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Abstract. Diffusion and correlation effects are two principal phenomena which have been studied for years
and several visualization techniques have been proposed to help scientists to understand them. The analysis
of these phenomena will help to extract important information from data sets. To understand these problems
we combine wavelet and entropy analysis to evaluate the evolution of these behaviors through scale and
time. We present image case studies to show several different kinds of behaviors of these effects. Some of
them are fallible cases and not reliable, as the images do not show the desired information. We calculate
entropy of smooth and detail coefficient sets, generated by wavelet transform of these sample images in each
scale, to obtain measures that allow us to evaluate these behaviors according to the organization complexity.
These measures can provide an indication about the quality of the rendered images.

1 Introduction

One of the drawbacks of visualization is the failure of it
to warrant that the rendered images show the behavior
of the data set. This problem is more severe in volume
visualization of dynamic systems, mainly in medical ap-
plications where misdiagnosis can be caused from these
errors. The density, color and flow mapping that reflect
the match between desired information and visual effects
is not easy. Thus, information analysis is becoming im-
portant to solve these problems. In this work, we ap-
ply wavelet transform in sample images to obtain several
cases of diffusion and correlation interactions. This oper-
ation allows us to exploit multiscale analysis to study the
evolution of these behaviors through scales. We also em-
ploy entropy analysis to evaluate complexity structures to
facilitate rendering process.

The idea of combining several interdisciplinary con-
cepts used by wavelet and entropy analysis was initially
introduced by Chiou et al. [1]. Its benefit was to obtain
local and global analysis facilities to study the features in
different scale view points. They emphasized the Brooks
and Wiley [2] hypothesis “Biological evolution is an en-
tropy process” as essential to the study of evolution laws.
One can notice the diffusion and correlation interaction
produced by wavelet transform as one kind of evolution
through scales. In this way, we can evaluate entropy pro-
duction through scales to analyze informational complex-

ity of the data.
In this paper, we introduce four measures – topolog-

ical entropy, metric entropy, topological complexity and
statistical complexity – defined by Crutchfield and Young
[3] in Computational Mechanics where they utilize in-
formation theoretic ideas in dynamics. These measures
are used to fill up the lacuna of the incomplete Shannon
entropy measure to capture coherent structures (topolog-
ical information) required in the hierarchical coherence
information concept to classify complexity of the self-
organization systems. We utilize the chaining process of
the Multiscale Singularity Analysis (MSA) to obtain co-
herent structures which are essential for these measures.

We also evaluate diffusion and correlation behavior
through scales and entropy evolution in time. In addition,
we present results of these measures for this analysis.

2 EIAS - Entropy Information Analysis System

The Entropy Information Analysis System (EIAS) is com-
posed of two subsystems: Multiscale singularity Analysis
(MSA) and Hierarchical Evolutionary Information Anal-
ysis (HEIA). Each one undertakes specific tasks.

MSA MSA was described in detail in Mallat’s work
[4, 5]. Its importance is that it uses wavelet transform
to decompose original signals into smooth and detail sig-



Figure 2: Multiscale singularity analysis and hierarchical
information analysis integration.

and detail coefficients because wavelet transform decom-
poses a signal in both coefficients.

Feature Information Analysis System In nature, en-
tropy or disorder increases spontaneously; hence, the in-
formation organization diffuses along time. Similarly,
disorder increases through scales in wavelet multiscale
representation. Thus, we can correlate time with scale to
measure the information evolution through coarser scales.
FIS is proposed to evaluate this purpose. We can now de-
fine the topological complexity for each scales of the
smooth spaceSt2s , wheret is a discrete time, as:
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whereptSi is pdf (probability distribution function) of smooth
coefficient sets.

Singularity Information Analysis System We know
the wavelet coefficient space has singularity information.
To analyze this space, we use statistical complexity mea-
sure to evaluate singularity information of data set. Let
W t

2s be the wavelet coefficient space. The same measures
for this space are given as:
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whereptW (i) is pdf of detail coefficient sets. Note that
statistical complexity is a entropy measure.



Coherence Information Analysis System In this sec-
tion we combine chaining process (CP) and hierarchical
information theory (HIT). We show the hierarchical in-
formation capacity by taking advantage of the chaining
process. The main idea is to join similar properties in
triple parameters: space, time and scale to form structure
elements (chains). In the process, we make use of spatial
coherence (space similarities), spatio-temporal coherence
(time-space similarities), and the local maximum propa-
gation (scale-space similarities). We obtain chains with
different sizes for all scales. In accordance with scale-
space similarities, small chains do not propagate through
scales. This contrasts with FIS, where order information
is propagated through coarser scales as disorder infor-
mation disappears with scale increases. If we combine
multiscale analysis with temporal coherence, we will ob-
tain multiscale evolution analysis. We believe it is im-
portant to analyze self-organization phenomena since we
prefer to understand behavior modification through scales
in time.

In the scale-space, multiscale singularities informa-
tion can be grouped to form structure elements as textures
or surfaces that can be linked through scales. Then, we
can associate levels of the hierarchical information the-
ory with i-sized of structures elements. As result, our
expression of the topological entropy and metric entropy
of chains is given respectively by:
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wherep2
s;t(!) is the probability of occurrence of the

chain and the sum is taken over all distinct chains of
lenght L.
 is set of all chains. In the equation above,
s is the scale,t is the discrete time.

3 EIAS Evaluation

3.1 Evaluation of Information Evolution
through Scales

Evaluating Entropy of Smooth and Detail Coefficients
We use statistical complexity for evaluation of smooth
and detail coefficients. The images in Figure 6 illustrate
smooth coefficients and magnitude of detail coefficients’
sample images. It shows some idea of the diffusion and
correlation behaviors of wavelet transform. The first line
is the original image. The following three images are
smooth coefficients in scales 1, 3 and 5. The last three are
the magnitude of detail coefficients in the same scales.

Using Shannon’s entropy definition, the maximum
entropy (maximum disorder) of a 256� 256 size image
with one byte per pixel is 5.545. Zero is minimum en-
tropy (maximum order). If we observe Noise image in
the Figure 6, we see the image is randomly generated be-
tween 0 to 255. The entropy of the smooth coefficient in
this image is near the maximum in scale 0 and decreases
rapidly through scales because of the correlation behavior
in the neighborhood. See Figure 3 for this kind of orga-
nization phenomenon. We also see this approximated de-
cline in the detail coefficient entropy. On the other hand,
the entropy is minimum in image with constant values.
The resulting entropies of both smooth and detail coeffi-
cients are zero. We do not show this image because it is
easy to understand.

Different from Noise image, the entropy of Rectan-
gle (Figure 6) greatly increases in the scales. The diffu-
sion process occurs extremely, spreading contour features
around the neighborhood. This reflects the disorder be-
havior around border regions. We see it more clearly in
Rectangle images of Figure 6. Figure 3 shows the entropy
which also increases notably with scales.

Evaluating the entropy of Lenna image in Figure 3,
we note the entropies decrease in the smooth coefficient
sets and rise in the magnitude of detail coefficient sets.
The entropy production through scales causes increased
diversity and complexity. The reason for these opposing
measures is that correlation occurs with more intensity
than diffusion for smooth coefficient sets in higher scales.
The same does not occur in detail coefficient sets where
there are few features to correlate.

We can see a more clear diffusion vs. correlation
in the CircleN image case, when the entropy increases
from scale 0 to 3 where there is diffusion predominant in
relation with correlation. In the higher scales, correlation
is predominant. This behavior occurs for both smooth
and detail coefficients.

Evaluating Entropy of Chains We use metric entropy
for chain evaluation. In contrast with detail coefficients,
the entropy of chains is not affected by diffusion behavior
around the contours. We want to evaluate the entropy of
chains in accordance with their sizes – small, medium
and large. We attribute weights in accordance with these
sizes. After this, we calculate order and disorder capacity.

The values in Figure 4 show the entropy of these
information capacities for the sample images. Compar-
ing the values of order capacity and disorder capacity
between Noise and Lenna images, we note disorder ca-
pacity is higher than order capacity in lower scales. The
reverse occurs in higher scales.

The order capacity predominates in relation with dis-
order capacity for all scales of the Rectangle image. In
the CircleN image sample, the value of disorder capac-
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Figure 3: Entropy of smooth (a) and detail (b) coefficients of sample images.

ity is predominant in scale 2. After this, the variation of
order and disorder capacity are similar because there are
small differences between diffusion and correlation.

3.2 Information Evolution Evaluation in
Time-Scale

To evaluate the scale evolution we utilize the quasar ani-
mation recently scanned by the Hubble satellite telescope.
We apply wavelet transform and calculate entropy for
each frame. Then, we show smooth and detail (magni-
tude) coefficient images and graphics of the entropy vs.
time in Figure 7.

One can note that light emitted by a star explosion
inside of the quasar is not clearly apparent in lower scales
(column 4 ) but it becomes evident at higher scales (col-
umn 5 ) because smooth features are not well detected by
application of a high-pass filter in the convolution oper-
ation. Furthermore, the successive transforms can cap-
ture the global features in this case, in contrast with De-
grad image where wavelet coefficients are almost zero.
These are cases where compression does not work well.
One observes that entropy analysis can detect and quan-
tify these smooth change features. This is illustrated in
Figure 5 where fast increase of entropy can detect the oc-
curance of the explosion. Hence, this analysis can help
to control the quality in direction to rendering of assured
images.

4 Conclusion

Evolution behavior can be governed by a diffusion equa-
tion. One can perceive that wavelet transform causes dif-
fusion and correlation effects that depend on geometric
distribution of features of the objects. Entropy analysis is
applicable for evaluating these outcomes to determine the

complexity structure - of order and disorder - produced by
evolution of features through scales.

We present several cases of images to show differ-
ent behaviors of diffusion via scale and time. In general,
wavelet transform has not work well in smooth variation
examples where entropy analysis is required to detect and
evaluate this kind of comportment.

We hope this information and complexity analysis
can be applied for quality control in precise rendering
where lost information is not acceptable. This analysis
can also be adopted for visualization of behavior of a
complex system in which inference information can not
be visualized by traditional techniques. Under this cir-
cumstance, a new illumination model will need to be re-
formulated.
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Figure 4: Information capacity of sample images
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Figure 5: Entropy measure in time of Quasar animation



[3] J. P. Crutchfield and J. E. Hanson. Inferring statistical
complexity.Phys. Rev. Lett., 63(4), 1989.

[4] Stephane G. Mallat and Wen Liang Hwang. Singu-
larity detection and processing with wavelets.IEEE
Transactions on Information Theory, 38:617–643,
March 1992.

[5] Stephane G. Mallat and Sifen Zhong. Characteriza-
tion of signals from multiscale edges.IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
14:710–732, July 1992.



Figure 6: Original (column 1) of the image Lenna, Noise, Rectangle, CircleN (up-down) and their smooth in scales 1
(column 2), 3 (column 3) and 5 (column 5) and detail coefficients in scales 1(column 6), 3 (column 7)and 5(column
8), left to right.

Figure 7: Original Quasar(column 1) image and its smooth in scales 1(column 2) and 4(column 3) and detail coeffi-
cients in scales 1(column 4) and 4(column 5),left-right. The frames, from up to down, are 0, 150 and 310, respectively.
The original color images were scanned by the Hubble satellite telescope from NASA.


