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Abstract—This paper presents two approaches for filter design
based on stochastic distances for intensity speckle reduction.
A window is defined around each pixel, overlapping samples
are compared and only those which pass a goodness-of-fit test
are used to compute the filtered value. The tests stem from
stochastic divergences within the Information Theory framework.
The technique is applied to intensity Synthetic Aperture Radar
(SAR) data with homogeneous regions using the Gamma model.
The first approach uses a Nagao-Matsuyama-type procedure for
setting the overlapping samples, and the second uses the nonlocal
method. The proposals are compared with the Improved Sigma
filter and with anisotropic diffusion for speckled data (SRAD)
using a protocol based on Monte Carlo simulation. Among the
criteria used to quantify the quality of filters, we employ the
equivalent number of looks, and line and edge preservation.
Moreover, we also assessed the filters by the Universal Image
Quality Index and by the Pearson correlation between edges.
Applications to real images are also discussed. The proposed
methods show good results.

Index Terms—Despeckling; Information Theory; Nonlocal
means; SAR data; Stochastic Distances.

I. INTRODUCTION

Synthetic Aperture Radar (SAR) data are generated by
a system of coherent illumination and are affected by the
interference coherent of the signal. It is known that these data
incorporate a granular noise, known as speckle noise, that
degrades its quality. This noise is also present in the laser,
ultrasound-B, and sonar imagery [1].

The speckle phenomenon in SAR data hinders the interpre-
tation of these data and reduces the accuracy of segmentation,
classification and analysis of objects (targets) contained within
the image. Therefore, reducing the noise effect is an important
task, and multilook processing is often used for this purpose
in single-channel data.

Lee et al. [2], [3]] proposed techniques for speckle reduction
based on the multiplicative noise model using the minimum
mean-square error (MMSE) criterion. Lee et al. [4] proposed
a methodology for selecting neighboring pixels with similar
scattering characteristics, known as Refined Lee filter. The
Improved Sigma filter [S]] is an improvement of the previous
proposals, where an undesired blurring was solved by redefining
the sigma range based on the speckle probability density
functions.

Cetin and Karl [6] presented a technique for image filtering
based on regularized image reconstruction. This approach

employs a tomographic model which allows the incorpora-
tion of prior information about, among other features, the
sensor. The resulting images have many desirable properties,
reduced speckled among them. Our approach deals with data
already produced and, thus, does not require interfering in the
processing protocol of the data.

Osher et al. [7] presented a novel iterative regularization
method for inverse problems based on the use of Bregman
distances using a total variation denoising technique tailored
to additive noise. The authors also propose a generalization
for multiplicative noise, but no results with this kind of
contamination are shown. The main contributions were the
rigorous convergence results and effective stopping criteria for
the general procedure, that provides information on how to
obtain an approximation of the noise-free image intensity.

More recent proposals are based on nonlocal (NL) means
method originally proposed by Buades et al. 8] which is based
on the redundancy of neighboring patches. The noise-free
estimated value of a pixel is defined as a weighted mean of
pixels in a certain region. Under the Additive White Gaussian
Noise (AWGN) assumption, these weights are calculated using
Euclidean distances to measure the similarity between a central
region patch and neighboring patches in a search window.
However, the speckle noise is not well described by a Gaussian
distribution requiring, thus, changes in the model.

Deledalle et al. [9] analyzed several similarity criteria for
data which depart from the Gaussian assumption, viz., the
Gamma and Poisson noises. In [10] the same authors extended
the NL-means method to speckled imagery using statistical
inference in an iterative procedure. The authors derived the
weights using the likelihood function of Gaussian and square
root of Gamma (termed “Nakagami-Rayleigh”) noises. In [11]],
the authors proposed the use of a nonlocal approach to estimate
jointly reflectivity, phase difference and coherence from a pair
of co-registered single-look complex SAR images.

Coupé et al. [12] also used a logarithmic transformation and
assume zero-mean Gaussian noise to propose the Optimized
Bayesian NL-means with block selection (OBNLM). The
OBNLM filter is an optimized version of the filter proposed
by Kervrann et al. [13] which employs a new distance for
comparing patches and then selecting the most similar pixels.

Parrilli et al. [14] presented a nonlocal technique based on
Block-Matching 3D for SAR images (SAR-BM3D) inspired



by the algorithm presented in [[15] for AWGN denoising. The
SAR-BM3D filter has two steps: first, the algorithm estimates
the noise-free image, and the second step, the algorithm filters
anew using the more reliable statistics computed on the basic
estimate to improve the filter performance.

Statistical analysis is essential for dealing with speckled data.
Different statistical distributions are proposed in the literature
to describe speckle data. It provides comprehensive support for
developing procedures for interpreting the data efficiently, and
to simulate plausible images. In this paper we use the Gamma
distribution to describe the speckle noise, and a constant to
characterize the ground truth [?].

This paper presents two approaches for speckle noise
filtering: the first, a local nonlinear procedure, and the second,
an adaptive nonlinear extension of the NL-means algorithm
introduced by Buades et al. [8]. The first approach [16], [L7],
termed Stochastic Distances Nagao-Matsuyama (SDNM) filter,
uses the neighborhoods defined by Nagao and Matsuyama [[18]]
around each pixel; samples are compared and only those which
pass a goodness-of-fit test based on stochastic distances between
distributions. The test is based on a stochastic distance whose
good statistical properties stem from the Information Theory
framework. The improvement of previous works, the second
approach, we called Stochastic Distance Nonlocal Means
(SDNLM). An improvement of this latest proposal applied
to PolSAR data is found in [19]].

The paper is organized as follows: Section [lI| presents the
statistical modeling used to describe speckle data. In Section [ITI]
samples are compared and only those which pass a goodness-
of-fit test based on stochastic distances between distributions.
Section presents the metrics for assessing the quality of
the filtered images. Sections [V] and [V]] present the results and
conclusions, respectively.

II. THE MULTIPLICATIVE MODEL

According to [1l], the multiplicative model can be used
to describe SAR data. This model asserts that the intensity
observed in each pixel is the outcome of the random variable
Z which, in turn, is the product of two independent non-
negative random variables: X, that characterizes the mean
radar reflectivity or radar cross section; and Y, which models
speckle noise. The law which describes the observed intensity
7 = XY is completely specified by the distributions proposed
for X and Y.

This paper assumes locally homogeneous intensity images, so
the constant scale parameter X = A\ > 0 defines the backscatter,
and the unitary-mean Gamma distribution models the multilook
speckle noise. Thus, it follows that Z ~ I' (L, L/)\) and its
density is

LL L—1
MT(L)° eXp{*

where I' stands for the Gamma function and L > 1 is the
equivalent number of looks. We describe different levels of
heterogeneity by allowing the number of looks L to vary
locally. In a similar way, Sglbo & Eltoft [20]] assume a Gamma

Lz

F2(z L, \) = —}7 >0, (1)

distribution in a wavelet-based speckle reduction procedure, and
they locally estimate all the parameters without imposing a fixed
number of looks (which they call “degree of heterogeneity”)
for the whole image. These authors use a large 33 x 33
neighborhood to estimate this parameter, whereas we employ
small windows.

The likelihood of z = (21, 29, ..., 2, ), a random sample of
size n from the Gamma(L, L/\) law, is given by

L(L,X;2z) = <)\LF ) HzL 1exp{ L;j} 2)

Thus, the maximug likelihood estimator for (L, A\), namely
(L, A), is given by A =n~" 377, z; and by the solution of

lanzJ %zn:lnzj =0,
j=1

where 9° is the digamma function [17].

InL —¢°(L (3)

III. STOCHASTIC DISTANCES FILTER
A. Neighborhood of the first approach

The first filter, initially proposed in [[16], [17], is local and
nonlinear. It is based on stochastic distances and tests between
distributions [21]], obtained from the class of (h, ¢)-divergences.
The proposal employs the neighborhoods defined by Nagao
and Matsuyama [[18]].

Each filtered pixel has a 5 x 5 neighborhood, within
which nine areas are defined and treated as different samples.
Denote 01 the estimated parameter in the central 3 x 3
neighborhood, and (8, ..., 8y) the estimated parameters in
the eight remaining areas. To account for possible departures
from the homogeneous model, we estimate 0; = (L;, \;),
i={1,...,9} by maximum likelihood. The filtered value is
the result of averaging the central patch with those that pass the
goodness-of-fit test at a certain level of confidence stipulated
by the user.

B. Neighborhood of the second approach

In this approach the neighborhoods of the central pixel
and of its surrounding pixels are of the same size: 3 X 3
pixels. The central patch, with center pixel 21, is thus compared
with 24 neighboring patches, whose center pixels are z;, ¢ =
2,...,25, as illustrated in Figure E} The estimate of the noise-
free observation at z; is a weighted sum of the observations
at zo,..., 225, being each weight a function of the p-value
(p(1,7)) observed in the statistical test of same distribution
between two Gamma laws:

1 if p(1,4) > n,
Ip(La) —1 if 3 <p(1,i) <n,
0 otherwise,

w(l, i) = @)

where 7 is the confidence of the test, chosen by the user. This
function is illustrated in Figure [2] In this way we employ a
soft threshold instead of an accept-reject decision. This allows
the use of more evidence than with a binary decision.
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Fig. 1. Central pixel z1 and its neighboring z;, ¢ = {2,...,25} with 3 x 3
pixels patches.
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Fig. 2. Weight function for every pair of patches (1,7), 2 <14 < 25.

In this way, this proposal employs those pixels whose
observations are not rejected by a test of strong isotropy with
respect to the central value.

C. Stochastic Distances Filter

The proposals are based on the use of stochastic distances
on small areas within the filtering window. Consider Z; and
Z; random variables defined on the same probability space,
characterized by the densities fz,(21;601) and fz,(z:;6;),
respectively, where 61 and 6; are parameters. Assuming that
both densities have the same support I C IR, the (h, ¢)-
divergence between the distributions is given by

Di(Zy, 2:) = h(/w qs(M) F2.(2:6;) dx), 5)

where h: (0,00) — [0,00) is a strictly increasing function
with 2(0) = 0 and A/(z) > 0; and ¢: (0,00) — [0,00) is a
convex function for all x € R. Choices of the functions h and
¢ result in several divergences.

Divergences sometimes do not obey the requirements to be
considered distances. A simple solution is to define a new
measure, the distance dg, given by

Distances, in turn, can be conveniently scaled in order to present
good statistical properties that make them test statistics [21]]:

2mnk

S(8:,6;) = -~ d(8.,6,),
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where §1 e 51 are maximum likelihood estimators based on
samples size m and n, respectively, and k = (h'(0)¢” (1))71.
The null hypothesis 81 = 0; is rejected at a level 7, if Pr(SZ >
s) <), where s is the observed value. Under mild conditions
Sé’; is x3, asymptotically distributed, being M the dimension
of 61, the test is well defined. Details can be seen in the work
by Salicrti et al. [22]. Several statistical tests were derived
(Hellinger, Bhattacharyya, Triangular, x2, and Rényi of order
B), and the one with the best computational performance was
the one based on the Kullback-Leibler divergence:

mn(zl + Ez) (:\\% + Xf )

KL = ~=— —1]).
m+n 21

The filtering procedure consists in checking which regions

can be considered as coming from the same distribution that

produced the data which comprises the central block. The sets

which are not rejected are used to compute a local mean. If

all the sets are rejected, the filtered value is updated with the
average on the 3 x 3 neighborhood around the filtered pixel.

®)

IV. IMAGE QUALITY ASSESSMENT

Image quality assessment in general, and filter performance
evaluation in particular, are hard tasks [23]. Moschetti et al [24]]
discussed the need of making a Monte Carlo study when
assessing the performance of image filters. They proposed
a protocol which consists of using a phantom image (see
Figure corrupted by speckle noise (see Figure [3(b)). The
experiment consists of simulating corrupted images as matrices
of independent samples of some distribution with different
parameters. Every simulated image is subjected to filters, and
the results are compared (see Figures to ().

Among the criteria used to quantify the quality of the filters,
we employ [24]:

o Equivalent Number of Looks: in intensity imagery and
homogeneous areas, it can be estimated by ENL =
(2/G7)?, i.e., the square of the reciprocal of the coefficient
of variation. In this case, the bigger the better.

o Line Contrast: the preservation of a line of one pixel
of width will be assessed by computing three means: in
the coordinates of the original line (x;) and in two lines
around it (z,, and xy,). The contrast is then defined as
2x¢ — (x¢, + ¢,), and compared with the contrast in the
phantom. The best values are the smallest.

o Edge Preserving: it is measured by means of the edge
gradient (the absolute difference of the means of strip
around edges) and variance (same as the former but using
variances instead of means). The best values are the
smallest.

A “good” technique must combat speckle and, at the same
time, preserve details as well as relevant information.

Furthermore, we also assessed the filters by the universal
image quality index [23]], the correlation measure 3, and the
BRISQUE model [25] on real images. The universal image
quality index is defined by
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(a) Phantom (b) Corrupted, 3-looks (c) Improved Sigma filter

(d) SRAD filter

(e) SDNM filter (f) SDNLM filter

Fig. 3. Lee’s Protocol phantom, speckled data and filtered images.

where s? and @ denote the sample variance and mean,

respectively. The range of @ is [—1, 1], being 1 the best value.

The quantity
i@y — @) (y; —9)
Vi =2 ) (y — 9)?

is a correlation measure is between the Laplacians of images
X and Y, where o; and @ denote the gradient values of the
jth pixel and mean of the images V2X and V2Y, respectively.
The range of 3, is [—1, 1], being 1 perfect correlation.

The BRISQUE is a model that operates in the spatial
domain and requires no-reference image. This image quality
evaluator does not compute specific distortions such as ringing,
blurring, blocking, or aliasing, but quantifies possible losses
of “naturalness” in the image. This approach is based on the
principle that natural images possess certain regular statistical
properties that are measurably modified by the presence of
distortions. No transformation to another coordinate frame
(DFT, DCT, wavelets, etc) is required, distinguishing it from
previous blind/no-reference approaches. The BRISQUE is
defined for scalar-valued images and it ranges in the [0, 100]
interval, and smaller values indicate better results.

Figure [4] shows a block diagram of the assessment method
for the first proposal.

ﬁp = ) (10)

V. RESULTS AND ANALYSIS

The proposals were compared with the Improved Sigma
filter [5] and the SRAD (Speckle Reduction Anisotropic
Diffusion) filter proposed by Yu and Acton [26]], specifically
designed for combating speckle. The Improved Sigma filter
was applied in windows of sides 5. The SRAD filter used a
window of side 5, and diffusion threshold gy = 1/2. The tests
of the stochastic distances filters were performed at the 90%
level of significance.

Table [I] presents the three situations that were simulated.
These parameters describe situations commonly found when
analyzing SAR imagery in homogeneous regions.

TABLE I
SIMULATED SITUATIONS WITH THE GAMMA (L, L/\) DISTRIBUTION.

Situation ID L Ao Background mean
#1 1 200 20
#2 3 195 55
#3 4 150 30

The results obtained in one hundred independent replications
are summarized in Table[[T} the mean and the standard deviation
(in parenthesis) of each measure are shown in each situation.
Only the results of applying the filter once are presented, for
L = {1, 3,4} looks following the Table [l and the best results
are highlighted in bold.

As expected, the Improved Sigma filter (denoted as Lee)
is the one which provides the strongest speckle reduction as
measured by the equivalent number of looks (ENL). This filter
was designed with that purpose in mind. When it comes to
measures of detail preservation, our proposal is the winner.

Not every aforementioned quality measure can be applied
to real data, unless the ground truth is known. One of the
quality measures that can be used in this case is the BRISQUE
index [25]].

Figure [5] presents the results of applying the filters to
an image obtained by the Danish EMISAR L-band fully
polarimetric sensor over agricultural fields in Foulum, Denmark.
The original 250 x 350 pixels image of the HH intensity band
is shown in Fig. [5(a)] its filtered versions by the Improved
Sigma, SRAD, SDNM and SDNLM filters are presented in
Figs. 5(b)} [5(d) and respectively. Figure [5(F)| presents
the values of row 300.

Table presents the observed BRISQUE index and
equivalent number of looks on the real image. It is noticeable
that the proposed technique produces better results than the
Improved Sigma, SRAD and SDNM filters regarding the
BRISQUE index by a significant margin. As expected, it
provides a smaller increase in the equivalent number of looks,
especially in the second image, which exhibits more spatial
variability and thus leads to a more conservative filter.

TABLE III
IMAGE QUALITY INDEXES IN THE REAL SAR IMAGE.

Filtered BRISQUE

. ENL
Versions Index
Improved Sigma  49.239 4.581
SRAD 39.235 3.101
SDNM 39.164 4.661
SDNLM 37.384 4.539

VI. CONCLUSIONS

This paper presented an assessment of the filter based on
stochastic distances for speckle noise reduction. The proposal
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Fig. 4. Block diagram for assessment of the first proposed technique.
TABLE 11
STATISTICS OF THE METRICS OF SIMULATED IMAGES: 100 REPLICATIONS WITH 1-ITERATION.

Filtered SAR Measures Q Tndex 5, Index
Versions ENL Line Cont.  Edge Grad. Edge Var.

Improved Sigma #1 14.375 (2.034) 1.724 (0.032) 74.806 (10.065) 2.117 (1.426) 0.149 (0.002) 0.747 (0.005)
SRAD #1 1.009 (0.144) 1.798 (0.027) 84.217 (8.066) 2.533 (1.108) 0.001 (0.000) 0.793 (0.007)
SDNM #1 13.391 (1.333) 1.566 (0.035) 61.975 (6.900) 4.533 (1.234) 0.220 (0.002) 0.812 (0.009)
SDNLM #1 12.054 (3.393) 1.522 (0.041) 64.531 (6.789) 5.020 (1.256) 0.226 (0.002) 0.822 (0.008)
Improved Sigma #2 54.467 (7.226) 1.495 (0.029) 62.709 (5.038) 6.772 (1.492) 0.198 (0.002) 0.784 (0.006)
SRAD #2 3.158 (0.421) 1.639 (0.042) 72.925 (5.583) 6.444 (1.250) 0.001 (0.000) 0.811 (0.011)
SDNM #2 40.234 (3.978) 1.393 (0.041) 61.975 (6.900) 6.736 (1.321) 0.235 (0.002) 0.840 (0.010)
SDNLM #2 43.495 (6.514)1.361 (0.060) 64.531 (6.789) 5.899 (1.644) 0.243 (0.001) 0.845 (0.010)

Improved Sigma #3 90.238 (10.939) 1.401 (0.024) 47.230

SRAD #3 4.765 (0.850) 1.511 (0.046) 63.068
SDNM #3 65.678 (7.451) 1.293 (0.037) 37.255
SDNLM #3 66.485 (19.580) 1.207 (0.063) 47.866

(6.051) 8.315 (1.728) 0.218 (0.001) 0.845 (0.002)
(8.751) 3.528 (0.875) 0.001 (0.000) 0.863 (0.005)
(4.928) 6.053 (1.619) 0.248 (0.001) 0.883 (0.003)
(3.581) 4.765 (1.518) 0.262 (0.001) 0.899 (0.007)

was compared with the Improved Sigma filter and other more
sophisticated filters, using a protocol based on Monte Carlo
experiences and real images. Moreover, the §,, @ index
and BRISQUE model were used to assert the proposal. The
proposed filter outperforms the Improved Sigma filter in five
out of six quality measures. Other significance levels will be
tested, along with different points of the parameter space of
the simulation in order to have a more complete assessment
of the proposal.
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