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Figure 1. An example result highlighting the effectiveness of our method: A CT slice image
of the liver with user-selected markers (left). The segmentation result by Oriented Image
Foresting Transform invades some background regions (middle). A better result is obtained
by the proposed Oriented Relative Fuzzy Connectedness method (right).

Abstract—Anatomical structures and tissues are often hard
to be segmented in medical images due to their poorly defined
boundaries, i.e., low contrast in relation to other nearby false
boundaries. The specification of the boundary polarity can help
to alleviate part of this problem. In this work, we discuss how to
incorporate this property in the Relative Fuzzy Connectedness
(RFC) framework. We present a new algorithm, named Oriented
Relative Fuzzy Connectedness (ORFC), in terms of an oriented
energy function subject to the seed constraints, and its application
in powerful hybrid segmentation methods. The hybrid method
proposed ORFC&Graph Cut preserves the robustness of ORFC
respect to the seed choice, avoiding the shrinking problem of
Graph Cut (GC), and keeps the strong control of the GC in the
contour delination of irregular image boundaries. The proposed
methods are evaluated using medical images of MRI and CT
images of the human brain and thoracic studies.

Keywords-Relative fuzzy connectedness, image foresting trans-
form, graph-cut segmentation, graph search algorithms.

I. INTRODUCTION

In this work, we explore graphs by modeling neighborhood

relationships of picture elements from digital images for the

purposes of image segmentation, such as to extract an object

from a background, by assigning different labels to its picture

elements.

One important class of graph-based image segmentation

methods comprises interactive seed-based methods, including

different frameworks, such as fuzzy connectedness [1], graph

1This work is related to a M.Sc. dissertation.

cuts [4], and image foresting transform [5]. The study of the re-

lations among different frameworks, including theoretical and

empirical comparisons, has a vast literature [6], [7], [8], [9],

which allowed many algorithms to be described in a unified

manner according to a common framework, which we refer

to as, Generalized GC (GGC) [10]. Within this framework,

there are two important classes of energy formulations, the

ε1- and ε∞-minimization problems (and so, the associated

algorithms), as discussed in [10]. The most efficient seed-

based approaches of the GGC framework are the ones that

fall within the ε∞-minimization problem, which have linear-

time implementations O(N) with respect to the image size

N [7], while the run time for the ε1-minimization problem is

O(N2.5) for sparse graphs [11]. Some methods from the ε∞-

minimization family were extended to support the boundary-

polarity constraint, by exploring directed weighted graphs,

leading to the method named Oriented Image Foresting Trans-

form (OIFT) [2], [12]. While the introduction of combinatorial

graphs with directed edges on other frameworks increases

considerably the complexity of the problem [13], OIFT still

runs in linear time. The boundary orientation information is

crucial for effective automatic segmentation, as demonstrated

by boundary-based approaches [14]. In this work, we discuss

how to incorporate this orientation information, by exploring

digraphs, in another member of the ε∞-minimization family,

a region-based approach called Relative Fuzzy Connectedness

(RFC) [15]. RFC is an important method, which presents some
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Figure 2. An example result of ORFC+GC. The segmentation of the wrist by: (a) IRFC [1], (b) OIFT [2], (c) RFC+GC [3], and (d) ORFC+GC.

nice theoretical properties, such as the robustness with respect

to the seed choice [15].

We propose a new method, named Oriented Relative Fuzzy

Connectedness (ORFC), which allow the customization of the

segmentation by RFC to match global features of a target

object, by considering the orientation of the object’s intensity

transitions, i.e., bright to dark or the opposite (boundary

polarity). We also extend the hybrid approach [3] to directed

weighted graphs, incorporating the boundary polarity by com-

bining the strengths of oriented relative fuzzy connectedness

and graph cut. The novel hybrid approach is more robust than

the original graph cut with respect to the seed choice (thus,

avoiding “shrinking problem” of GC), it also outperforms the

previous hybrid method [3] and OIFT, with running times

close to linear.

Section II explains the basic concepts on image graphs, and

introduces the terminology and notation to be used throughout

the text. The proposed extension of RFC, named Oriented

Relative Fuzzy Connectedness, is presented in Section III

and its applications in hybrid image segmentation (ORFC and

graph cut) are shown in Section IV. Sections V and VI discuss

the experimental results and conclusions.

II. BACKGROUND

A multi-dimensional and multi-spectral image Î is a pair

(I, ~I) where I ⊂ Zn is the image domain and ~I(a) assigns a

set of m scalars Ii(a), i = 1, 2, . . . ,m, to each pixel a ∈ I.

The subindex i is removed when m = 1.

An image can be interpreted as a weighted digraph G =
(V, E, w) whose nodes V are the image pixels in its image

domain I ⊂ Zn, and whose arcs are the ordered pixel pairs

〈a, b〉 ∈ E. For example, one can take E to consist of all

pairs of pixels 〈a, b〉 in the Cartesian product I × I such that

d(a, b) ≤ ρ and a 6= b, where d(a, b) denotes the Euclidean

distance and ρ is a specified constant (e.g., 4-neighborhood,

when ρ = 1, and 8-neighborhood, when ρ =
√
2, in case

of 2D images). The digraph G is symmetric if for any of

its arcs 〈a, b〉, the pair 〈b, a〉 is also an arc of G. Each

arc 〈a, b〉 ∈ E has a fixed weight w(a, b) ≥ 0, between

neighboring pixels, which is ideally designed to have lower

values in the boundary transitions of the object of interest (e.g.,

w(a, b) = K−|I(a)−I(b)|, where K is the greatest difference

in image brightness for a single channel image with values

given by I(a)). A symmetric digraph is undirected weighted

if w(a, b) = w(b, a) for all 〈a, b〉 ∈ E, otherwise we have a

directed weighted digraph.

The transpose GT = (V, ET , wT ) of a weighted digraph

G = (V, E, w) , for any of its arcs 〈a, b〉 ∈ ET , the pair 〈b, a〉
is an arc of G, and wT (a, b) = w(b, a). A weighted digraph

G is symmetric and undirected weighted if G is the same as

its transpose.

For a given image graph G = (V, E, w), a path πa =
〈t1, t2, . . . , tn = a〉 is a sequence of adjacent pixels with

terminus at a pixel a. A path is trivial when πa = 〈a〉. A

path πb = πa · 〈a, b〉 indicates the extension of a path πa by

an arc 〈a, b〉. When we want to explicitly indicate the origin of

a path, the notation πa;b = 〈t1 = a, t2, . . . , tn = b〉 may also

be used, where a stands for the origin and b for the destination

node. More generally, we can use πS;b = 〈t1, t2, . . . , tn = b〉
to indicate a path with origin restricted to a set S (i.e.,

t1 ∈ S). A digraph is said to be strongly connected if there is

a path from every vertex to every other vertex. A connectivity

function computes a value f(πa) for any path πa, usually

based on arc weights. A path πa is optimum if f(πa) ≥ f(τa)
for any other path τa in G.

For every weighted digraph G = (V, E, w), consider the

space X̃ of all functions x : V → [0, 1], referred to as fuzzy

subsets of V , with the value x(a) indicating a degree of

membership with which a belongs to the set. The family X
of all functions x ∈ X̃ with the only allowed values of 0 and

1 (i.e., x : V → {0, 1}) will be referred to as the family of

all hard subsets of V . Each x ∈ X is identified with the true

subset P = {c ∈ V : x(c) = 1} of V . Notice that, in such a

case, x is the characteristic function χ
P of P ⊂ V . We usually

restrict the collection X of all allowable objects by indicating

two disjoint sets, referred to as seeds: So ⊂ V indicating the

object and Sb ⊂ V indicating the background.

This restricts the collection of allowable outputs of the

algorithm to the family X (So,Sb) of all x ∈ X with x(a) = 1
for all a ∈ So, and x(b) = 0 for all b ∈ Sb. Note that

X (So,Sb) = {χP : So ⊂ P ⊂ V \ Sb}.

We consider the following connectivity function:

fS
min(〈a〉) =

{

wmax + 1 if a ∈ S
−∞ otherwise

fS
min(πa · 〈a, b〉) = min{fS

min(πa), w(a, b)}

where wmax = max
〈a,b〉∈E

w(a, b).



III. ORIENTED RELATIVE FUZZY CONNECTEDNESS

(ORFC)

Differently from RFC [16], [7], [9], the definitions of ORFC

based on paths and based on cuts in the digraph lead to

different results. The different obtained algorithms will be

denoted as A
in,;
ORFC , and A

out,;
ORFC for the path-based definition;

and A
in,✂
ORFC , and A

out,✂
ORFC for the cut-based definition.

A. ORFC definition by reverse connectivity functions

Based on the previous works [2], [12], we consider the

following new connectivity function in digraphs:

f
6‖ S
min(〈a〉) =

{

wmax + 1 if a ∈ S
−∞ otherwise

f
6‖ S
min(πa · 〈a, b〉) = min{f 6‖S

min(πa), w(b, a)}
where 〈b, a〉 is an anti-parallel arc.

Note that f
6‖ S
min is a smooth function, and therefore V

6‖
o and

V
6‖
b are optimum connectivity maps. These two connectivity

maps are generated by executing the IFT with anti-parallel

connectivity functions:

Vo(a) = max
πa ∈ Π(G,a)

{fSo

min(πa)};V 6‖
o (a) = max

πa∈Π(G,a)
{f 6‖ So

min (πa)}

Vb(a) = max
πa ∈ Π(G,a)

{fSb

min(πa)};V 6‖
b (a) = max

πa∈Π(G,a)
{f 6‖ Sb

min (πa)}

Following the same key idea from [2] (i.e., to consider reversed

connectivity functions for one of the seed sets), we have

the following natural definition for ORFC: The segmentation

A
out,;
ORFC(So,Sb) favoring transitions from bright to dark pixels

is obtained by comparing the connectivity maps Vo(a) and

V
6‖
b (a), such that each pixel a ∈ V is labeled as belonging to

the object only if Vo(a) > V
6‖
b (a).

A
out,;
ORFC(So,Sb) = χ

O : O = {a ∈ V : Vo(a) > V
6‖
b (a)} (1)

The segmentation A
in,;
ORFC(So,Sb) favoring transitions from

dark to bright pixels is obtained by comparing the connectivity

maps V
6‖
o (a) and Vb(a), such that each pixel a ∈ V is labeled

as belonging to the object only if V
6‖
o (a) > Vb(a).

A
in,;
ORFC(So,Sb) = χ

O : O = {a ∈ V : V 6‖
o (a) > Vb(a)} (2)

Note that although this ORFC version is based on optimum

connectivity maps, its practical results have undesirable char-

acteristics, such as the presence of disconnected regions and

high false-positive rates, leading to unsatisfactory results.

B. ORFC as a directed cut in the digraph

Given that the previous ORFC definition (Section III-A)

presents undesirable results, in this section we present an

alternative definition supported by a graph cut optimality

criterion, which is motivated by the definitions from RFC [7].

Differently from RFC, in the case of directed graphs, we

have two possible sets of cuts (Figure 3):

Cout(x) = {〈a, b〉 ∈ E : x(a) = 1 ∧ x(b) = 0} (3)

(a) (b)

Figure 3. The two possible sets of cuts. The inner and outer cuts for a
candidate object showing the input and output arcs.

Cin(x) = {〈a, b〉 ∈ E : x(a) = 0 ∧ x(b) = 1} (4)

So we have two possible formulations for the energy functional

of the ε∞-minimizing problem.

εout∞ (x) = max
〈a,b〉∈Cout

w(a, b) (5)

εin∞(x) = max
〈a,b〉∈Cin

w(a, b) (6)

Let εout∞↓ be the minimum value of the energy εout∞ (x), that is:

εout∞↓ = min{εout∞ (x) : x ∈ X (So,Sb)} (7)

Similarly, for εin∞(x), we have:

εin∞↓ = min{εin∞(x) : x ∈ X (So,Sb)} (8)

Therefore, we have the following sets of solutions:

X out
∞ (So,Sb) = {x ∈ X (So,Sb) : ε

out
∞ (x) = εout∞↓} (9)

X in
∞ (So,Sb) = {x ∈ X (So,Sb) : ε

in
∞(x) = εin∞↓} (10)

The ORFC algorithms on digraphs have the following defi-

nitions based on cut in graph:

For the outer cut “out” with one internal seed s1,

A
out,✂
ORFC({s1},Sb) = χ

O ∈ X out
∞ ({s1},Sb) : |O| =

min {|P | : χP ∈ X out
∞ ({s1},Sb)}

(11)

and in the case of multiple internal seeds,

A
out,✂
ORFC(So,Sb) = χ

O : O =
[

⋃

si∈So

P : χP = A
out,✂
ORFC({si},Sb)

]

(12)

For the inner cut “in” with one internal seed s1,

A
in,✂
ORFC({s1},Sb) = χ

O ∈ X in
∞ ({s1},Sb) : |O| =

min {|P | : χP ∈ X in
∞ ({s1},Sb)}

(13)

and in the case of multiple internal seeds,

A
in,✂
ORFC(So,Sb) = χ

O : O =
[

⋃

si∈So

P : χP = A
in,✂
ORFC({si},Sb)

]

(14)



C. ORFC algorithm based on graph cut

In order to show the proposed algorithms, we need the

following definition:

Definition 1 (Directed Connected Component). For a given

vertex x of a digraph G, the directed connected component

of basepoint x is the set, denoted by DCCG(x), of all the

successors of x in G (i.e., all the nodes that are reachable

from vertex x by some path).

Algorithm 1:

Algorithm to compute A
in,✂
ORFC({si},Sb):

1) Compute the value of the map Vb(si) for

the function fSb

min.

2) Remove from the graph G all edges with

weight ≤ εin∞↓ = Vb(si), obtaining a new

graph G≤.

3) Assign to the object the pixels that be-

long to the directed connected component

of basepoint si in the transpose graph of

G≤ (i.e., A
in,✂
ORFC({si},Sb) = χ

O : O =
DCCGT

≤
(si)).

Figure 4 illustrates the steps of Algorithm 1.

Algorithm 2:

Algorithm to compute A
out,✂
ORFC({si},Sb):

1) Compute the value of the map V
6‖
b (si) for

the function f
6‖ Sb

min .

2) Remove from the graph G all edges with

weight ≤ εout∞↓ = V
6‖
b (si), obtaining a new

graph G≤.

3) Assign to the object the pixels that be-

long to the directed connected compo-

nent of basepoint si in the graph G≤

(i.e., A
out,✂
ORFC({si},Sb) = χ

O : O =
DCCG≤

(si)).

IV. HYBRID SEGMENTATION: ORFC & GRAPH CUT

In this section, we follow the same key ideas from [3],

which proposes a hybrid approach combining the strengths of

relative fuzzy connectedness and min-cut/max-flow algorithm.

The graph cut (GC) natively supports the soft constraint

of boundary polarity, and will be denoted as oriented graph

cut (OGC). It (Aout
OGC(So,Sb)) solves the ε1-minimization

problem by considering the arcs that limit the flow from the

source to the sink, and consequently minimizes the sum of

the edges pointing from object to background pixels (i.e., the

outer cut) [4]. The minimization of the sum of the arcs of the

inner cut (Ain
OGC(So,Sb)) can be obtained by inverting the

source and sink nodes, or by reversing all arcs by computing

GC over the graph’s transpose GT .

Basically, by considering in [3] a directed weighted graph,

with ORFC in place of RFC, we have the ORFC + GC

hybrid approach (Figure 2) as follows:

(a) G = (V, E, w) (b) Initialization fSb

min

(c) Vb(si) = 1 (d) G≤

(e) GT
≤ (f) Result

Figure 4. Algorithm A
in,✂
ORFC

(So = {si},Sb). (a) Image as a digraph. (b)
Initialization of IFT with background seed Sb for computing the connectivity

value Vb(si) using the conectivity function f
Sb

min. (c) Result of step 1: The
value Vb(si) = 1 is computed by IFT. (d) Step 2: the graph G≤. (e,f) Step
3: The transpose graph of G≤ and finally, the object’s pixels from the DCC.

Algorithm 3:

Algorithm to compute A
in,✂
ORFC+GC(So,Sb):

1) Compute P : χP = A
in,✂
ORFC(So,Sb).

2) Compute Q : χQ = A
out,✂
ORFC(Sb,So).

3) Compute and return Ain
OGC(P,Q).

Algorithm 4:

Algorithm to compute A
out,✂
ORFC+GC(So,Sb):

1) Compute P : χP = A
out,✂
ORFC(So,Sb).

2) Compute Q : χQ = A
in,✂
ORFC(Sb,So).

3) Compute and return Aout
OGC(P,Q).

Figure 5 illustrates the steps of Algorithm 4.

V. EXPERIMENTAL RESULTS

In the first experiment, we used 40 slice images from real

MR images of the foot and 40 slice images from CT thoracic

(Figure 6). We performed the segmentation of the liver and



Figure 5. Algorithm A
out,✂
ORFC+GC

(So,Sb). (a) Input image with seeds So

e Sb (b) P : χP = A
out,✂
ORFC

(So,Sb). (c) Q : χQ = A
in,✂
ORFC

(Sb,So). (d)

Aout
GC

(P,Q).

bones calcaneus and talus for all the methods (IRFC [1],

RFC [15], OIFT [12], RFC+GC [3], OGC [4] - the graph

cut with boundary polarity, ORFC, and the proposed hybrid

method ORFC + GC), for different seed sets automatically

obtained by eroding and dilating the ground truth at different

radius values. By varying the radius value, we can repeat the

segmentation for different seed sets and trace accuracy curves

using the Dice coefficient of similarity, and error curves of

false positive (normalized by the object size). However, in

order to generate a more challenging situation, we considered a

larger radius of dilation for the external seeds (twice the value

of the inner radius), resulting in an asymmetrical arrangement

of seeds.

We also repeated the experiments using two three-

dimensional datasets (Figure 7). In the former case, a MRI-T1

dataset of 20 human brain was used to segment the cerebellum,

The images were acquired with a 2T Elscint scanner and

at a voxel size of 0.98 × 0.98 × 1.00 mm3, for the second

dataset, we considered a skull stripping task (Figure 8) (i.e.,

to eliminate background, bones, eyes, skin, and blood vessels)

using ten 3 Tesla MRI-T1 images.The RFC and ORFC

methods performed poorly on these datasets due to the lack of

a clear contrast between the structures. We considered α = 0.5
(orientation factor that was used to calculate the digraph from

the undirected graph) in all experiments involving OIFT ,

OGC, ORFC, and ORFC + GC; and α = 0.0 in the case

of undirected approaches. The value α = 0.5 is the default

value adopted in experimental resuls [12], which is more well

balanced configuration. For low values (α ≈ 0.0), the oriented

methods (e.g., ORFC) degenerate into their counterpart undi-

rected approaches (e.g., RFC), and for high values, the oriented

methods may become more sensitive to noise. Nevertheless,

the hybrid approach ORFC + GC showed the overall best

results, demonstrating the importance of hybrid methods, and

making clear that, even in these cases, ORFC can help to

improve the graph cut delineation, and to reduce its running

time.
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Figure 6. The experimental curves for the 2D datasets. The mean accuracy
curves (Dice coefficient of similarity) and the normalized false positive curves,
using non-equally eroded-dilated seeds, for segmenting: (a,b) calcaneus, (c,d)
talus, and (e,f) liver.
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Figure 7. The experimental curves for the 3D datasets. The mean accuracy
(Dice coefficient) and normalized false positive curves, using non-equally
eroded-dilated seeds, for segmenting: (a,b) cerebellum dataset, and (c,d) skull
stripping dataset.

VI. CONCLUSIONS

We introduced the ORFC technique and showed that it

can effectively exploit the boundary polarity improving the

results in relation to its predecessor RFC. We also presented



Figure 8. Example of skull stripping. (a) The ground truth. The segmentation
results for: (b) OGC, (c) RFC, (d) ORFC, (e) IRFC, (f) OIFT, (g) RFC+GC,
and (h) ORFC+GC.

a powerful hybrid approach, which outperforms the previous

works [3], [17]. A conference paper was published in SIB-

GRAPI [18], and one journal paper was published in the

EURASIP Journal on Image and Video Processing [19]. As

future work, we intend to test the usage of shape constraints in

the ORFC (similar to what was done in [14]), and to combine

the proposed methods with Fuzzy Object Models [20], in order

to get a fully automatic segmentation result.
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