describes all steps performed in the work to
evaluate dOPF and BoW in the context of Parkinson’s disease
identification, as depicted in Figure 2.

a) Data acquisition: Individuals were submitted to a
series of tasks, in which they were asked to perform some
hand movements and drawings using a biometric pen that
contains six sensors in charge of recording hand movements
(Figure 3) [15]. The movements are represented by six dif-
ferent channels: microphone, finger grip, axial pressure of ink
refill, and tilt and acceleration in the x, y and z directions.

Figure 4 depicts an example of an exam containing six
tasks that evaluate the hand movements and help to detect
any anomalies. In the first task (exam (a) in Figure 4), the
individual is asked to draw a circle 12 times in the same place

without stopping the movement between each circle. In the
second task (exam (b) in Figure 4), the individual performs the
same movement as in exam (a), but with its hand in the air. The
third (exam (c) in Figure 4) and fourth (exam (d) in Figure 4)
tasks concern drawing the spirals and meanders, respectively,
over a guideline only once from the inner to the outer part. The
last two tasks, i.e., exam (e) and exam (f) in Figure 4, stand
for the diadochokinese test, which is basically composed of
hand-wrist movements performed with both hands. Each exam
results in six different datasets, one for each task, and each
sample from the dataset corresponds to an array of responses
captured by each sensor in the interval of 1 ms.

b) Local descriptor extraction: Given the recorded sig-
nals, the local descriptors are computed through a sliding
window that goes along each of the six signals and computes
a single-level Discrete Wavelet Transform (DWT) in each
segment. In fact, since there are six different signals, we work
with six sliding windows, in which the segments of time within
each of them have always the same initial and final times as
they shift along the signals. The size of the sliding window
and shifting are both user-defined. The DWT is applied to each
segment of time separately, and the results in each segment
are concatenated in order to form the final local descriptor2.

c) Dictionary formulation: The dictionary formulation
aims to find the most representative “words” (descriptors)
among a set of descriptors from the “bag” that are used in
a later step for computing of a new sample representation.
This step is usually performed by a clustering algorithm, in
which the number of clusters defines the size of the dictionary,
and each centroid becomes a “word” of the dictionary. It is
usual to play with the size of the dictionary in order to find
some trade-off between the computational cost and accuracy
rate.

d) The new representation: A signal can be represented
by a set of descriptors, which can range from dozens to
thousands. Some of these descriptors may be similar or
only represent noisy information. Thus, in order to obtain a
compressed and meaningful representation of the signal, the
descriptors were quantized based on the dictionary computed
previously. The quantization step will provide a histogram for
each sample with length equals to the size of the dictionary,
in which each bin will have the frequency of its closest word
in the input signal. Then, the final histogram is further used
as an input for machine learning algorithms.

IV. EXPERIMENTS AND RESULTS

The experimental setup used all data recorded from a total
of 66 exams, being 35 control individuals and 31 patients. The
output of the protocol discussed in the previous section results
in six different datasets, one for each task. The dictionary
learning step was performed by means of three different
techniques: dOPF, k-means3 and OPF4. The main idea is to

2We used sliding windows of size 100 ms with stride of 50 ms, being such
values empirically chosen.

3Our own implementation.
4https://github.com/LibOPF/LibOPF



Fig. 2: Proposed approach based on BoW and dOPF for computer-aided PD diagnosis. The main workflow is indicated by
the light blue arrows: local descriptors are extracted and clustered in order to build the dictionary. The dictionary is used for
the quantization of both training and testing signals that is the process of computing the feature vectors (flow indicated by
purple arrows). Similarly to the training phase, testing signals have their descriptors computed and the signals are quantized
(flow indicated by yellow arrows). Finally, a classifier is fed by the resulting training and testing feature vectors. Notice the
two depicted dictionaries are the same.

tilt & acceleration sensor

refill pressure sensor

writing’s pressure sensor

grip pressure sensor

Fig. 3: Biometric pen. Extracted from [14].

evaluate the quality of clustering of each technique through
the accuracy rate obtained in the classification phase. The
architecture used by dOPF is composed of four layers, in
which the values of kmax are: 100 for the first layer, 1% of
the number of clusters computed in the previous layer are used
as an input for the second layer, and 10% of the number of
clusters computed in their respectively antecessor layers for
the third and fourth layers. The value of k for k-means is

always set as the number of clusters found by the fourth (last)
layer of dOPF approach. Regarding the OPF algorithm, the
values for kmax were empirically set as 2, 500 for the Spiral
and Meander datasets, and as 1, 500 for the remaining datasets.
The idea in using the same number of clusters for dOPF and
k-means is to allow a fair comparison between them.

Table I presents the number of descriptors extracted from
the training set of each dataset, as well as the number of words
computed in each case. In the column regarding dOPF, it is
shown the number of words found for each of the four layers,
but only the ones computed in the last layer (bolded) are used
for the quantization of both training and testing sets.

The experiments were performed using the hold-out pro-
cedure with 15 runs. Both training and testing sets were
partitioned using 50% of the entire dataset each, being ran-
domly generated in each new run. In this step, there were
employed three different classifiers for comparison purposes:
Bayesian Classifier (BC)5, supervised OPF (sOPF)6 and SVM
using a Radial Basis Function (RBF) kernel with parameter
optimization (SVM-RBF) [24].

Tables IIa— IIf present the mean recognition rates concern-
ing all six exams, being the accuracy computed according to
Papa et al. [7]. The best results are defined according to the

5Our own implementation.
6https://github.com/LibOPF/LibOPF



TABLE I: Number of descriptors extracted from the training set and number of words computed by each technique.

dataset (task) # descriptors Deep-OPF K-means OPF
Circ-A exam (a) 18,000 5,682 - 2,584 - 228 - 68 68 693
Circ-B exam (b) 11,898 538 - 376 - 43 - 17 17 33
Spiral exam (c) 46,637 12,118 - 3,951 - 370 - 92 92 1,424
Meander exam (d) 41,094 10,865 - 3,937 - 429 - 99 99 1,591
Dia-A exam (e) 14,608 666 - 480 - 95 - 47 47 80
Dia-B exam (f) 13,947 657 - 394 - 78 - 27 27 70

Fig. 4: Form used to assess the handwritten skills. Extracted
from [14].

Wilcoxon signed-rank [25] with significance of 0.05, which
pointed out the best ones in bold for each exam. Further, we
also considered the best among all exams as the underlined
ones.

Let us first analyze the best results among all. The statis-
tical evaluation pointed out [OPF, SVM-RBF] and [k-means,
BC] as the best pairs of [dictionary learner, classifier] with
accuracies near to 81% and 83%, respectively. Comparing that
recognition rates against some previous works, the proposed
approach showed significant gains (from 10% to 30%) against
the one presented by Pereira et al. [13]. Despite that our results
were slightly below those achieved by a further work of the
same authors that makes use of deep learning techniques [14],
our approach is way more efficient than using deep learning
techniques taking into account a few architectures.

With respect to the best accuracies concerning each exam,

TABLE II: Overall accuracies.

(a) Circ-A dataset.

BC sOPF SVM-RBF
dOPF 82.96±2.88 81.71±5.12 73.87±4.58

k-means 83.38±4.22 82.01±5.11 65.80±12.39
OPF 81.06±4.36 81.90±4.89 76.17±6.92

(b) Circ-B dataset.

BC sOPF SVM-RBF
dOPF 68.75±7.96 69.14±6.95 77.31±4.45

k-means 67.80±7.44 65.58±6.79 74.54±6.39
OPF 70.81±4.62 73.08±8.96 76.69±5.38

(c) Spiral dataset.

BC sOPF SVM-RBF
dOPF 78.30±5.80 76.73±6.83 77.25±3.46

k-means 73.37±5.37 73.11±5.31 78.83±2.20
OPF 75.40±3.09 75.57±3.13 81.03±2.40

(d) Meander dataset.

BC sOPF SVM-RBF
dOPF 73.33±4.97 74.07±2.90 80.45±2.42

k-means 76.07±3.31 76.09±2.77 78.26±3.91
OPF 78.53±3.15 77.21±3.52 81.07±2.60

(e) Dia-A dataset.

BC sOPF SVM-RBF
dOPF 69.86±7.21 70.93±7.29 68.69±7.26

k-means 72.18±7.46 72.43±5.81 73.93±8.66
OPF 70.72±6.60 67.01±7.45 68.69±7.26

(f) Dia-B dataset.

BC sOPF SVM-RBF
dOPF 67.96±8.10 64.86±7.93 61.89±8.49

k-means 72.92±8.51 69.84±9.03 67.24±9.31
OPF 63.77±8.85 67.25±6.80 66.30±7.38

dOPF obtained very much suitable results, being more accurate
than naı̈ve OPF in most cases. Supervised OPF obtained good
results as well, but SVM-RBF achieved the best recognition
rates in a few more situations. Additionally, we also evaluated
the accuracy per class for all situations, as presented in Tables
IIIa— IIIf, whose best results are also highlighted considering
the Wilcoxon signed-rank. The best results for each class
are in bold, and the best among all datasets is underlined.
Actually, the main improvement concerns the accuracy for the
identification of healthy individuals, since Pereira et al. [14]
obtained recognition rates nearly 50% over the Meander and
Spirals datasets for the control class. The proposed approach



increased not only the global accuracy with respect to the work
by Pereira et al. [14], but also the specificity and sensitivity
for most of the cases. Also, Circ-A dataset provided two out
of the five best results, thus showing as a good alternative for
the Parkinson’s Disease identification.

Table IV presents the mean computational load required
by each technique to learn the dictionary. Notice the com-
putational burden for dOPF considers the four layers. In this
context, k-means figured as the fastest one due to its simplicity.
If one considers dOPF and OPF only, we can observe the
former is about 78 times faster in Circ-B dataset, which is
quite effective. The lowest gains can be observed in both
Meander and Spiral datasets. The small differences come from
the fact the value used for kmax in both situations is small, thus
justifying the fact the dictionaries computed in these datasets
have very high dimension when compared to others.

V. CONCLUSIONS

This work introduced a deep-hierarchical version of the
unsupervised OPF algorithm for dictionary learning in the
context of computer-aided Parkinson’s disease identification.
The experiments were performed using data from handwriting
dynamics, similarly to the work by Pereira et al. [14], but now
handled as signals and not images.

The application of the BoW paradigm can extract more
information by computing local descriptors that can enhance
the overall accuracy. Also, dOPF showed satisfactory results
in its first application for BoW-based Parkinson’s Disease
identification. Experiments over six datasets considered dOPF
against the well-known k-means and naı̈ve OPF clustering for
dictionary learning. Further, supervised techniques were used
for classification purposes.

Future works will consider learning hierarchical BoWs, i.e.,
one bag for each layer in the dOPF formulation. We believe
each layer can carry different information about the problem.
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TABLE III: Average accuracy rate for each class.

(a) Circ-A dataset.

BC sOPF SVM-RBF
dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF

Patient 83.33±5.62 84.17±7.79 79.17±12.19 77.5±10.24 79.58±10.15 80.83±8.34 61.67±15.10 70.42±12.60 75.42±6.87
Control 82.59±8.09 82.59±8.09 82.96±8.52 85.93±6.59 84.44±12.09 82.96±6.79 67.41±11.67 67.04±7.99 71.48±9.82

(b) Circ-B dataset.

BC sOPF SVM-RBF
dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF

Patient 60.83±18.32 61.25±11.68 74.58±13.39 63.75±13.35 63.75±13.35 54.17±13.04 64.58±13.24 68.75±14.43 57.92±10.07
Control 76.67±49.12 77.04±12.48 59.99±9.56 71.85±13.98 67.41±12.32 57.04±17.15 77.04±10.51 77.41±6.24 45.93±7.98

(c) Spiral dataset.

BC sOPF SVM-RBF
dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF

Patient 74.51±10.59 65.49±10.63 72.90±6.90 78.04±12.07 67.06±10.14 71.61±6.27 67.81±2.17 73.59±3.67 74.58±0.82
Control 82.08±8.14 81.25±11.33 77.90±6.95 75.42±11.92 79.17±10.48 79.52±6.20 89.43±1.83 84.85±2.25 86.43±1.09

(d) Meander dataset.

BC sOPF SVM-RBF
dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF

Patient 76.61±4.04 69.46±5.96 76.77±8.44 75.38±4.62 73.23±4.51 77.85±3.93 74.81±2.18 71.06±2.62 74.54±1.37
Control 73.33±4.97 82.67±4.88 80.29±4.68 72.76±5.47 78.95±4.99 76.57±5.47 85.80±0.89 84.43±3.76 87.99±0.72

(e) Dia-A dataset.

BC sOPF SVM-RBF
dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF

Patient 67.50±16.01 66.67±14.01 51.67±17.15 65.83±13.28 70.42±12.59 52.08±11.10 66.25±13.46 66.25±15.61 47.50±12.87
Control 72.22±9.51 75.19±5.69 50.74±9.70 78.52±8.33 74.44±6.97 55.56±12.67 75.19±7.55 67.78±12.37 50.00±13.46

(f) Dia-B dataset.

BC sOPF SVM-RBF
dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF

Patient 63.33±12.88 60.83±11.29 60.00±32.18 72.50±10.89 67.08±13.39 47.92±10.62 71.25±11.81 73.75±11.23 52.08±15.92
Control 72.59±9.62 68.89±9.89 50.37±28.07 73.33±9.56 72.59±10.63 48.52±12.42 56.29±15.56 60.74±11.38 53.70±9.44

TABLE IV: Dictionary learning computational load [s] re-
quired by each technique.

dataset (task) dOPF k-means OPF
Circ-A (a) 968.167 37.008 49,087.137
Circ-B (b) 419.498 13.113 32,777.539
Spiral (c) 6,063.205 239.859 6,643.906
Meander (d) 5,003.233 208.443 5,168.819
Dia-A (e) 613.109 19.878 41,189.133
Dia-B (f) 569.053 11.025 39,367.844


