
Integrating Polygonal Objects on Voxel Based Terrain Models

LUIZ CARLOS CASTRO GUEDES

ADDLabs - Departamento de Ciência da Computação, Universidade Federal Fluminense
Praça Valonguinho s/n, Ed. Instituto de Matemática 4o andar, Centro, 24210-130 Niterói, RJ, Brasil

guedes@dcc.uff.br

Abstract. Voxel based projection is commonly used in applications that demand high exhibition frame rates
of large scale terrain models. Placing tridimensional objects within a voxel based world may be an ease task
for elementary objects. Complex objects are better represented by polygonal meshes. Integrating a voxel
based terrain model with polygonal camera model brings together the benefits of both models. Such
integration should be done with the aid of a z-buffer. In this paper we propose a solution to the problem of
calculating the z-coordinate of each painted pixel in a voxel based terrain model. The proposed solution
exploits the coherence of the pixels in the same column and uses a linear cost increment to update the z-
coordinate. The proposed solution considers the situation when the view plane is not vertical.
Keywords: height fields, voxel projection, z-buffer, polygonal objects

1.Introduction
Large scale terrain models pose a heavy load on

conventional polygonal models. Thus, ray casting based
voxel projection is more adequate to the task because
texture is placed into the model prior to exhibition and
image driven algorithms avoid the overload of processing
different indistinguishable information for each pixel
[GuGaCa97].

Complex 3D objects are, on the other hand, better
modeled by a polygonal mesh. Integrating polygonal
objects on a voxel based terrain model should bring
together the best of both worlds. Such integration should
be done with the aid of a z-buffer. The terrain rendering
algorithm should calculate the z-coordinate related to the
observer of each painted pixel and store it in the z-buffer.
Objects placed on the terrain should check and update the
z-buffer during their rendering pipeline. Figure 1 shows a
building rendered on voxel terrain borrowed from
[SzGaCa97].

 Figure 1 - Polygonal Object on a Voxel Terrain

The main issue when filling the z-buffer is to use an
algorithm that exploits the coherence of the pixels of a
column to find a linear cost increment for the z-coordinate
from one pixel to the next.

In this paper we propose a solution to the problem of
calculating the z-coordinate of each painted pixel in a
voxel based terrain model. The proposed solution exploits
the coherence of the pixels in the same column and uses a
linear increment to update the z-coordinate from one pixel
to the next and from one voxel to the next. The proposed
solution considers the situation when the view plane is not
vertical.

Section 2 presents the basic voxel algorithm. In
Section 3 the solution to fill the z-buffer is proposed. In
Section 4 some conclusions are taken.

2. Basic Voxel Algorithm
Each voxel has a height value, taken from the height

field, and a color value, taken from a digital photograph.
The presented approaches exploit the coherence between
the pixels of a column to find linear cost incremental
changes from one pixel to another.

The ray casting approach for terrain rendering
assumes that the terrain is modeled by a Digital Elevation
Map (DEM) and Digital Color Map (DCM). The DEM
associates an elevation to each position (x,y) in the terrain
and the DCM associates a color value to each position in
the terrain. A column of the terrain raised with a height
and color taken from the DEM and DCM, respectively, is
called a voxel. Voxel algorithms consider the z coordinate
as the altitude of the point instead of its depth. Hence,
from now on, we will refer to the depth of a point as its d
coordinate, and the buffer that stores the depth s the d-
buffer.

Ray Casting algorithms may perform either forward
casting or backward casting. Backward casting algorithms
[LaMothe95] cast the rays that reach the farther distances
before the ones that reach the closer distances.

The forward casting approach [Freese95] emits rays
beginning from the observer to its projection on the
ground and moving the destination of the rays far away on
the ground looking for an intersection of a ray and the
surface of the terrain. When an intersection occurs, the
corresponding voxel is climbed up and the pixels of the
screen are painted with its color. When the ray passes over
the voxel the next position on the ground is inspected to
find whether its voxel intersects with the ray.

In the case that the view plane is vertical, like in
[SzGaCa97], the depth is the same for the pixels painted
by each voxel and its value is just the distance v from the
voxel to the observer. When the view plane rotates on the
x-axis, many corrections have to be made to the generated
image [GuGaCa97] and the depth is not so ease to
determine.

3. d-buffer Filling Algorithm
To determine the depth of each pixel incrementally,

we have to consider two distinct situation. The first one is
when we climb up a single voxel painting the pixels of a
screen column with the color of the voxel. The second
situation is when the current voxel does not intersects with
the current ray and we have to check the next voxel.
Figure 2 illustrates both situations and shows the value of
the depth increment (dd) in each case.

Figure 2 - Depth Increments
When we climb a voxel we have to increase the

corresponding ray height by a value that corresponds to a
lift of one single pixel on the screen. This value, called the
pixel height (ph) may be determined from the slope of the
two consecutive rays and the distance v on the ground
from the current voxel to the observer.

The increment of the depth (dd) when we climb a
voxel by ph corresponds to its projection on the viewing
direction, which is given by dd = -ph.sin(ViewAngle).

The increment of the depth (dd) when we go from
one voxel to the next corresponds to the sum of the
projections on the viewing direction of the unit step on the
ground and the vertical fall corresponding to the unit step
in the direction of the current ray, which is given by dd= -
dz.sin(ViewAngle) + 1.cos(ViewAngle).

Assuming that a ray starts at the observer, the initial
depth value for each ray is zero. Algorithm 1 adapts one
of the voxel projection algorithms of [GuGaCa97] to fill a
d-buffer for a given column.
CastColumn(col, x0, y0, dx, dy, dz[])
{

z = H; x = x0; y = y0; // init position
d = 0 ; // init depth
row = MAX_ROW; // start at last row
for v = 1 to MaxRayDept h {

x + = dx; y + = dy; z + = dz[row];
d += cos(ViewAngle)- // update depth

dz[row]*sin(ViewAngle);
h = GetHeight(x,y); // get voxel height
if (h > z) { // ray intersects with voxel

color=GetColor(x,y); //get voxel color
do { // paint the pixel

SetPixel(col,row,color);
ph = v*(dz[row]-dz[row -1]);
z += ph; // update ray height
d -= ph*sin(ViewAngle); //upd. depth
dBuffer[row,col] = d; //upd.d-buffer
if (--row < 0) return;

} while (h>z); //ray intersects w. voxel
}

}
}

Algorithm 1 - Voxel Projection with d-buffer

4. Conclusion
We have presented a solution to the problem of

filling a z-buffer during voxel based terrain rendering. The
proposed solution exploits the coherence of the pixels in
the same column to find linear increments to update the z-
buffer. It has been implemented and successfully tested
for under sea terrain with objects on it.

Acknowledgments
I would like to thanks to Ana Cristina Garcia for her

unconditional faith on this work and to Rômulo Pinho for
implementing algorithm presented in this paper.

References
A. La Mothe, Black Art of 3D Game Programming, Waite

Group Press, 1995.
P. Freese, More Tricks of the Game Programming Gurus,

Chapter 7, SAMS Publishing, 1995.
Guedes, L.C.C., Gattass, M., Carvalho, P.C., Real -Time
Rendering of Photo-Textured Terrain Height Fields,
SiBGraPI’97, 1997. <dpi.inpe.br/ambro/1998/06.01.14.19>.
Szenberg, F., Gattass, M., Carvalho, P.C., An Algorithm
for the visualization of a Terrain with Objects,
SiBGraPI’97, 1997. <dpi.inpe.br/ambro/1998/06.03.15.03>.

v 1

dd = -ph.sin(VA)

1

dz

dd =- dz.sin(VA)
+ 1.cos(VA)

k

1H

ph

View Angle (VA)

goto/dpi.inpe.br/ambro/1998/06.01.14.19
goto/dpi.inpe.br/ambro/1998/06.03.15.03

