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Fig. 1. Image quality and nose tracker diagram. Red lines are detected areas, blue and green areas are best and worst tracking predictions, respectively.

Abstract—Face tracking uses temporal information to infer the
position of the face in each frame. One of its applications is in
unconstrained (in-the-wild) environments where face detection
methods fail to perform robustly. Current approaches presented
in the literature are based on facial landmarks. Therefore, they
have limitations when applied in in-the-wild environments as
estimating the landmarks in such scenarios is not trivial. To
address this issue, we propose a novel landmark-free approach
based on a state-of-the-art generic visual tracking method, as
baseline, combined with face quality assessment for initializing
the tracking. In addition, we introduce using only the nose region
as a solution for in-the-wild face tracking, initializing it with the
nose of the best quality face in the video sequence. The nose is
detected and used to estimate the head pose, which is combined
with the face quality score for choosing the initialization frame.
The nose region, rather than the entire face was chosen due
to it being unlikely to be occluded, mostly invariant to facial
expressions and visible in a long range of head poses. We
performed experiments on the 300 Videos in the Wild dataset
and our results favorably compared against the baseline method.
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I. INTRODUCTION

According to Jain et al. [1], facial recognition is one of
the fundamental problems in computer vision. To this end,
existing approaches assume that the face is detected on the first

stage of the recognition pipeline. When working with videos,
a successful face detection is not required for every frame, as
the available temporal information allows the use of a facial
tracker for increased face localization accuracy.

Because most state-of-the-art face tracking methods use
landmarks [2], [3], they tend to not be robust in in-the-
wild scenarios, including profile head poses where half of the
landmarks are occluded by the face. Generic visual trackers
provide landmark-free alternatives and have been successfully
applied to predicting the location of a large range of objects,
including faces [4], [5], [6], [7].

We propose the adaption of a generic visual tracker [4] for
in-the-wild face tracking while using only to nose region for
increased reliability. The nose has been shown to be efficient
for biometrics [8], [9], it is visible even on profile faces, it is
not easily deformed by expression and it is not likely to be
occluded by accessories. We also explore a more extensive use
of face detection [10] combined with face quality estimation
[11], such that tracking can be performed both forwards and
backwards starting from the highest quality frame (Figure 1).
To evaluate our proposition, we perform tests on the 300
Videos in the Wild (VW) [12] and compare our results against
the same tracker using the whole face and without the initial
frame selection step.



This paper is organized as follows: existing related works
are reviewed in Section 2; all steps of our approach are
described in detail in Section 3; our results are presented and
discussed in Section 4; and Section 5 includes final remakrs
and a few words on future work.

II. RELATED WORK

Tracking methods are commonly subdivided into rigid and
non-rigid approaches. Face tracking is usually done through
non-rigid methods using landmarks [2], [3], [13], however
profile poses are still challenging when tracking landmarks
[14]. Rigid face tracking is similar to generic visual tracking,
a bounding box of a single object in the first image is given
and the position of the box is calculated in the subsequent
frames, adapting to the changes in appearence of the object
[4], [5], [6], [7].

Visual tracking algorithms are subdivided into two cate-
gories, generative and discrimininative trackers. The first uses
generative models to find probable candidates for the next
object location and are mostly based on principal component
analysis (PCA) [15] or sparse representations [16], [17]. The
latter learns binary classifiers to segment the target and the
background, these can be based on Haar-like features [18],
[19], [20], boosting variants [21], [22] and correlation filters
[23], [24], but tend to have poor performance under uncon-
trolled environments, such as illumination changes, deforma-
tion and partial occlusion.

Recently, Convolutional Neural Networks (CNN) have re-
ceived significant attention with state-of-the-art results on
computer vision tasks such as image classification [25], object
recognition [26], detection and segmentation [27]. Wang et al.
[28] proposes a novel structured output CNN which transfers
generic object features for online tracking, a CNN is pre-
trained to distinguish objects from non-objects, and the output
is a pixel-wise map that indicates the probability of each
pixel belonging to the target. Hong et al. [7] learn a target-
specific saliency map using a pre-trained CNN. Li et al. [29]
learn two CNN classifiers from binary samples and do not
require a pre-training procedure. The aforementioned CNN
methods rely on positive and negatives training samples and
only exploit features from the last CNN layer. According to Ma
et al. [5] this information is insufficient for capturing spatial
details such as target position, and fails on visual tracking
approaches. Features from multiple convolutional layers have
also been extracted [5], [6] on pre-trained networks on large-
scale datasets such as VGG-Nets [30], [31].

Nam & Han [4] propose a MDNet (Multi-Domain Net-
work), which learns from a set of videos with ground-truth
annotations, achieving state-of-the-art results on the Visual
Object Tracking Challenge [32].

III. FOLLOW THAT NOSE APPROACH

We adopt a Multi-Domain Network (MDNet) [4] as our base
nose tracker. To increase tracking accuracy, we use the face
quality information [11] combined with the head pose [33]
to choose the best frame to initialize our tracker, performing

tracking both forwards and backwards using the best frame as
a starting point.

A. Multi-Domain Network (MDNet)

Existing convolutional neural network architectures for vi-
sual tracking [5], [6] are substantially smaller than the ones
commonly used for typical recognition tasks such as AlexNet
[25] and VGG-Nets [30], [31]. This is due to two different rea-
sons: visual tracking distinguishes between only two classes,
target and background; and deep CNNs are less effective
for precise target localization as the deeper the network is,
the more diluted the spatial information is [7]. MDNet-based
trackers [4] are designed to learn shared features and classifiers
specific to different tracking sequences.

During training, a generic representation is created in the
shared layers across all domains. During testing, when evalu-
ating a new sequence, a new branch is built from the initial
frame using 500 positive and 5,000 negative samples around
the ground-truth. For each subsequent frame, an online update
is performed for increased robustness.

B. Face Quality Assessment

To assess the face quality, we first detect it using Faster R-
CNN [10]. We trained our detector using the whole training
subset (12,754 faces) from the Janus CS2 dataset1. The score
is set to zero for the frames with no face detections. Abaza’s
et al.’s face quality estimation method [11] is then applied
to the face region, generating scores for contrast, brightness,
focus, sharpness and illumination, which are aggregated by
calculating their geometrical average.

The nose region is then detected inside the face, using the
same method. We trained our nose detector on a manually
annotated subset (containing 6,435 noses) [33] of the IJB-A
dataset [34], which already is a subset of Janus CS2. Head
yaw pose information is extracted using the NosePose method
[33] trained on the same subset.

The pose and quality information are combined such that
face regions that did not yield any nose detections or have
a near profile head yaw have their quality scores set to zero.
The highest quality face’s nose is used to initialize the tracking
stage. This provides the tracker with a high quality nose region
that includes little to no background, favoring success. The
face quality assessment is used only for choosing the best
frame for initializing the tracker. The detection of face and
nose region are not considered when tracking.

C. Nose Tracking

Nam and Han’s [4] original MDNet training using generic
videos is applied for tracking the nose. It is used twice, for-
wards and backwards in time using the best frame as starting
point, the online training step is performed individually for
each subsequence. For each subsequent frame, 256 samples
are collected with varying translation and scale based on a
Gaussian distribution with the mean as the previous location.
These are evaluated by the network and given a score, the

1The Janus CS2 dataset is currently not publicly available.



average of the top 5 samples is computed and presented
as the final prediction. After estimation the position of the
nose in all frames, both forwards and backwards results are
concatenated, generating the final estimation for the whole
video. Our nose tracker is presented in Algorithm 1 in function
estimateNoseLocation and the main steps are also
shown as a diagram in Figure 1.

Algorithm 1 Follow That Nose Tracker. The trackFrame
function is the application of the visual tracker

function ESTIMATENOSELOCATION(frames)
loadNetworkArchitecture()
loadTrainedModel()
bestFrameIndex, nose← getBestNose(frames)
initializeTracking(frames[bestFrameIndex])
noses[bestFrameIndex]← nose
for i← bestFrameIndex− 1 down to 0 do

noses[i]← trackFrame(frames[i], noses[i+ 1])
end for
for i← bestFrameIndex+1 to len(frames)− 1 do

noses[i]← trackFrame(frames[i], noses[i− 1])
end for
return noses

end function

IV. EXPERIMENTAL RESULTS

We quantitatively assess our method’s performance against
the baseline on the 300 Videos in the Wild dataset. It in-
cludes 114 challenging publicly available videos with a total
of 222,093 frames. Every frame is annotated with 68 face
landmarks, which were used for generating both the nose
and face ground-truth when evaluating our and the baseline’s
performance on all videos in the dataset.

The baseline method is initialized with the ground-truth
face annotation on the first frame of each video. Our method
makes use of the procedure described in Section III-B to
select the initial frame while using the detected nose region
for performing the quality assessment. However, to achieve a
fair comparison and not be affected by the nose region size
differences in different datasets, the tracker is initialized using
the ground-truth nose region.

The tracking accuracy is evaluated on a frame-by-frame
basis, using two different metrics, the intersection coefficient
[35] and the precision [32] (Algorithm 2). The increase in
accuracy is clear when only the nose region is tracked, the
predicted regions are calculated with greater precision when
using the nose (Figure 3), however they do not intersect as
tightly with the ground-truth when compared to the baseline
(Figure 4). Figure 2 shows an example of the nose region
being tracked with greater accuracy.

V. CONCLUSION

We presented an alternative approach for face tracking,
integrating face quality assessment and using only the nose
region. Given a video sequence, the initial tracking frame is

Algorithm 2 Both prediction evaluation metrics: Intersection
Coefficient and Precision. The predicted region is represented
as pred and the ground-truth region as gt

function ICOEFFICIENT(pred, gt)
intersection← getIntersection(pred, gt)
iArea← intersection.width ∗ intersection.height
pArea← pred.width ∗ pred.height
gArea← gt.width ∗ gt.height
return min(iArea/pArea, iArea/gArea)

end function
function PRECISION(pred, gt)

return l2norm(center(pred), center(gt))
end function
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Fig. 3. Comparison of the precision metric between the baseline and our
approach. The percentage of frames where the error was less than or equal
to 20 pixels is displayed in parenthesis
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Fig. 4. Comparison of the intersection coefficient metric between the baseline
and our approach. The area under the curve is displayed in parenthesis



Fig. 2. Example sequence where the nose tracking (in green) performs better than the face (in red)

selected based on the image quality of the face and the head
yaw. Tracking is performed on the nose, as it is consistent
even in challenging environments. Our approach was applied
to a state-of-the-art visual tracking method [4] and compared
against the baseline, using the face region and initializing
with the first frame. Experiments on the 300VW dataset [12]
showed that we able to achieve higher precision rates in
challenging scenarios. As part of future work, we would like
to train the visual tracker using only nose images to increase
the intersection performance and evaluate our approach on
different datasets.
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