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Abstract. Diffusion and correlation effects are two principal phenomena which have been studied for years
and several visualization techniques have been proposed to help scientists to understand them. The analysis
of these phenomena will help to extract important information from data sets. To understand these problems
we combine wavelet and entropy analysis to evaluate the evolution of these behaviors through scale and
time. We present image case studies to show several different kinds of behaviors of these effects. Some of
them are fallible cases and not reliable, as the images do not show the desired information. We calculate
entropy of smooth and detail coefficient sets, generated by wavelet transform of these sample images in each
scale, to obtain measures that allow us to evaluate these behaviors according to the organization complexity.
These measures can provide an indication about the quality of the rendered images.

1 Introduction ity of the data.

In this paper, we introduce four measures — topolog-
entropy, metric entropy, topological complexity and

stical complexity — defined by Crutchfield and Young
] in Computational Mechanics where they utilize in-

One of the drawbacks of visualization is the failure of it].

. ical
to warrant that the rendered images show the behavi Lati
of the data set. This problem is more severe in volum

vigua!ization of dyn'am'ic systgms, mainly in medical @Piormation theoretic ideas in dynamics. These measures
plications where misdiagnosis can be caused from theﬁ?e used to fill up the lacuna of the incomplete Shannon

;ahrrors. tTr?E (iensny,dcol-or da.n? flowtmapp|gg .thatlre]fflecéntropy measure to capture coherent structures (topolog-
the maich between desired information and visual € ?Cféal information) required in the hierarchical coherence
is not easy. Thus, information analysis is becoming im-

tant t ve th bl in thi K information concept to classify complexity of the self-
portant to solve these probiems. In this work, we apérganization systems. We utilize the chaining process of

ply wavelet transform in sample images to obtain sever%e Multiscale Singularity Analysis (MSA) to obtain co-

cases of diffusion and carrelation interactions. This OP€erent structures which are essential for these measures.

atloln ?Ilow? ttrjls o ebxp;:on_multlhscaler?nalyllgs t\(/)vstuldy the We also evaluate diffusion and correlation behavior
evoiution otthese behaviors Irough scales. e aiso € rough scales and entropy evolution in time. In addition,

ploy entropy analysis to evaluate complexity structures R?/e present results of these measures for this analysis.
facilitate rendering process.

The idea of combining several interdisciplinary con-
cepts used by wavelet and entropy analysis was initiall§ EIAS - Entropy Information Analysis System

introduced by Chiou et al. [1]. Its benefit was to obtaln].he Entropy Information Analysis System (EIAS) is com-

Ido.]?fal antd glolbal .analys'lstfa(_:lllﬁltles 0 St#dy thg Iﬁatgres 'Bosed of two subsystems: Multiscale singularity Analysis
merent sca’e view points. they empnasized the Broo SA) and Hierarchical Evolutionary Information Anal-

and Wiley [2] Pypothess_“Blologlcal evolution IS an en'gsis (HEIA). Each one undertakes specific tasks.
tropy process” as essential to the study of evolution laws.

One can notice the diffusion and correlation interaction

produced by wavelet transform as one kind of evolutioMSA MSA was described in detail in Mallat's work
through scales. In this way, we can evaluate entropy prf4, 5]. Its importance is that it uses wavelet transform
duction through scales to analyze informational complexe decompose original signals into smooth and detail sig-



Figure 2: Multiscale singularity analysis and hierarchical
information analysis integration.

and detail coefficients because wavelet transform decom-
poses a signal in both coefficients.

Feature Information Analysis System In nature, en-
tropy or disorder increases spontaneously; hence, the in-
formation organization diffuses along time. Similarly,
disorder increases through scales in wavelet multiscale
representation. Thus, we can correlate time with scale to
measure the information evolution through coarser scales.
FIS is proposed to evaluate this purpose. We can now de-
fine the topological complexity for each scaleof the
smooth spac$y., wheret is a discrete time, as:

CA(sh) = log, Qs )
Ci(Ss) = — > phla)log,ps(a:) (2
qierés

wherepli is pdf (probability distribution function) of smooth
coefficient sets.

Singularity Information Analysis System We know

the wavelet coefficient space has singularity information.
To analyze this space, we use statistical complexity mea-
sure to evaluate singularity information of data set. Let
W.. be the wavelet coefficient space. The same measures
for this space are given as:

CLWE) = log, | Quy, 3)
H{(WL) = = Y piv(i)log,ply (i) (4)
qz'EQWZtS

wherep!,, (i) is pdf of detail coefficient sets. Note that
statistical complexity is a entropy measure.



Coherence Information Analysis System In this sec- Using Shannon’s entropy definition, the maximum
tion we combine chaining process (CP) and hierarchicantropy (maximum disorder) of a 256 256 size image
information theory (HIT). We show the hierarchical in-with one byte per pixel is 5.545. Zero is minimum en-
formation capacity by taking advantage of the chainingropy (maximum order). If we observe Noise image in
process. The main idea is to join similar properties irthe Figure 6, we see the image is randomly generated be-
triple parameters: space, time and scale to form structutween 0 to 255. The entropy of the smooth coefficient in
elements (chains). In the process, we make use of spatihis image is near the maximum in scale 0 and decreases
coherence (space similarities), spatio-temporal coheren@pidly through scales because of the correlation behavior
(time-space similarities), and the local maximum propain the neighborhood. See Figure 3 for this kind of orga-
gation (scale-space similarities). We obtain chains withization phenomenon. We also see this approximated de-
different sizes for all scales. In accordance with scaleline in the detail coefficient entropy. On the other hand,
space similarities, small chains do not propagate throudghe entropy is minimum in image with constant values.
scales. This contrasts with FIS, where order informatiofthe resulting entropies of both smooth and detail coeffi-
is propagated through coarser scales as disorder infaients are zero. We do not show this image because it is
mation disappears with scale increases. If we combireasy to understand.
multiscale analysis with temporal coherence, we will ob-  Different from Noise image, the entropy of Rectan-
tain multiscale evolution analysis. We believe it is im-gle (Figure 6) greatly increases in the scales. The diffu-
portant to analyze self-organization phenomena since va#on process occurs extremely, spreading contour features
prefer to understand behavior modification through scalesound the neighborhood. This reflects the disorder be-
in time. havior around border regions. We see it more clearly in
In the scale-space, multiscale singularities informaRectangle images of Figure 6. Figure 3 shows the entropy
tion can be grouped to form structure elements as texturedich also increases notably with scales.
or surfaces that can be linked through scales. Then, we Evaluating the entropy of Lenna image in Figure 3,
can associate levels of the hierarchical information theve note the entropies decrease in the smooth coefficient
ory with ¢-sized of structures elements. As result, ousets and rise in the magnitude of detail coefficient sets.
expression of the topological entropy and metric entropyhe entropy production through scales causes increased

of chains is given respectively by: diversity and complexity. The reason for these opposing
measures is that correlation occurs with more intensity
HY ' = Llim log, N2 (L), (5) than diffusion for smooth coefficient sets in higher scales.

—00

The same does not occur in detail coefficient sets where
hthere are few features to correlate.
We can see a more clear diffusion vs. correlation
in the CircleN image case, when the entropy increases
H125,t - lim — Z pQS,t(w) log, p2s,t(w), (6) from.scalg Oto3 wh(_are there is Qiﬁusion predominan.t in
relation with correlation. In the higher scales, correlation
is predominant. This behavior occurs for both smooth
and detail coefficients.

whereN?"+*(L) is the number of distinct chains of lengt
L.

L—o0o
WGQ‘“”:L

wherep?”*(w) is the probability of occurrence of the
chain and the sum is taken over all distinct chains of

lenght L. Q is set of all chains. In the equation aboveEvaluating Entropy of Chains We use metric entropy

s is the scalej is the discrete time. for chain evaluation. In contrast with detail coefficients,
the entropy of chains is not affected by diffusion behavior
3 EIAS Evaluation around the contours. We want to evaluate the entropy of

chains in accordance with their sizes — small, medium
and large. We attribute weights in accordance with these
sizes. After this, we calculate order and disorder capacity.
Evaluating Entropy of Smooth and Detail Coefficients The values in Figure 4 show the entropy of these
We use statistical complexity for evaluation of smoottinformation capacities for the sample images. Compar-
and detail coefficients. The images in Figure 6 illustraténg the values of order capacity and disorder capacity
smooth coefficients and magnitude of detail coefficientddetween Noise and Lenna images, we note disorder ca-
sample images. It shows some idea of the diffusion anghcity is higher than order capacity in lower scales. The
correlation behaviors of wavelet transform. The first lineeverse occurs in higher scales.

is the original image. The following three images are  The order capacity predominates in relation with dis-
smooth coefficients in scales 1, 3 and 5. The last three ameder capacity for all scales of the Rectangle image. In
the magnitude of detail coefficients in the same scales. the CircleN image sample, the value of disorder capac-

3.1 Evaluation of Information Evolution
through Scales
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Figure 3: Entropy of smooth (a) and detail (b) coefficients of sample images.

ity is predominant in scale 2. After this, the variation ofcomplexity structure - of order and disorder - produced by
order and disorder capacity are similar because there aeolution of features through scales.

small differences between diffusion and correlation. We present several cases of images to show differ-
ent behaviors of diffusion via scale and time. In general,
3.2 Information Evolution Evaluation in wavelet transform has not work well in smooth variation
Time-Scale examples where entropy analysis is required to detect and

. . evaluate this kind of comportment.
To evaluate the scale evolution we utilize the quasar ani- h his inf . lexi vsi
mation recently scanned by the Hubble satellite telescope we ope this in ormaﬂon and comp §X|ty analysis
can be applied for quality control in precise rendering

We apply wavelet transform and calculate entropy fo\gvhere lost information is not acceptable. This analysis

each frame. Then, we show smooth and detail (magné-an also be adopted for visualization of behavior of a

tude) coefficient images and graphics of the entropy vs. | in which inf i i
time in Figure 7 Complex system in which inference information can not
) be visualized by traditional techniques. Under this cir-

_ One can note that light emitted by a ;tar eprOSIO@umstance, a new illumination model will need to be re-
inside of the quasar is not clearly apparent in lower scalefgrmulated

(column 4 ) but it becomes evident at higher scales (co

umn 5) because smooth features are not well detected by
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curance of the explosion. Hence, this analysis can help

to control the quality in direction to rendering of assureq?eferences

images.
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Figure 5: Entropy measure in time of Quasar animation
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Figure 6: Original (column 1) of the image Lenna, Noise, Rectangle, CircleN (up-down) and their smooth in scales 1
(column 2), 3 (column 3) and 5 (column 5) and detail coefficients in scales 1(column 6), 3 (column 7)and 5(column
8), left to right.

Figure 7: Original Quasar(column 1) image and its smooth in scales 1(column 2) and 4(column 3) and detail coeffi-
cients in scales 1(column 4) and 4(column 5),left-right. The frames, from up to down, are 0, 150 and 310, respectively.
The original color images were scanned by the Hubble satellite telescope from NASA.



