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Abstract—In this paper, we present a new approach for
dynamic hand gesture recognition that uses intensity, depth, and
skeleton joint data captured by KinectTM sensor. This method
integrates global and local information of a dynamic gesture.
First, we represent the skeleton 3D trajectory in spherical
coordinates. Then, we select the most relevant points in the hand
trajectory with our proposed method for keyframe detection.
After, we represent the joint movements by spatial, temporal and
hand position changes information. Next, we use the direction
cosines definition to describe the body positions by generating
histograms of cumulative magnitudes from the depth data which
were converted in a point-cloud. We evaluate our approach
with different public gesture datasets and a sign language
dataset created by us. Our results outperformed state-of-the-art
methods and highlight the smooth and fast processing for feature
extraction being able to be implemented in real time.

Keywords-hand gesture recognition; spherical coordinate sys-
tem; keyframes; global and local features; direction cosines;
histogram of cumulative magnitudes.

I. INTRODUCTION

Currently, hand gesture recognition is a challenging problem
in computer vision and represents an active research. It is
applied in sign language recognition systems, games, virtual
reality, robotics, etc [1], [2]. Hand gesture communication
involves hand and arm motion information; two approaches
are commonly used to interpret them: sensor-based and vision-
based [1]. Sensor-based methods use sensory gloves and
motion trackers to detect hand shapes and body movement
while vision-based methods use standard cameras to capture
and classify hand shapes and body movements. Unfortunately,
sensor-based methods require extensive calibration, they also
restrict the natural hand movements and often are very expen-
sive. Therefore, video-based methods are more used, but new
problems arise: intensity images are vulnerable to illumination
variations and cluttered backgrounds, hindering hand detection
and tracking. However, with the recent appearance of cheap
depth sensors, such as Microsoft KinectTM [3] which pro-
vides intensity data, depth data, and skeleton joints positions,
overcome these problems.

Nowadays, there are many studies focused on the analysis

of hand gesture [4]. In [5], a new method was proposed with
a particular emphasis on the trajectory analysis, the extraction
of the relative movements of the elbow and wrist related to
the hand. The Axis of Least Inertia concept is used by Geetha
et al. [6], where 25 points are extracted as global features,
and the Eigen distance from each fingertip to the center of the
palm is proposed as local features. In [7], skeleton features
are computed from the angles between two skeleton joints
and the hand convex hull area represents the local features.
In [8], the authors describe the joint trajectories by using
spherical coordinates and describing the spatial and temporal
information of the movements.

The extraction of hand shape features based on gradient
value instead of standard 2D shape features and arm movement
features based on angles between each joint are proposed
by Takimoto et al. [9]. A bag of visual and depth words is
introduced in [10], together with a novel probability-based
Dynamic Time Warping (PDTW), produce a Human Gesture
Recognition pipeline. In [11] is proposed an online Sequential
Extreme Machine Learning approach (OS-ELM) by using the
features of upper body joints (head, hands, wrists, elbows,
shoulders) and the projection of the angle position coordinates
to the shoulder center and hip center, this information is used
as input to K-means algorithm to generate hand features. In
[12], a multimodal RGB-D data is proposed. Multiple hand
features using both the body and hand masks (RGB and depth
frames) are extracted together with skeletal features.

Lately, in [13] was proposed a novel method called Deep
Dynamic Neural Networks (DDNN) for multimodal gesture
recognition. They used deep neural nets to automatically ex-
tract the relevant information from the data and integrates two
distinct feature learning methods, one for processing skeleton
features and the other for RGB-D data. Besides, they used
feature learning model with an HMM to incorporate temporal
dependencies.

Contributions: In this paper, we propose a novel hand
gesture recognition system combining local and global infor-
mation obtained from depth, RGB and skeleton data captured
by a KinectTM device. In contrast to the previous works,



we exploit the spatial information of both arms, detecting
variations of the dominant hand. Our approach also involves a
new method for keyframe detection, based on the analysis of
the skeleton 3D trajectory, to identify more relevant points
and reduce the processing time. The 3D trajectory is con-
verted to spherical coordinates by shifting the origin from the
KinectTM to the shoulder center, introducing new advantages
as natural point normalization and user’s translation invariance.
Moreover, we use the direction cosines concept to generate
Histograms of cumulative magnitudes from depth data which
describe body positions for each keyframe. Our proposed
method becomes independent of the repeated use of time series
techniques as Hidden Markov Model (HMM) [14] or Dynamic
Time Warping (DTW) [15].

Finally, we present a new Brazilian Sign Language (LI-
BRAS) dataset, which consists of 20 different signs used to
test our proposed method. This challenging dataset is based on
complex hand and trajectory configurations that make difficult
the recognition process.

The remainder of this paper is organized as follows. In
Section II, we describe and detail our proposed hand gesture
recognition system. Experiments and Results are presented in
Section III. The Conclusions and future works are presented
in section IV.

II. PROPOSED MODEL

This section describes our approach for dynamic hand
gesture recognition. First, we preprocess the gesture infor-
mation recorded by a KinectTM device (depth, intensity and
skeleton data) to obtain the keyframes. Then, global features
are computed to joint trajectories and local features from the
body cloud-point. Finally, these features are used as input to
our classifier. Fig. 1 shows the process of our proposed model.

A. Gesture Preprocessing

Based on [8], we use the skeleton data to generate spherical
trajectories of upper joints corresponding to the head, elbow,
wrist and hand of both arms (right and left).

The trajectories are converted into spherical coordinates, to
avoid problems with user position changes, by assuming the
shoulder center (SC) as the new coordinates origin. This coor-
dinate conversion makes our method invariant to translation.

Definition 1 (Spherical Coordinates). The spherical coordi-
nates of a point P in the gesture trajectory are defined by
three components:
• The radius or radial distance r is the Euclidean distance

from the origin (SC) to P , where x, y, z are the Cartesian
coordinates of P .

r =
√
x2 + y2 + z2 (1)

• The inclination (or polar angle) θ, is the angle between
the zenith direction and the line segment SC-P.

θ = arccos
(z
r

)
(2)

Fig. 1. Hand Gesture Recognition Proposed Model.

• The azimuth (or azimuthal angle) ϕ, is the signed angle
measured from the azimuth reference direction to the
orthogonal projection of the line segment SC-P on the
reference plane.

ϕ = arctan
(y
x

)
(3)

1) Keyframe Extraction: In dynamic gesture recognition
exists the time variability problem that arises when a user
makes a gesture with different speed. Work with all frames are
inefficient and take a long time, so it is necessary to choose
some frames. In this work, we propose a method to extract
the most relevant frames in the trajectory, called keyframes.

To detect the keyframes, we convert the hand trajectories
into spherical coordinates; in this work, we called the keyframe
number as sizeKF. Then, we calculate the first derivative of the
radial distance of all points to obtain the maximum and min-
imum difference between consecutive points, called PMMX .
To detect frames with the most significant difference, we select
the PMMX points belong to the convex hull trajectory.

Later, the PMMX is used to segment the trajectory into
segments, the points with the less Euclidean difference are
discarded (∆r). Also, if ∆r value is less than a threshold Tr,
defined as the mean of the PMMX points, the neighboring
point is irrelevant and discarded. This process is repeated until



obtaining the sizeKF points.
Finally, for each keypoint, we extract its respective frame.

Fig. 2 shows two examples of a hand gesture where the
keyframes were detected by obtaining similar frames regard-
less the duration of each gesture.

Fig. 2. Example of keyframe extraction for two videos of the same hand
gesture where sizeKF = 8.

B. Feature Extraction

We combine global and local features to obtain a better
characterization of hand gestures because there are some hand
gestures with similar trajectories but different hand configura-
tion. Otherwise, some signs have similar hand configuration
but different trajectories. Thus, the combined local and global
features are suitable for describing these gestures movements.

1) Global Features Extraction: The global feature extrac-
tion was designed to describe hand gestures that have structural
movements, as sign languages. A structured movement has a
well-defined trajectory while an unstructured movement can
be characterized only by the final position of the gesture or
by the configuration of the hand or body positions.

Trajectories of an unstructured movement may differ in its
shape, but the final hand and body positions are always the
same. Thus, global features (trajectories) are an important clue
in structured movements

The global features are represented by three main vectors:
spatial information vector VSI , temporal data vector VTI and
hand position changes vector VHC .

Firstly, we use the spherical coordinates (r, θ, ϕ) calculated
in the new origin SC. Each keyframe contains seven spherical
positions for each upper body joint: head (h), elbow right (er),
wrist right (wr), hand right (hr), elbow left (el), wrist left (wl)
and hand left (hl). These positions are concatenated to form
the spatial information vector VSI which is defined as:

VSI =

k=sizeKF⋃
k=1

{
SP k

h , SP
k
er, SP

k
wr, SP

k
hr, SP

k
el, SP

k
wl, SP

k
hl

}
(4)

where SP represents a body joint spherical coordinate and
sizeKF is the keyframe number. The VSI vector size is
3 × 7 × sizeKF , where, 3 is the size of each spherical
coordinate and 7 is the body joints number used.

Then, we include the relative trajectory concept, defined
in [16], to incorporate the temporal relation from the wrist
and elbow to the hand and generate the VTI vector. First,
we choose the hand trajectory Troot as the primary trajectory,
the wrist and elbow trajectories (T1, T2) are considered sec-
ondaries. Each trajectory Ti is defined as:

Li = {(xt, yt, zt)|t ∈ [1, N ]} (5)

The relative trajectories ∆T1 and ∆T2 are obtained by
computing the difference from Troot to T1 and T2, respectively.

∆Ti = Troot − Ti = {(∆xt,∆yt,∆zt)|t ∈ [1, N ]} (6)

Thus, to represent the relative trajectory uniformly in both
cases, we convert the Cartesian coordinates to the spherical
coordinates to depict the orientation and distance changes
between secondaries trajectories and the primary trajectory
across the time.

∆Ti = {Troot − Ti}
4
= {(r, θ, ϕ)|t ∈ [1, N ]} (7)

The VTI vector is represented as the union of all relative
trajectories in each keyframe for both hands. The vector size
is: 4× 3× sizeKF .

VTI =

k=sizeKF⋃
k=1

{
∆T k

1er ,∆T
k
2wr

,∆T k
1el
,∆T k

2wl

}
(8)

Finally, from the point SC, we divided the space into eight
octants and recorded the octant where the hand was positioned
at each keyframe. The octant number can be represented in
a Vq vector of size 3 (log2 8 = 3). The VHC vector is
represented as the union of left and right-hand movements for
each keyframe with 2× 3×N size. Fig. 3 shows the vectors
generated for two hand gestures.

VHC =

k=sizeKF⋃
k=1

{
vkqhr

, vkqhl

}
(9)

Fig. 3. Examples of hand position changes of two gestures: justice (right)
and shine (left). The VHC vector is different for both signs. Each binary code
represents a octant position for each keyframe.

Therefore, the VGF Global Features Vector is the concate-
nation of the three previous vectors, with a total size of 39×N .

VGF = {VSI , VTI , VHC} (10)



2) Local Features Extraction: The local features describe
body positions and hand configurations when a user makes a
gesture; we extract these features from depth data. Such as
they are three-dimensional spatial data, they need a robust
and fast descriptor to describe them. For that, we use the
method proposed in [17], which was adapted to work with
body positions of each keyframe. It is based on the direction
cosines concept:

Definition 2 (Direction Cosines). The direction cosines of a V
vector are the cosines of the angles between the vector and the
coordinate axis. In three-dimensional Cartesian coordinates,
if V is a vector in the Euclidean space, R3, then:

V = vxex + vyey + vzez (11)

where ex, ey and ez are the standard basis in Cartesian
notation and the scalars vx, vy , vz are the scalar components
of the V vector. Then, the direction cosines are:

|V | =
√
v2x + v2y + v2z (12)

α = cos a =
V · ex
|V |

=
vx
|v|

(13)

β = cos b =
V · ey
|V |

=
vy
|v|

(14)

γ = cos c =
V · ez
|V |

=
vz
|v|

(15)

Furthermore, cos a, cos b and cos c must meet the follow
equality:

cos2 a+ cos2 b+ cos2 c = 1 (16)

Based on this concept, each keyframe is converted into a
point-cloud (PCdepth) and we calculate the Vdepth vector,
which is the concatenation of several histograms of cumulative
magnitudes (HCM). The steps to generate Vdepth are the
following.
• Divide the point-cloud PCdepth into Ns × Ns spatial

subregions Si.
• For each subregion Si calculated the central point CPSi

.
Then, generate the directional V SPd

vectors between
CPSi and the points Pd ∈ Si.

V SPd
= {CPS − Pd|∀Pd ∈ Si} (17)

• For each directional V SPd
vector in Si, decompose it

into its directional cosines for each Cartesian axis (α, β
and γ) and calculate its magnitude |V SPd

|. For that, use
Equations 13, 14, 15 and 12, respectively. Then, we
obtain the angles a, b and c by using an inverse function.

• In order to obtain spatial information of depth data, for
each Si subregion is calculated three HCMs: one for each
axis (Hx, Hy and Hz). Each histogram is distributed
into B bins and groups a number of angles from 0 to

180 degrees. Then, each V SPd
vector casts a weighted

vote for a bin histogram depending on the calculations of
angles value in the previous steps.
Thus, we obtain three different body projections which
allow finding the highest local difference number between
gestures, because the magnitude value varies depending
on the body configuration.

• Finally, the Vdepth vector is created by concatenating
the cumulative histograms from each Si subregion. We
obtain a final vector which characterizes a particular body
position. Fig 4, shows an example of HCM generation
(Hx, Hy and Hz) for one S1 subregion in a particular
body position.

Vdepth =

i=NsxNs⋃
i=1

{
Hi

x, H
i
y, H

i
z

}
(18)

Fig. 4. Generation of Histograms of Cumulative Magnitudes for Hx, Hy

and Hz in a S1 sub region.

Therefore, the Local Feature Vector (VLF ) is defined as
follow:

VLF =

k=sizeKF⋃
k=1

{
V k
depth

}
(19)

Where sizeKF is the keyframe number and V k
depth the

vector for each keyframe K.

C. Recognition and Validation
In this work, we use Support Vector Machines (SVM)

to classify global and local features due to its excellent
performance in time classification when compared to other
classifiers like KNN [18] or Random Forest [19] .

Support Vector Machines (SVM) were proposed in [20],
it is a useful classification method. Furthermore, SVMs have
been successfully applied in many real-world problems and
several areas: text categorization, handwritten digit recogni-
tion, object recognition, etc. An important characteristic of the
SVM classifier is to allow a non-linear classification without
requiring an explicit nonlinear algorithm. In kernel framework
data, points may be mapped into a higher dimensional feature
space, where a separating hyperplane can be found. Common
kernel functions are: linear, polynomial, Radial Basis Function
(RBF), etc.



III. EXPERIMENTS

In order to measure the performance of this approach, we
used different datasets to test and compare results between our
method and other proposed works in the literature.

A. Datasets

We used different datasets with different structures to eval-
uate and validate our proposed method.

1) The LIBRAS Dataset: In this work, we present The
Brazilian Sign Language dataset which consists of 20 dif-
ferent signals performed by two participants, each participant
executes each sign 20 times recorded by a KinectTM device.
The dataset contains intensity, depth data and skeleton joints.
This dataset is suitable for the evaluation of the robustness
of our method. Our database signs presents the following
characteristics:
• Signs with similar trajectories but different hands and

body configurations,
• Signs with similar hand and body positions but different

trajectories,
• Signs using one hand, and
• Signs using both hands,
Therefore, these characteristics make the dataset be chal-

lenging.
Fig. 5 shows the sign examples that belong to the two first

type of characteristics described above.

(a) Similar trajectories
but different hand con-
figuration.

(b) Similar hand config-
uration but different tra-
jectories.

Fig. 5. First type of characteristics in two sign examples in LIBRAS dataset.

2) The MSRC-12 Dataset: This is a large dataset for
action/gesture recognition from 3D skeleton data recorded by
Kinect sensor and proposed by Fothergill et al. [21]. In this
paper, we used the MSRC-12 dataset to test the global feature
performance. The dataset has 594 sequences and contains the
performances of 12 gestures executed by 30 subjects. There are
6,244 annotated gesture instances in total. The gesture classes
are divided into two groups: metaphoric gestures and iconic
gestures.

3) The UTD-MHAD Dataset: The Multimodal Human Ac-
tion Dataset [22] was collected by the Microsoft Kinect sensor
and a wearable inertial sensor in an indoor environment. The
dataset contains 27 actions performed by 8 subjects. Each
subject repeated each action 4 times. Four data modalities
of RGB videos, depth videos, skeleton joint positions, and
the inertial sensor signals were recorded in three channels or
threads. In this work, we only use the information registered
by the KinectTM sensor to measure global and local features
performance.

4) CelebiGesture Dataset: Celebi et al. [23] provided a new
gesture dataset, where only joint positions were recorded by
a Microsoft Kinect, which is divided into train and test data,
containing 8 gestures

5) The SDUSign Dataset: Geng et al. [5] presented a
dataset for Chinese Sign Language Recognition. The dataset
consists of 20 signs performed by four participants. Each
person executes four times each sign; trajectories of right
elbow, wrist and hand were collected using a KinectTM device,
recording a total of 20× 5× 4 = 400 samples.

B. Experiments

To evaluate our proposed model, we conducted three ex-
periments. In the first one, we assess the performance of
global features (GF) while in the second one, we evaluate the
Global and Local Features (GL+ LF) for gesture classification.
Finally, in the third experiment, we define a protocol to
work with our LIBRAS dataset. We define the following
specifications for the experiments:
• We defined sizeKF = 10 keyframe number. This value

was established as standard to all datasets after testing
different N values (6, 8, 10, 12, 13, 15) in previous
experiments.

• For local feature extraction process, we used the same
parameters defined in [17], where Ns is equal to 5; and
B (bins number) is equal to 8.

• After testing the three classifiers (KNN, RF, SVM) in
the previous experiments, the SVM classifier obtained the
best results, so we performed our experiment using the
LIBSVM library [24] with a linear kernel. The choice of
the classifier was validated using subsets of UTD-MHAD
dataset; the results are shown in Table I.

• To obtain accurate results, we performed 20 times each
experiment and showed the mean accuracy for each one.
In other cases, we used the same protocol defined by the
state-of-the-art methods, which are used to compare our
results.

TABLE I
RESULTS OBTAINED IN PREVIOUS EXPERIMENT TO CHOOSE THE BEST

CLASSIFIER.

Training SVM KNN RF
25 96.41 91.86 55.78
40 98.17 96.13 65.59
60 98.79 97.65 73.16

First experiment: We evaluate our method using only
global features. We used the datasets provided by Celebi et al.
[23] and Geng et al. [5], and the MSCR-12 and UTD-MHAD
datasets.
• For MSCR-12 dataset, we compared our results with the

method proposed by Hussein et al. [25]. They presented
a novel descriptor that uses a Covariance of 3D Joints
(Cov3DJ) to encode the temporal dependency of joint
locations and generate a fixed size vector that is indepen-
dent of the sequence size. Moreover, we compared our
results with Negin et al. [26], they extract spatiotemporal



features from joints in motion. Then, they used a discrim-
inative RDF-based feature selection framework combined
with a linear SVM classifier to improve the performance.
Table II shows the results. We obtained an average rate
of 98.58%, achieving better results than [26] and a little
difference of 0.12% respect to [25]. Here we emphasize
the capability of our method to be executed in real time.

• In the UTD-MHAD dataset, we compared our results
by using only Kinect information, and we followed the
same protocol defined by Chen et al. [22], we can
see the results in Table III. Our method is based on
global features and achieves an accuracy of 73.32 %.
The results were not high as the first experiment due to
the intrinsic characteristics of unstructured movements, as
was explained in section II-B1, unstructured movements
require local and global features to describe them better.
Although this limitation, we outperform the results of the
group that created the dataset, they achieved 66.10% in
all information provided by the Kinect sensor.

• Finally, we used the dataset provided by Celebi et al.
[23], they proposed a weighted Dynamic Time Warping
method to boost the discrimination capability of DTW.
For this, they suggested using a weighted distance in the
cost computation based on the relevance of a body joint in
a particular gesture class. When we compared our results
by using the same protocol, we obtained similar results
97.50%; showing that our fixed vector VGF can achieve
as good results as methods based on time series. Geng et
al. [5] also based their method on Dynamic Time Warping
algorithm. We obtained in the same dataset used in [5]
an accuracy of 82.97%. Table IV shows the results.

TABLE II
RESULTS WITH THE MSRC-12 GESTURE DATASET

Method Accuracy
Global Features (GF) 98.58
Mohamed E., et al. [21] 98.70
Negin, Farhood, et al.[26] 93.00

TABLE III
RESULTS WITH THE UTD-MHAD DATASET

Method Accuracy
Global Features (GF) 73.32
Local Features (LF) 78.95
GF + LF 84.89
Chen, C, et al. (only Kinect) [22] 66.10

TABLE IV
RESULTS OF USING GLOBAL FEATURES IN DIFFERENT DATASETS.

Method Result GF
Geng et al. [5] 69.32 82.97
Celebi, Sait, et al.[23] 97.50 97.50

Second experiment: In this experiment, our method was
evaluated by using global, local and the combination of both
features. Again, we used the dataset provided by Chen et al.

[22]. The results obtained are shown in Table III. The local
features that describe the body positions and hand configura-
tions achieved 78.95% of accuracy, outperforming the results
obtained by global features. However, the combination of both
attributes produced the best results (84.89%). Therefore, it is
possible to see the importance of combining both types of
features.

Third experiment: Finally, in this experiment, our method
was evaluated by using the LIBRAS dataset. First, we evalu-
ated the performance of our method with global, local and
a combination of both features. Also, we defined different
training and testing sizes; our goal was to determine the
robustness of our method. We defined the training sizes of
60%, 45%, 40%, 35%, 30%and25%. In Table V, we show the
average accuracies for all the experiments.
• For global features, we obtained values from 89.70% to

95.63%. with a mean standard deviation value of 1.32.
• For local features, we obtained values from 89.70% to

95.63%. with a mean standard deviation value of 1.32.
• For global and local features, we obtained values from

97.58% to 99.84%. with a mean standard deviation value
of 0.688.

Again, local features better describe the body positions and
hand configurations. They have a better performance than
global features and, the combination of both features achieved
the best results.

For all experiments, as the number of keyframes (sizeKF )
is constant, the processing time not depends of the video size,
reducing significantly the processing time in general. In all our
experiments, the maximum time recorded was 2.85 seconds for
a video with more than 80 frames.

TABLE V
RESULTS WITH LIBRAS DATABASE FOR DIFFERENT TRAINING VALUES.

Global Local Global + Local
Training (%) Acc SD Acc SD Acc SD

25 89.70 1.75 97.28 1.17 97.58 0.78
30 91.67 1.31 98.02 0.44 97.86 0.89
40 92.87 1.19 98.48 0.57 98.54 0.52
45 93.13 1.24 98.66 0.61 98.66 0.66
60 95.63 1.22 99.08 0.69 99.84 0.59

As LIBRAS dataset has structured movements, it is ex-
pected that our approach achieves a higher accuracy. In
this experiment, we are evaluating signs with characteristics
presented in Section III-A1, i.e., signs with the same trajectory
and different hand configurations; signs with the same hand
shape and different trajectories; signs performed with one
hand; and signs carried out with both hands. In Table VI,
we present the confusion matrix for global features, which has
a small standard deviation. The signals spread and employee
achieved the highest accuracy: 100%. The lowest recognition
rates are achieved by signs prison similar to truth and just sim-
ilar to expert. Even though they achieved the worst recognition
rate, it is still high.

In Table VII, we present the confusion matrix of local
features. We can observe that signals shine, celebrate have



the lowest average (90% and 96%), this is due to the hand
configuration similarity with other signs. Finally, in Table VIII,
we present the confusion matrix of the global and local
features combination. The sign with the lowest recognition
rate is about 91%, a high accuracy rate. These results show
the efficiency of our method when we work with global and
local features, besides present a greater stability.

IV. CONCLUSION

In this paper, we propose a method for hand gesture recog-
nition by combining global and local features. The difference
between our approach and others is the keyframe extraction;
the trajectory is represented by three main vectors: spatial
information vector VSI , temporal data vector VTI and hand
position changes vector VHC , which represent the global
features. In addition, the depth data conversion to point-
clouds allow generating histograms of cumulative magnitudes
to represent body positions, the combined features (global
and local) contribute to a better hand gesture description and
stability. To evaluate our method, we used different hand
gesture datasets such as UTD-MHAD, MSRC-12, among
others. Also, we proposed a new challenging Brazilian Sign
Language dataset (LIBRAS). For each experiment, our method
achieved a good performance when used global, local and the
combined features obtaining higher results.

Our approach provides a fast method for hand gesture
recognition with a fixed-size feature vector. Our global and
local features can be easily extracted, with a quick processing
time. Based on the experiments, it is possible to demonstrate
the robustness of our proposed approach.

As future work, we expect to improve the performance of
our method by researching new global and local descriptors
based on Kinect information and increasing the gestures
number in the LIBRAS dataset.
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TABLE VI
CONFUSION MATRIX OF 20 SIGNALS OF LIBRAS DATASET USING GLOBAL FEATURES.

catch love shine celebrate compare copy employee spread expert forget scream justice just look person prison rancor replace television truth
catch 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
love 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
shine 0.00 0.13 0.70 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

celebrate 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00
compare 0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.03 0.00

copy 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.10
employee 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

spread 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
expert 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
forget 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.01 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00
scream 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
justice 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

just 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
look 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.01 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00

person 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.00
prison 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.00 0.00 0.10
rancor 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00
replace 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.98 0.00 0.00

television 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00
truth 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.87

TABLE VII
CONFUSION MATRIX OF 20 SIGNALS OF LIBRAS DATASET USING LOCAL FEATURES.

catch love shine celebrate compare copy employee spread expert forget scream justice just look person prison rancor replace television truth
catch 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
love 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
shine 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

celebrate 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
compare 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

copy 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
employee 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

spread 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
expert 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
forget 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
scream 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
justice 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

just 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
look 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

person 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
prison 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
rancor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
replace 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

television 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
truth 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

TABLE VIII
CONFUSION MATRIX OF 20 SIGNALS OF LIBRAS DATASET USING GLOBAL AND LOCAL FEATURES.

catch love shine celebrate compare copy employee spread expert forget scream justice just look person prison rancor replace television truth
catch 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
love 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
shine 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

celebrate 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
compare 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

copy 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
employee 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

spread 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
expert 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
forget 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
scream 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
justice 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

just 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
look 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

person 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
prison 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
rancor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
replace 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

television 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
truth 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.99


