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Abstract—The digital cameras granted many possibilities of
structure and shape recovery from imagery that are quickly
and inexpensively acquired by such devices. The state-of-art
algorithms are now able to deliver 3D structure acquisition results
from consumer-grade image sensors with quality and resolution
comparable to industry standard systems such as LiDAR and
photogrammetric equipments. Nonetheless, the processing time
of the collected imagery to produce a 3D model quickly becomes
prohibitive as the number of input images increases, demanding
powerful hardware and days of processing time to generate full
3D models from these large datasets. In this work we propose an
efficient approach based on Structure-from-Motion and multi-
view stereo reconstruction techniques to automatically generate
3D models from images. The results from six large aerial datasets
acquired by UAVs and four terrestrial datasets show that our
approach 1 outperforms current strategies in processing time,
and is also able to provide better or at least equivalent results
in accuracy compared to three state-of-the-art SfM methods.
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I. INTRODUCTION

Geometric reconstruction of the world from a collection

of images remains one of the key-challenges in Computer

Vision. Three-dimensional recovery of the geometry of an

object or a scene has several applications in Computer Vi-

sion and Robotics, such as scene understanding [1], object

recognition and classification [2], digital elevation mapping

and autonomous navigation, to name a few. For applications,

such as aerial and terrestrial mapping, for instance, image-

only based pipelines that incorporate recent SfM and multi-

view stereo techniques are strong competitors to LiDAR based

surface measurements [3].

Although Structure-from-Motion (SfM) techniques have

significantly advanced in accuracy and scalability in the past

few years, in general, their processing time increases non-

linearly with respect to the number of pictures, which makes

the processing time for most real outdoor scenes, such as

open-pit mines and large areas of cities, undesired, or even

prohibitive, specially on consumer-grade computers.

Contributions: The general contribution of our work is

the improvement of the incremental SfM pipeline by com-

bining existing ideas and proposing new ones. We propose

a new pipeline based on: I) The use of GPS information to

avoid matching distant image pairs [4], II) Consideration of

1This work relates to a Master dissertation.
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Fig. 1. Digital elevation model estimated by our methodology. (a) A dense 3D
Model using 1, 231 high resolution images from expopark dataset estimated
in only 17 hours (single core); (b) The projected textures into the mesh of a
detailed region and (c) surface reconstruction of the same region.

only the most discriminant features of the images to make

a coarse estimation of the pair geometry [5], III) The use

of approximate nearest neighbor search of the corresponding

features of the valid pairs, and IV) The use of the vocabulary

tree search to speed up the matching phase to O(n log(n)) [6].

These steps combined outperform the previously proposed

approaches individually, and reduces even more the time

required to perform the matching step when compared to

the individual approaches. Also, we propose a modified max-

imum spanning tree algorithm used in the epipolar graph

that carefully selects high quality image pairs to be used in

the reconstruction, consequently improving accuracy, but also

ensures the completeness of the results by avoiding the graph

to be disconnected. Finally, we introduce a modified local

bundle adjustment (LBA) window approach that targets local

consistency by overlapping the BA windows.

As shown in the experiments, our approach is capable of

computing the DEM faster than the other methods used in

the experiments in all the tested datasets while preserving the

quality of the results.

II. STRUCTURE-FROM-MOTION REVIEW

The incremental approach [7] [8] [4] [5] gained attention

in the past years, because of its robustness to outliers (wrong
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correspondences and relative motion estimation) and missing

data, such as the absence or wrong intrinsic parameters. Other

methods such as factorization-based [9] and global SfM [10]

can process datasets faster than incremental SfM, because they

do not need to constantly optimize the model, since they solve

the whole problem at once.

The epipolar graph is widely used to represent the geometric

relation between each pair of image in the scene [7][10] [4]

and can be defined as follows: G = (V, E), where each vertex

v ∈ V represents an image and there is an edge e ∈ E between

two vertices if there is a valid geometry relation between the

images which is encoded by the fundamental, essential or

homography matrix (the last in case of planar scenes). The

naı̈ve approach for constructing the epipolar graph is time

consuming, requiring O(n2) pairs verification to optimally

build the graph. However, efficient methods like [6] can be

used to reduce the time complexity to O(n log n) with loss

of weak edges, however the results have been shown to be a

good alternative for large datasets. Techniques like SIFT [11]

and many others can be used to detect and match points across

images, generally using a RANSAC scheme in order to handle

outlier correspondences

Besides the feature matching and geometric validation step,

another bottleneck of SfM approaches is the optimization

of the camera parameters and 3D points, that needs to be

constantly done during the reconstruction to reduce error

drifting. Optimizing large SfM problems demands highly

specialized algorithms that need to be efficient and well-

implemented. In spite of the improvements already made,

specially in exploiting the sparse block structure that arises in

bundle adjustment to speed up the computation [12] [8] [13],

the problem is still costly to solve for large datasets.

III. METHODOLOGY

In this section we detail the main steps of our methodology.

It is a novel pipeline that provides two new features: An

efficient epipolar graph building procedure improved by an

additional filtering step, and a local bundle adjustment adapted

to large-scale reconstructions.

First, the GPS constraint in addition to the vocabulary tree

score are used to efficiently prune non-overlapping pairs (Fig.

2– 1) followed by a coarse to fine geometry validation to

save even more processing time in the feature matching phase

(Fig. 2– 2). The epipolar graph’s edges are then updated by

the modified maximum spanning tree algorithm (Algorithm 1)

that carefully selects the best ones to be used in estimation of

the camera parameters and the scene structure while enforcing

the completeness of the graph (Fig. 2– 3). The camera motion

and intrinsics, as well the 3D structure parameters are incre-

mentally recovered and locally optimized by an overlapping

window containing the most recent cameras (Fig. 2– 4,5).

In the final step, our pipeline computes the dense model

using a patch-based multi-view-stereo technique and Poisson

reconstruction to obtain the final mesh (Fig. 2– 6).

Pruning: In general, in the aerial image acquisition

process, GPS data (even if noisy) will be available. It is

fair to assume that if the Euclidean distance between the

position of image pairs is large, they do not share any portion

of view. By considering that, we generate an initial graph

G = (V, E), where each vertex v ∈ V represents an image.

We connect the d nearest images according to the distance

obtained by compairing each pairs’ GPS coordinates. We used

d nearest = 40 in our experiments, which is a sufficient value

for all datasets in our experiments, considering the standard

aerial mapping acquisition pattern. For terrestrial datasets, we

raise this value to 60, since their mean overlap are generally

more redundant.

The constraint increases the time performance and reduces

the time complexity of matching n images from O(n2) to

O(n) considering aerial and large datasets. Additionally, this

avoids comparing ambiguous pairs, which makes the approach

more robust to wrong reconstructions due to views that are

actually geometrically consistent but are not viewing the same

portion of the scene (e.g. symmetric building facades).

In some cases, the GPS tags are missing for some images,

and it can become a problem when a dataset has most of its

images without GPS information. To overcome this problem,

we use a vocabulary tree approach similar to [6] to avoid

the O(n2) time complexity in the matching step. Vocabulary

trees are used in scalable image recognition to retrieve similar

images. We used SIFT [11] features to build the vocabulary

tree. In our experiments, we search for the top 60 most similar

images for each image, and we prune the edges in the epipolar

graph from the query vertice to those vertices that are not

among the highest scores of this query, excepting the edges

that were validated by the GPS distance.

Registration: In general, SfM techniques look for the

correspondence tracks between images to estimate the camera

extrinsic parameters and a sparse point cloud. We use SIFT

to extract and match the keypoints. In order to to minimize

processing costs, we sort the found keypoints by descending

order of scale and remove the small keypoints so that we keep

the features with large scale attribute up to 9.000 features

per image, which is a sufficient amount of keypoints for the

most scenarios, as suggested by [5]. The reason we select

the features with large scale attribute in many steps in the

approach is because they are more robust.

After the graph construction, we can efficiently match image

pairs in a reduced space search, which initially had O(n2)
and now has O(n) pairs. For each edge of the graph, the

matching step procedure first attempts to match the descriptors

of two small sets containing the biggest (most discriminant)

keypoints of their respective images, selected according to

the scale attribute. We consider a pair as valid if the number

of inlier correspondences returned by the fundamental matrix

estimation using the normalized 8-point algorithm [14] in a

RANSAC scheme is higher than at least 15% of the number

of cross-validated descriptor matches between each pair, which

we call coarse inlier rf . The 15% value was chosen by

performing tests on image pairs and we concluded when

there is less than 15% of inliers in the correspondences

using the top 600 features in scale, the likelihood of overlap
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Fig. 2. Main steps of our methodology. We initialize the epipolar graph by connecting images with a large chance of having overlap, according to GPS data
and a vocabulary tree search. In this example, the black edges are below the threshold distance, and the vocabulary tree query of at least one of the images
are among the highest score matches of the other. After the optimized pairwise registration, we update the epipolar graph by selecting high quality matches
enforcing completeness (blue edges in step III). The camera motion is incrementally recovered for each image and a sparse point cloud generated from the
matching points and optimized through robust and fast local bundle adjustment. At the end, we compute the dense model.

between them is minimal. If the correspondences are able

to minimally satisfy the epipolar geometry constraint, a full

pairwise matching considering all keypoints is performed to

obtain a fine registration using the Fast Approximate Nearest

Neighbour search (FLANN) [15].

A threshold fm = 0.07% of the image width is used

to determine if the correspondence is an inlier or not [7],

depending on the distance that it is from the respective epipolar

lines.

Filtering: We set the weights in the epipolar graph

using the number of inliers returned by RANSAC for each

estimated pair. A naı̈ve approach would consider removing

the edges with a small number of inliers using a hard

threshold and perform the triangulation by using only the

remaining pairs. However, this may remove edges that keep

the graph connected, which results in missing parts in the

final 3D model, specially because it is difficult to define a

hard threshold for this purpose, depending on many factors.

Therefore, we propose applying a maximum spanning tree

Algorithm 1 Epipolar graph filtering.

procedure EPIPOLARFILTERING(EG, τi)
MAXSPANNINGTREE(EG,F ilteredEG)

for each edge e in EG do

if weight > τi & e /∈ FilteredEG then

ADD(FilteredEG, e)

return FilteredEG
⊲ The FilteredEG contains the maximum spanning tree

plus all edges higher than a threshold.

approach (MST) to remove only the edges with small number

of inliers but enforcing the connectivity of the graph, since

the MST avoids us breaking the epipolar graph into smaller

connected components when we try to remove an edge with

low number of inliers.

The last step of the epipolar filtering consists in extracting

the sub-graph that contains the edges from the maximum

spanning tree and the edges with the number of inliers larger

than a defined threshold τi (we use a value of 60 inliers

in our experiments, a standard value used by Bundler [7]

and VisualSFM [5]). This procedure is described by the

Algorithm 1.

Incremental SfM: The incremental reconstruction algo-

rithm begins by selecting a pair of images and then incremen-

tally estimate the points and cameras parameters. The camera

motion estimation happens in a greedy manner with respect

to the number of 2D-3D correspondences.

Choosing the initial pair is crucial to the quality of the

reconstruction. If we choose a pair not having enough overlap,

the reconstruction can fail immediately. To avoid that, we sort

the edges of the graph and keep a percentile of 0.4 of the most

valued edges (this value is arbitrary and is not sensitive when it

is not set on the extremes like ≤ 0.10 or ≥ 0.90 according to

our experiments), which contains consistent geometric pairs

that undoubtedly overlap. Then, we sort this subset consid-

ering the ratio between the essential matrix inliers and the

homography inliers and use a percentile of 0.25 (again, the

percentile value is not sensitive and is arbitrary) of the subset

containing the highest ratio between the fundamental matrix

inliers and homography inliers (Finliers/Hinliers), which is



useful to avoid the use of small-baseline pairs in the seed

reconstruction. We then finally select the pair which provide

the lowest mean re-projection error after triangulation in this

small subset of candidates.

From the initial point cloud, we find the image with the

largest 2D correspondences with 3D points already estimated

and we calculate the extrinsic parameters from the camera. To

do that, we use an a contrario camera resectioning approach

[16], which estimates an inlier threshold for each camera

estimation, differently from approaches that only uses the

standard RANSAC resectioning with fixed threshold, thus

improving accuracy. The camera resectioning step is repeated

iteratively for all cameras, and after a certain amount of camera

estimations, we call a local bundle adjustment to minimize the

re-projection error. Once there is no more cameras to be added,

we run a global bundle adjustment.

Local Bundle Adjustment and Global Refinement: Find-

ing the optimal solution for the global bundle adjustment

problem (BA) time consuming when considering thousands

of cameras and millions of 3D points. To tackle with this

problem, we propose an overlapping local bundle adjustment

(LBA) window approach that optimizes the camera poses and

points locally, but it overlaps with already optimized 3D points

to hold the consistency and avoid fast propagation of error

(drift).

Let P be a vector containing all parameters describing the

m projection matrices and the n three-dimensional points,

where P = (θ1, . . . , θm, X1, . . . , Xn)
T , and X the mea-

surement vector composed of the measured image point co-

ordinates across all cameras. By using the parameter vec-

tor, we can create the estimated measure matrix as X̂ =
(x̂T

11
, . . . , x̂T

1m, . . . , x̂T
n1, . . . , x̂

T
nm)T , where x̂T

ij is the projec-

tion of the 3D point i in the camera j.

We can rewrite the BA as the optimization problem of find-

ing the values of P and X that minimize (X− X̂)TΣ−1

X
(X−

X̂) over the projection matrices P. ΣX is the norm matrix.

The minimization can be performed by using the Levenberg-

Marquardt algorithm [17] to solve the augmented weighted

normal equations (JTΣ−1

X
J+µJ)δ = J

TΣ−1

X
(X−X̂), where

J represents the Jacobian of X̂, δ the update parameter of P

that we are estimating and µ is the damping term which is

used to change the diagonal elements of the Jacobian.

Incremental approaches optimize camera motion and scene

structure calling BA multiple times during reconstruction.

As the number of parameters of the model incrementally

increases, the time to perform an iteration rapidly grows. To

tackle this problem, we fasten the parameters of the 3D points

that have already been bundle adjusted and only adjust the

parameters of the newest estimated cameras and points.

The time complexity of bundle adjustment considering the

sparse block structure is O(m3) [18], where m is the number

of cameras. In the the incremental approach, O(m) global BA

calls are required to avoid the propagation of drifting, which

makes the complexity raise to O(m4). By using LBA, we are

able to reduce the complexity to O(m3) again.

The window contains the most recent estimated cameras

and all the 3D points that projects onto them. When the

window achieves the limit of cameras, we call a BA that will

optimize all cameras in the set and the points in their field

of view. It is important to notice that points that have been

already optimized contributes to the minimized re-projection

error, although their parameters remain fixed, to maintain the

local consistency and prevent the fast propagation of drift.

Fig. 2 (5.) shows two sets of cameras (blue and red). The

blue set was optimized and the current iteration is trying

to adjust the three new cameras (in red). The green points

should not be modified in the optimization process. Global

BA can be performed sometimes during reconstruction to

obtain the optimal parameters as we do in our experiments,

but much fewer global optimization calls are required (bound

to a constant value), and it is optional depending on the size

of the dataset and the desired accuracy. We used Ceres Solver

[19] as the optimization engine in our implementation.

Dense Reconstruction: Once we have the complete set of

projection matrices and undistorted images estimated by our

approach, we use them as input to a MvS dense reconstruction

technique [20]. The quality of the camera parameters provided

by the SfM algorithm as well as the quality of the images (e.g.

resolution, texture and image sharpness) strongly influence on

the density and quality of the estimated quasi-dense surfel

model. Finally, by using the Poisson Surface Reconstruction

method [21], we convert the set of oriented points into a

textured mesh model.

IV. EXPERIMENTAL EVALUATION

In this section, we show the obtained results of our pipeline

in ten different datasets and compare them against three state-

of-the-art implementations for solving moderate and large

scale SfM problems, namely, Bundler [7], VisualSFM [5] and

OpenMVG [16].

Both aerial and terrestrial datasets were used to evaluate our

method, each one from a different scene. Challenging aspects

are present in many of these datasets: Low-textured regions,

reflective surfaces such as lakes, occlusions caused by moving

objects and strong illumination and perspective changes.

We used six large scale aerial datasets composed of high

resolution overlapping images acquired by unmanned aerial

vehicles with large baseline, obtained from publicly avail-

able drone websites. We also used four terrestrial datasets.

NotreDame was obtained from the internet (Flickr), while the

other three were made using a Samsung S4 smartphone.

A virtual machine hosted by a computer equipped with two

Intel(R) Xeon(R) CPU E5-2620 @ 2.00GHz processors and

132 GB of RAM were used in the experiments. For a fair

comparison we computed the total time time each approach

used in CPU. Our focus was to test the scalability of the SfM

approaches per se.

We also tested VisualSFM on a Xeon E3-1200 v2/3rd Gen

8-core processor and a GeForce GTX 560 Ti GPU to evaluate

the impact the parallel optimization has on timings. In this

experiment (VisualSFM-GPU), we computed the wall-clock

time.



Fig. 3. Dense surfel models estimated for the aerial datasets. In clockwise order from the top-left to bottom-right: sand mine, small mine, intergeo,
colombia club and small city.

small_mine small_city intergeo colombia_clubsand_mine expopark
0

10

20

30

40

50

60

70

80

Dataset

P
ro

ce
ss

in
g

 T
im

e 
(h

o
u
rs

)

 

 

VisualSFM      

Bundler         

OpenMVG

Ours

VisualSFM - GPU

small_mine small_city intergeo colombia_club sand_mine expopark
0

0.5

1

1.5

2

2.5

3

3.5

4

Dataset

R
ep

ro
je

ct
io

n
 E

rr
o

r 
(p

ix
el

s)

 

 

VisualSFM

Bundler

OpenMVG

Ours

(a) Processing time (b) Re-projection error

Fig. 4. Time performance considering the entire pipeline (a) and the median
re-projection error results (b) of each approach for the large aerial datasets.
Our approach was the only able to provide the results for the expopark dataset
within the time-out value of 120 hours. VisualSFM-GPU re-projection error
is equivalent to VisualSFM without GPU.

A. Evaluation Methodology and Parameter Tuning

To quantitatively evaluate the output of all the SfM tech-

niques in our experiments, we use the mean and median

residual re-projection error values in pixels. Due to the lack of

ground-truth data, we were only able to evaluate the estimation

quality achieved by measuring the re-projection error values.

To choose the window size in the local bundle adjustment

step, we ran several experiments with multiple window size

values on 3 moderate-sized datasets. We chose the size equal

to 80, since it provided the best time performance gains with

small fluctuations in the re-projection error. We tested several

combinations of detectors and descriptors and we found that

SIFT holds the best results, providing more robust and accurate

correspondences.

B. Results and Discussion

The Fig. 4 (b) shows the median re-projection error for

each dataset and each method. Fig. 4 (a) shows the time

performance. We set a time-out of 120 hours for the single core

experiment. Bundler and VisualSFM were unable to generate

the results for some datasets in the established time-out.

In Fig. 4 (a), we can clearly see an expressive increase

in processing time by all implementations but ours, as the

number of images increases. Our method shows a smoothed

growth and it leads time performance, reflecting the efficient

steps adopted in our method. We are even able to outperform

images speedup local error global error

small mine 127 2.33 0.60 0.45

small city 297 2.51 0.56 0.53

intergeo 479 2.45 0.38 0.41

colombia club 795 1.83 0.39 0.39

sand mine 978 1.28 0.37 0.37

expopark 1, 231 2.04 0.38 0.23

TABLE I
SPEEDUP GAIN AND MEAN RE-PROJECTION ERROR IN PIXELS OF THE

LOCAL APPROACH COMPARED TO GLOBAL BA. THERE IS A SIGNIFICANT

SPEEDUP IN EXCHANGE OF A SMALL OSCILLATION IN THE RESIDUALS.

VisualSFM with all parallel optimizations enabled including

GPU (Fig. 4 (a) dark green curve). Also, Fig. 4 (b), shows

that our approach and OpenMVG (which is an implementation

exclusively focused in accuracy) lead accuracy performance.

This is the result of a careful selection of pairs to be matched

through the filtering performed by Algorithm 1, which avoids

false positive matches that can lead to an increase of the

re-projection error of the cloud compromising the model’s

accuracy, besides assuring the completeness in the model

estimation. As can be seen in Fig. 3, Fig. 1 and Fig. 5 the

final models do not present any visible drift or abnormalities

on the mesh.

We used a collection of 715 unorganized images from the

challenging Notre Dame dataset [7] to show the capability of

our approach to deal with unordered collection of images in

the wild. Most of GPS tags are missing from images. The

dense 3D model generated by our method is shown in Fig. 5

(top-left model). For this experiment, our method estimated

the model with a re-projection error of 0.43 pixels in 27.4
hours. Bundler method, for its turn, spent 86.7 hours and got

a larger error (0.47 pixels). VisualSFM was not able to provide

the results within the established time-out value of 96 hours,

and OpenMVG could not handle the missing focal lengths of

a good portion of the images, not returning any results.

Quantitative results for the terrestrial datasets except for

Notredame were not considered, because of their small size

(below 125 images) and there were little gain in time and

accuracy compared to the other approaches. Qualitative results

can be seen in Fig. 5.



Fig. 5. Dense models estimated for the terrestrial datasets. In clockwise order
from the top-left to bottom-right: notre dame, ICEx square, UFMG rectory
and UFMG statue. All the last three datasets were estimated in less than 30
minutes with our approach.

The speedup provided by using the LBA method proposed

can be verified in Table I. We compare the total time used to

generate the DEM with the LBA against the classic approach

of globally optimizing the model multiple times. After the

reconstruction using LBA finishes, we run a final global BA

to obtain the optimal solution. We can see that even running

a global BA in the end, the speedup gain is considerable, and

it is able to achieve global minima. It means that the multiple

local BAs are able to maintain the necessary consistency and

avoid the final minimization to fail.

We also evaluate the benefits of using the Algorithm 1 and

the GPS information to filter the epipolar graph. We performed

3 experiments with the largest datasets. A gain up to 62% in

accuracy using Algorithm 1 is obtained in our implementation.

Qualitative results from the aerial datasets can be seen in Fig.

3, and for the terrestrial datasets, in Fig. 5.

V. CONCLUSION

In this work, we proposed and implemented a new SfM

pipeline adapted to high resolution aerial image (but not only

limited to this kind) datasets which incorporates and improves

previously used methods in the literature aiming at time effi-

ciency. It is important to mention that most of these methods

were used separately in previous works and we explore and

adapt them into a single approach, in addition to the maximum

spanning tree that ensures the graph’s completeness and also

contributes to an improved accuracy. The speed-up achieved

as well as the low re-projection error can be seen in the

experiments performed to evaluate the time efficiency and

point cloud quality.

Limitations and future improvements: In our approach,

besides the GPS pruning, we do not treat geometric ambiguity

in the scene, thus, in some scenarios the reconstruction can

fail for this reason. Some works in SfM aim at solving this

specific problem [22]. Using both aerial and ground images

to generate more complete models is also a subject of our

interest. Currently, SfM approaches struggle to merge these

views due to strong change of perspective from aerial to

ground. Another issue is that if a significant drift occurs

in SfM, mainly because the lack of tracks on images, the

reconstruction may also fail. In the future, we plan to extend

this work to consider these problems.
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