Interactive lighting and shading of 2.5D models

Bruno A. D. Marques
Universidade Federal Fluminense, Brazil
Universidade Federal do ABC, Brazil
brunodortamarques @ gmail.com

Joao Paulo Gois
Universidade Federal do ABC, Brazil
joao.gois @ufabc.edu.br

Fig. 1.

Interactive lighting and shading of 2.5D models: On the left, three 2D drawings of a model and (a) the resulting 2.5D model with solid fill

colors. On the right, the shaded 2.5D model with (b) Phong shading, (c) Gooch shading and screen-space texture hatching, (d) object-space texture
hatching and cartoon shading, (e) Phong shading and fur simulation and (f) environment mapping and Phong shading hatching.

Abstract—Recent Advances in Computer assisted-methods for
designing and animating 2D drawings allowed artists to achieve
distinctive design styles while reducing the artist’s workload.
An advance that has gained particular attention is the 2.5D
modeling, which simulates 3D transformations from a set of 2D
vector arts. However, previous 2.5D modeling techniques have
not allowed the use of interactive lighting and shading effects.
In this work, we present a technique to achieve interactive 3D
shading effects to 2.5D modeling'} Our technique relies on the
graphics pipeline to infer relief and to simulate shading effects
in 2.5D models in real-time. We demonstrate the application
of the technique with several shading and texture effects as
examples, including: Phong, Cartoon and Gooch shadings, as well
as environment mapping, fur simulation, procedural animated
texture mapping and (object-space and screen-space) texture
hatching. Additionally, we produced an interactive 2.5D modeling
tool, which enables users to effortlessly create and edit shading
effects in 2.5D models.
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I. INTRODUCTION

The improvement of techniques and tools that assist artists
has benefited the development of all areas of visual arts. Spe-
cially, 2D animation artists have used computer-assisted tools
and techniques to automate or facilitate the creation process.
Strategies which generate intermediate frames between two
key-frames (inbetweening techniques) [[1]]-[4]] and simulate 3D
effects in 2D drawing [5]-[8] have received much attention.

IThis work is based on a M.Sc. dissertation entitled “Preenchimento
e Iluminagdo Interativa de Modelos 2.5D”, of the Graduate Program of
Computer Science of the Federal University of ABC, Brazil.

In particular, there are 2.5D modeling techniques [4], [9] that
simulate 3D transforms from a set of 2D vector art drawings.
These methods generate plausible 3D points of view in any
3D angle. Three drawings are sufficient for a satisfactory
simulated rotation around the 3D space [4], [9]. However,
the existing 2.5D modeling techniques include a series of
limitations, in special, the inability to implement lighting and
shading effects on the 2.5D model.

2D vector art drawing tools employ a wide range of shading
techniques such as light mapping, gradient-based region fill-
ing, texturing and shadows. Previous to this work, interactive
2.5D modeling techniques only support 2D shapes filled with
solid colors, limiting the perception of shading and lighting as
well as the ability to assign materials to the shape’s surface.

Contributions: The technique presented in this work

allows the user to interactively create 2.5D models with
different types of materials, lighting and shading effects. We
demonstrate the technique for a variety of shading effects,
originally designed for real-time 3D rendering, including ef-
fects such as Cartoon Shading, Phong Shading, Environment
Mapping, texture based Hatching and fur simulation. These
effects depend on the geometric properties of 3D models
such as surface normals and surface parametrization which are
absent in the previous 2.5D Modeling approaches. An example
of the effect achieved by our approach is shown in Figure [I]
(b-D).

Our technique is composed of two steps: The first step
correspond to the 2.5D modeling simulation. This step is
performed exclusively on the CPU. The second step generates
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the 2.5D shading simulation. This process is executed on the
GPU where we estimate the 3D properties in the interior
of 2D shapes. The use of programmable graphics hardware
for the simulation of these geometrical properties allows the
implementation and effects editing in interaction time. As a
byproduct of our approach, we present an interactive 2.5D
modeling tool capable of simulating different 3D shading
effects in real-time (Sec. [V-A).

This work was presented and published as a full paper at
the 2015 Graphics Interface conference named: Interactive
Shading of 2.5D Models [|10]. Some figures presented here
are originally from this conference work.

A. Related works

In recent years, many approaches have been proposed to
improve the visual appearance of 2D drawings. Di Fiore
et al. [4] proposed an approach that aims to simulate 3D
rotations from 2D drawings. The technique computes inter-
mediate frames (inbetweening) of 2D drawings using 2.5D
modeling. The artist provides a set of 2D drawings, which
represents the object at different points-of-view, and defines
a depth value for each curve of each 2D drawing. The
technique is capable of generating new points-of-view for any
3D rotation. This is achieved through the interpolation and
deep ordering of the input curves. Similarly, Rivers et al. [9]]
presented the 2.5D Cartoon Model, a technique to simulate
3D rotations from 2D drawings. However, unlike the previous
work, the 2.5D Cartoon Model employs an automatic depth
ordering of the curves. An et al. [11] proposed a technique
to automatically convert 3D objects in 2.5D Cartoon Models.
The method generates 2.5D curves and deep ordering based
on the segmentation of 3D meshs.

Di Fiore and Van Reeth [[12]] proposed an approach to assist
artists in the creation of different 2D points-of-view. The
method generates 3D polygons approaching (user-input) 2D
drawings. These 3D polygons serve as visual guides that help
the artist to maintain the proportions and volumes consistent
across multiple points-of-view.

Yeh et al. presented double-sided 2.5D graphics [13]. The
system receives as input two images representing front and
back sides of a 2D shape and then simulates geometrical
effects such as roll, twist and bend. Opposing to previous 2.5D
techniques, double-sided 2.5D graphics does not simulate rigid
3D rotations.

Sykora et al. [5]] presented a technique to embed depth
information into 2D drawings. The method is based on a
set of depth (in)equalities that avoid the need of absolute
depth values. This approach is formulated by the authors as
an optimization problem that can be solved by quadratic pro-
gramming algorithms. Considering that solution excessively
time-consuming, they proposed an approximate solution which
depends on solving a Laplace equation.

In recent years, several techniques to simulate relief from
2D drawing were presented. Some techniques rely on recon-
structing the 3D geometry of objects using meshs [[14]—[17]],
point-sets [18]], or curves [19]]. Other approaches tackle the

issue by simulating relief effects from estimated 3D normal
vectors inside a 2D curves [20]-[24]. Our approach belongs to
this strategy, considering that this strategy is computationally
suitable for interactive applications.

Lumo [20] is a vector-based method to apply shading in
2D drawings. It assumes that each drawing shape belongs to
the silhouette of a 3D object, implying that the normals of the
curve are located in the screen plane. Lumo fills the region
in the interior of the curve by propagating the normals of the
curve to a 3D normal field. The propagation is achieved by an
iterative dampened-spring diffuser method. Bezerra et al. [25]]
employs a similar strategy to apply shading in 2D raster-based
drawings.

Nascimento et al. [22] proposed an explicit method to cal-
culate the 3D normal field in the interior of curves. Similarly,
Knechtel [26] presented a structure (ancestry tree) that allows
the creation, reconstruction and editing of normal maps on 2D
drawings at interactive rates.

The method of Sykora et al. [5]], which propagates smoothed
depth information inside the drawings curves, can be used
to interpolate normals and generate a 3D normal field. This
technique was used in later works of the authors [7], [8]]. Al-
though these methods produces plausible results, they cannot
be considered as interactive, since it takes several seconds to
generate a single frame [8]. Moreover, these techniques are
applied to 2D drawings and do not consider the simulation of
3D transformations.

In the next sections, we present the technical details of
the interactive lighting and shading 2.5D method as well as
the characteristics that we adopted in our implementation.
Specifically, in Section [II} we exhibit an overview of the 2.5D
modeling technique. A detailed description of the technique
is available at Gois et. al [10]]. In Section we present the
technique of lighting and shading 2.5D models. The technique
is performed on CPU and GPU, each step is depicted through
its own subsection. In Section we report our results, in-
cluding an interactive 2.5D modeling tool (Section[IV-A) and a
brief discussion about performance of the application (Section
[[V-B). Conclusions, including suggestions of an application
and future works for 2.5D Models are described in Section

II. 2.5D MODELING

The 2.5D Model uses a set of 2D drawings provided by
the artist to create a model where you can simulate 3D
transformations. The essential steps of the method consist of
plausible interpolate shapes of 2D drawings considering their
space orientation and automatically determine the depth order
relation of curves that constitute the 2.5D Model.

In our approach, the user defines a set of 2D points-of-
view (e.g. front, side, top) of the same object. The drawing
in each point-of-view is composed of a set of filled shapes.
A (pitch;yaw) parameter is assigned to each 2D point-of-view.
These parameters represent the position of a point-of-view in
a spatial orientation. The parameters have a value defined as:
—g < pitch < g and —7 < pitch < .



We assume that the 2D drawings for the parameters
(pitch;yaw) = (0;0) (front view) and (pitch;yaw) = (0;7)
(back view) correspond to orthographic projections onto the
xy-plane. We also define a z component that can be used
to determine the depth order of the drawing shape. The z
component could be the z value of any non-front and non-
back drawing. We take the average of the z values over all
views that contain this depth information, e.g., all drawings
except the front and back one [10].

Rivers et al. [9] proposed an approach to interpolate among
a set of 2D drawings. In that approach, the pitch-yaw orien-
tation space is mapped to a 2D plane. Each 2D user-input
drawing is associated with a 2D position on the plane. A
Delaunay triangulation is then computed considering the 2D
positions of the drawings on the plane as vertices of the
triangulation. New drawings are determined by barycentric
interpolation inside the Delaunay triangulation. We also use
this method in our approach.

III. LIGHTING AND SHADING

In this section we present the technique of lighting and
shading 2.5D models. The main goal of this method is
to interactively simulate 3D shading effects in the interior
of the shapes of the 2.5D models. These effects depend
on 3D geometric properties, such as surface normals and
parametrization of the surface. These properties are estimated
in real time whenever a new frame is generated. Figure
presents an overview of the method. Bold arrows indicate
processing flow and dashed arrows show data communication.
The method consists of two main processing stages: the first
stage is executed on CPU and the second on GPU. The CPU is
responsible for the 2.5D Modeling and calculating the Contour
Normals along the curve. The Contour Normals are used for
the simulation of 3D relief inside the curves. Whenever a curve
is edited or created, the normals are recalculated and sent to
the GPU, where the 3D relief is simulated.

A. Contour Normals

We assume that the contour of any 2D shape of a 2.5D
model corresponds to the silhouette of a smooth surface
(Figure [3(a)). Hence, the curve normals have components
(z,9,0), where (x,y) are the normals along the contours of
the 2D shape [20] [22] [10].

The Contour Normals are computed in the vertices of
polylines that approximate the contour curve(Figure[3(B)). The
contour normals are computed in the CPU and stored in a
Texture Buffer Object (TBO) on the GPU. Later, the contour
normals are propagated to the interior of the shape as a 3D
normal field. This process is shown at Figure [2]

B. Dynamic Grid

Propagation of the contour normals to the interior of a
shape is a task that requires intense computing power. To
work around this problem, we create a dynamic grid that
fits the dimensions of the bounding rectangle of the shape
(Figure [3] (c)). Then, we calculate normals at the vertices of
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Fig. 2. Overview of the data and control flow for shading 2.5D models. The
execution flows from CPU to GPU. Extracted from [10].
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Fig. 3. The pipeline for computing normals inside a shape of a 2D curve:
(a) shape interpolated by the 2.5D modeling; (b) 2D normals computed along
the contour of the shape; (c) tesselation of the bounding rectangle of the
shape; (d) 3D normals estimated in the vertices of the tesselated bounding
rectangle; (e) normal field interpolated for each fragment, encoded in RGB
color. Extracted from [10].
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the dynamic grid (Figure E] (d)). As soon as the normals are
calculated, they are interpolated for each fragment using the
linear interpolation present in the GPU pipeline (Figure [3{e).

To create the dynamic grid in real time, we use the
Tessellation Control and Tesselation evaluation shader stage
included in the rendering pipeline (Figure [2). Initially, the
grid is composed of a single quad that is stored in a buffer
object into the GPU. For each curve, this quad is appropriately
scaled to fit the bounding rectangle of the curve. The levels
of inner and outer tessellation are adjusted to subdivide this
quad proportionally to changes in vertical and horizontal scale
of the bounding rectangle. For a bounding box with different
aspect ratio, the tessellation level is adjusted according to the
size of the most lengthy dimension.

C. Normal Field

An explicit formulation for propagating the normals was
proposed by Nascimento et al. [22[]. We used an approximation
of this approach due to the fact that it can be incorporated
easily into the parallel architecture of the GPU. In particular,
the normal of each vertex of the dynamic grid (Section [[II-B)
can be calculated independently in a single step in the vertex
shader of the GPU. Every normal n at a vertex position p of
the dynamic grid is estimated taking into account all normals
pei =1,...,N) along the curve. The x and y components of
the normal n is given by:
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The normalization of the normal vector in p is ensured by

imposing:
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We estimated a 3D normal for each vertex of the dynamic grid.
The 3D normals are interpolated by the GPU raster to produce
a smooth 3D Normal field. Figure |3| (¢) shows the resulting
interpolated normals encoded as a RGB color image.

We define creases and ridges that can change the way that
light reacts to a surface. These creases affect the shading of
the shape. The creases are produced from user-made markings
in the interior of a 2.5D shape. These markings are cubic
splines that represent shading restriction. The orientation of the
normals along these markings determine whether they address
a crease or a ridge on the surface of the 2.5D Model. The
shading constraints are incorporated to the regular contour
normals of the shape [10].

D. Shading

Instead of calculating the lighting equations directly for each
pixel within the 2D curve, we first generate an illuminated ref-
erence model having the same lighting characteristics desired

in the final surface. Specifically in this work, the reference
model is the rendering of a shaded sphere generated in a
particular point-of-view and stored in a frame buffer object
(FBO) (Figure [2). This FBO is used as a texture look-up
table that is indexed by the components (x, y) of the normal
vector. The choice of using a proxy model for lighting is a well
known approach in the literature [20].This method accelerates
the processing time of the lighting and texture mapping, since
the performance of the illumination process does not depend
on the complexity of the shapes.

It is important to mention that, unlike Lumo [20] which uses
a static texture of the shaded sphere, in this work it is necessary
to perform the rendering of this reference model whenever a
change in shading or lighting occurs. This is essential due to
the 3D rotations in 2.5D model technique which can change
the relative positions between the light sources and the viewer.

E. Contour Clipping

Not only our approach consider the shading of the interior
of a shape, but the entire area inside the bounding rectangle
of the shape is shaded. Thus it is important to discard the
exterior of the shape. To this purpose, we apply a per-pixel
contour clipping operation in screen space.

Instead of performing a clipping operation on the contour
of each shape, an alternative approach could be adopted. This
approach would involve the creation of a mesh constrained by
the interior of the shape. This approach would avoid shading
the exterior and clipping of the shape. However, this would
require a high computational effort to update the VBO (vertex
buffer object) whenever the shape is changed. Our method
requires only a single static quad as input and perform a
clipping in a per-pixel accuracy.

IV. RESULTS AND DISCUSSION

As a result of this work, we implemented a multi-platform
application which includes a 2.5D modeling tool with interac-
tive lighting and shading abilities. To this implementation, we
used the QT Framework version 5.3.2 [27]]. All shaders have
been implemented in OpenGL Shading Language (GLSL),
version 4.2. All tests were performed on a computer with
Intel i5-4670K configuration with 8§GB RAM and GPU AMD
Radeon R9 290.

A. interactive 2.5D modeling tool

An interactive 2.5D modeling tool was implemented for
demonstrating our 2.5D modeling and shading technique. The
application supports open and closed cubic spline curves as
input for the vector-art drawings. The user can navigate in
3D space from a virtual trackball or by manipulating a small
view-cube located in the upper right corner of the viewport.

Generally, the user draws three 2D views of the model.
Being the front, side and top views the most used ones. These
orthogonal views can be easily accessed by selecting one of
the view-cube sides. Other viewing angles are simply accessed
freely rotating the view-cube.
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Fig. 4. The interactive 2.5D modeling tool interfaces: In the back, the main
window with a Phong shaded shape; In the front, the shading and material
library window. Extracted from

The editing tools are accessed by a tool bar, which incorpo-
rates the basic features: pen, move and select tool. (Figure [).
There is also a fourth tool that allows the creation of curves
that define shading constraints.

In addition to the basic tools for the creation of 2.5D model,
the application also provides an interface that works as a
material library containing preset shading effects. It is possible
to manipulate the parameters of each effect and save them as
new effects (bottom right of Figure [).

B. Performances

TABLE I
TIMING RESULTS FOR RENDERING THE SHADED 2.5D BUNNY MODEL

(b) Number of shapes rendered
with a random selected shading
effect

(a) All shapes were rendered
using the same effect.

Rendering effect fps Shaded shapes fps*
Solid colors 983 0 983
Phong shading 82 1 220
Cel shading 81 2 190
Animated texture 78 5 179
Environment mapping 79 10 102
Gooch shading 81 15 73
Hatching (object-space) 80 17 64
Hatching (screen-space) 69 *The average fps for shapes

Fur simulation 39 rendered with random

selected shading effects

We rendered the 2.5D Bunny model (Figure [3), which is
composed of 17 shapes, in a viewport scene with a resolution
of 1024 x 768 pixels. Table [[] (a) shows the frames-per-second
(FPS) where all 17 shapes were rendered using the same effect.
Most of the effects reached around 80 fps. Solid colors are
the most efficient ones. This is caused by the following steps
that are not present in this effect: estimation of the normals,
use of 3D reference model and dynamic grid tessellation. The
hatching in screen space also has the worst performance when

Fig. 5. The 2.5D Model Bunny. On the top left, the input drawing stroke; the
model shaded with a combination of cartoon shading, Gooch shading, Phong
shading, fur simulation, environment mapping, animated texture shading and
texture hatching.

compared to the same effect in the object space due to the
additional processing time to map the hatching textures in
screen space. The fur simulation was the most time-consuming
effect because it requires the geometry instancing of new
primitives directly in the geometry shader.

Table [I| (b) presents performance results showing the impact
of the number of shapes shaded with Phong shading for a
2.5D model. The first column shows the number of shapes
shaded with a randomly selected set of shading effects (Phong
Shading, Cartoon Shading, Gooch Shading, Texture Hatching,
environment mapping or fur simulation) while the remaining
shapes are filled with solid colors. Therefore, the use of distinct
shading effects in the same model does not significantly impact
the average performance.

V. CONCLUSION

We developed a technique of interactive lighting and shad-
ing of 2.5D models. Prior to this work, 2.5D modeling
techniques supported only shapes filled with solid colors. Our



technique estimates 3D geometric properties to simulate 3D
shading and lighting effects to 2.5 models.

This work was presented and published at the Graphics
Interface 2015 conference as Interactive Shading of 2.5D
Models [10].

As a byproduct of our technique, we implemented an
interactive software tool to demonstrate different 3D shading
and lighting effects in the 2.5D modeling.

Future works can address some limitations of the technique,
which include: Highly concave shapes and the use of a proxy
reference model for texture mapping may present distortions
and aliasing artifacts. Therefore, it is necessary to investigate
new texture mapping methods that fit the structure of the
2.5D model. The process of estimating the relief curves may
be enhanced in order to provide methods to produce various
visual effects such as simulated shadows, self-shadowing,
global lighting effects, physical influence on materials (fluid
simulations and gases).

An application of this work is the automatic creation of
characters in 2.5D from sketches drawn by artists. In the 3D
character creation process, the artist usually draws character
sketched at various angles, similarly to the inputs of a 2.5D
model. The conversion of these drawings to 2.5D shapes would
enable the construction of a 2.5D character quickly and easily.
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