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Abstract. Here we revisit a recently introduced process of relative depth estimation through the
matching of photometric stereo images. By considering the general solution of the differential equation
which relates surface depth to the disparity map produced by the matching process, we are able to obtain
a more consistent formulation of such disparity-based approach to photometric stereo. Also, we
introduce a multiscale matching procedure, based on a new stochastic metaheuristic for combinatorial
optimization, which yields more reliable disparity maps in shorter processing times. Finally, we employ
a simple least-squares regression in a calibration strategy for estimating the parameters required by our
reconstruction approach. Shape-estimation experiments with real images are presented.
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1      Disparity-Based Photometric Stereo
We consider two photometric stereo images, I1(s) and
I2(s), where s=(x,y) denotes a general point on the
image plane. If such images correspond to two
illumination directions which are not far apart, and if
the underlying surface is smooth, we may attempt to
match them to obtain a disparity field similar to the
ones resulting in stereoscopy. Calling
D s D s D sx y( ) ( ( ), ( ))=  the disparity field, we would

have

I x y I x D s y D sx y1 2( , ) ( ( ), ( ))≈ + + (1)

from which we obtain, through a Taylor-series
expansion,
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      Now, if we assume that a linear approximation of
the reflectance map function is applicable, we may
rewrite ∆I(s) as

∆I I x y I x y k k p k q≡ − = + +1 2 0 1 2( , ) ( , ) (3)

where
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where Ri(p,q), for i =1,2, denote the reflectance maps
associated with the two imagens, which are functions of
the surface gradient components, p z x= ∂ ∂/  and

q z y= ∂ ∂/ , and ( , )p q0 0  denotes the orientation

around which the linear expansion is taken.  From (3)
and (2), we thus get
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which is the differential equation relating the disparity
field to surface depth.  Now, for two sufficiently close
illumination directions, it is possible to obtain another
relation between D(s) and z(s), by requiring that the
displacement of a given irradiance patch over the
imaged surface be perpendicular to the local normal
vector, which is given by 

r
n p q= − −( , , )1 .  Since, for an

orthographic projection geometry, any such
displacement can be denoted by ( ( ), ( ), ( ))D s D s V sx y ,

where V(s) is the unobservable displacement



component along the optical-axis direction (direction
z), we thus have

D s p D s q V sx y( ) ( ) ( )+ = (8)

      In order to obtain the depth map, z(s), in terms of
the disparity field, D(s), we must therefore find a
solution to (7)  which is also consistent with equation
(8).  Employing Lagrange’s method [Hildebrand
(1962)], we thus find that the following relations must
hold

k dx k dy D s dx D s dyy x2 1 0 0− = − =and ( ) ( ) (9)

From where we may take
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      Proceeding with the solution to (7) we must then
solve the ordinary differential equation
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which can be rewritten as
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property of the double vector product, the factor
( . )( ( ). )
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term inside the brackets is easily found to vanish, due
to (9).  Thus, (12) becomes
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      The term on the left-hand side of the above
equation becomes a complete differential, df, if we
assume, as was done in the original formulation of

DBPS [Torreão et al. (1995)], that 
r
D s( ) varies slowly

with position across the image plane, when compared
to I s2( ) .  In such case, we will have
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wheref k D s I s k k x k y= − +( . ( )) ( ) ( )
r r

2 0 1 2 .  The general
solution to (7) can be written as
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where F is an arbitrary function of its argument, which
comes from the first expression in (9) [Hildebrand
(1962)].  Equation (15) can be easily related to the
expression for z(x,y) obtained in the optical-flow
approach to photometric stereo [Torreão et al. (1995)].
Moreover, if we employ (10), such equation becomes
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which obviously includes, as a particular case, the
expression given in [Torreão et al. (1995)], where it
was assumed that k2 0= .

      It is interesting to remark that, even starting from a
disparity-vector along an arbitrary direction, we have
been able to arrive at a depth map which depends only
on the component D sx( ) , without having to consider

any particular illumination directions, in contrast to the
formulation of [Torreão et al. (1995)].
      Apart from I s2( ) , which is an input image, and

from D sx( ) , which can be reliably estimated through a

multiscale version of the microcanonical optimization
algorithm [Torreão-Roe (1995)], equation (16) depends
only on the parameters of the linear approximation of
the reflectance map, which we obtain through a
calibration approach based on a simple least-squares
regression [Fernandes (1997)].

2      Experiments
Here we present two 3-D reconstructions yielded by the
DBPS strategy above described (Experiments 1 and 2).
The calibration surfaces employed for the estimation of
the reflectance map were spheres of approximately the
same reflectance as the test objects.  For each
experiment (Figures 1, 2,  3 and 4) we show the input
image pair, the resulting disparity map, and one view
of the reconstructed surface, with the intensities of one
of the corresponding input images mapped onto it.  The
illumination   directions   chosen,   in  all  cases,   were
(-0.36,0,1) and (0.36,0,1), and equation (16) was
employed for all reconstructions, with the function F
taken equal to zero.
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Figure 1.  Experiment 1. Input images (a) and (b);  disparity map (c).



Figure 2.  Experiment 1. Reconstructed surface.
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Figure 3.  Experiment 2. Input images (a) and (b);  disparity map (c).



Figure 4.  Experiment 2. Reconstructed surface.


