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Abstract. This article describes a method for object and terrain visualization by means of the combination
of two algorithms, one for terrain data and one for objects.  Our purpose is to generate, efficiently and rapidly,
aerial images of terrain with objects such as houses, vehicles, and transmission lines, thus allowing a simulated
flight.  For the objects, described by lines and polygons, the Z-Buffer algorithm is used; for the terrain,
described by height maps, an optimized Ray-Casting Algorithm, called Floating Horizon Algorithm, is used.
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1  Introduction

This article describes a method for object and terrain
visualization by means of two algorithms, one specific
for terrain data and the other for objects described by
polygons and lines.  Our purpose is to generate,
efficiently and rapidly, aerial images of terrain with
objects such as houses, vehicles, and transmission lines,
thus allowing a simulated flight.

In this kind of application, we are primarily
concerned with algorithm performance, in order to make
interactive navigation possible.  An obstacle to be
tackled is that the detailed geometry and texture
representation of terrain surfaces demands a large
amount of memory.  Moreover, even though the portion
of the terrain involved in a scene represents, generally, a
small part of this information, its visualization using a
generic graphical system may not yield the necessary
efficiency.  Such issues have motivated researches both
in techniques for compact vector or raster terrain
representations, and in optimized visualization
algorithms ([LaMothe95] and [Freese+95]).

In the present work we consider the situation in
which the scene contains, apart from the terrain, vector
objects represented by polygons and lines.  These
objects can be visualized very efficiently by the
standard graphical systems available in modern
workstations and PCs, such as OpenGL.

We have compared the results obtained with two
approaches for scene visualization containing terrain

and vector objects.  The first one consists in using the
OpenGL graphical system for visualizing both terrain
and objects.  The second approach consists in using an
optimized algorithm for visualizing the terrain; the
image and the depth information obtained are then
transferred to OpenGL, to be integrated in the scene
containing the objects.  Comparative results of both
approaches are presented.

2  Problem Description

From the conceptual point of view, a terrain may be
seen as a geographical field [Camara+96] characterized
by the heights associated to points of a reference
surface.  In the present work, we consider only terrains
having moderate dimensions, for which the reference
surface can be taken as a plane.

The computer representation of a terrain surface
involves, necessarily, some form of discretization, either
by means of a grid (usually regular) or of a Triangular
Irregular Net (TIN).  In this work, terrain surfaces are
represented by regular grids described by two two-
dimensional matrices of equal dimensions, one
determining the height at each point (height map) and
the other determining the texture (color map).
Examples of these maps are illustrated in Figure 1.
These images were generated by the VistaPro program
[VistaPro] and altered to include the highway.  The
images generated by VistaPro have an implicit
illumination, which contributes to increase the degree of



realism without degrading the visualization algorithm
with expensive illumination models.

(a) Height Map

(b) Color Map

Figure 1 - Terrain Maps

The form of representation described above
immediately provides a geometric model for a terrain,
which can be considered as a set of rectangular blocks
aligned by the axes, with width and length equal to the
width of each element of the regular grid and height
given by the corresponding value on the height map.  If

we associate to each face of each of these blocks the
color provided by the corresponding element on the
texture map, we will have a vector model of the terrain,
which can thus be visualized by means of a generic
system such as OpenGL.  The advantage of this
approach is the immediate integration of vectorial
objects to the terrain, since the same description is used
for the terrain and for the objects.  The great
disadvantage is the large number of faces to be
visualized, which can obstruct the interactive
visualization.  Such issues are discussed in Section 3.

An alternative consists in looking at the terrain
through the volumetric perspective.  In this case, we
consider that the blocks describe space occupation by
the terrain.  Due to this interpretation, in the games
literature ([Freese+95] and [LaMothe95]) it is common
to call each of these blocks a voxel (volume pixel).  As
will be seen in Section 4, image-based volume
visualization algorithms can be optimized for terrain
visualization, fulfilling the interactive visualization
requirement.  The use of such algorithms, however, is
made difficult by the presence of vector objects to be
added in scene.  One solution is to obtain a volumetric
representation of the objects to be put in scene, as is
proposed in [tvcg+96].  Such a solution, nevertheless,
besides involving considerable pre-processing effort,
does not work for arbitrary objects: the terrain structure
must be preserved after the objects are placed.  In other
words, each object must lie on the terrain and each
vertical straight line with points common to the terrain
must intersect it in alive segment having an end on the
terrain.

Other suggestions for simultaneous visualization of
terrain and objects are presented in [Cohen+94],
[Graf+94], [Paglieroni+94] and [GuGaCa97].
[Sawyer97] describes a use for interactive visualization
of terrain with objects in games such as flight
simulators.

In Section 5 we will investigate another alternative
for incorporating vector objects to terrain, in which
terrain and objects are processed separately, making use
of efficient algorithms for each kind of data.  The
resulting images of each process are then combined into
only one image, taking into account depth information
extracted from each algorithm.

3  Terrain Vector Rendering

Terrain modeled as a set of blocks, as described in the
previous section, can be visually represented by:



(a) center points on top faces; (b) top faces; (c) frontal
faces; (d) vertical straight line segments; and
(e) the blocks themselves (constituted by 6 faces).
Visualization speed and quality of the generated image
quality must be considered when choosing one of those
representations.

Figure 2 illustrates the images obtained by the
Z-Buffer algorithm for each of the above
representations.

(a) Points on top faces

(b) Top faces

(c) Frontal faces

(d) Straight line segments

(e) Blocks

Figure 2 - Terrain Visualization with Z-Buffer.

All times shown in Table 2 are too large to support
interactive visualization.  To reach interactive time, of
5 frames per second, they must be reduced by a factor
greater than 10.  Thus, the vector representations of the
terrain presented above yield unacceptable performance
with the computers largely available today.

4  Efficient Terrain Algorithms

Another classical alternative for terrain rendering is the
Ray Casting Algorithm.  This algorithm cast rays from
the observer’s eye to each position in the projection
plane that corresponds to a pixel in the screen.
The color of this pixel is obtained from the Color Map
in the intersection position between the ray and the
terrain surface.  If no special consideration is given,
however, the efficiency of this algorithm is bound to be
very low, since the number of intersections to be
computed is very high.  Consider, for instance, a screen
with 320x200 pixels and a terrain with a 512x512 grid.
The number of intersections in this case is over
16 billions per frame.  It is dear that this strategy does
not achieve interactive time. Therefore, an optimized
version is necessary.

We will assume that the observer’s head is vertical
and the projection plane is perpendicular to the
xy terrain grid, as shown in Figure 3.  In this position the
rays casted from the observer’s eye to each column of
pixels in the view plane are contained in a plane which
is also perpendicular to the xy plane.  This plane,
indicated in Figure 3 as sampling plane, largely
simplifies the visualization problem.  Only the terrain
voxels which are intersected by this plane can influence
the color of the view plane column’s pixels.
Furthermore, if the voxels are sampled at uniform
spaces along the intersection, the projection is reduced
to a simple 2D problem, as illustrated in Figure 4.
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Algorithms that explore the terrain’s particular
model can be easily found in game programming
literature ([LaMothe95] and [Freese+95]).  These
algorithms treat each screen column separately and
paint, for each column, the pixels from the bottom of the
screen upward, following the idea of a floating horizon.
The Floating Horizon Algorithm starts by casting the
first horizon, shown as m0 in Figure 4.  In order to
determine the color of the bottom screen pixel, the
algorithm tests the height of each column starting at the
observer’s foot, marked as O in Figure 4, and moving
forward in the rayk direction.  The first column which
rises above the horizon causes the pixel to be painted
and the horizon to move upward.  The algorithm make
use of the fact that terrain voxels which are further away
in the rayk direction can not obscure the pixels already
painted.

An implementation of the Floating Horizon
Algorithm for a pixel column is illustrated in
Algorithm 1.

Note that, as we move from one position i to the
next, the horizon height decreases by the value of the

current horizon slope, mj, as shown in line 6 of
Algorithm 1.

CastRay(col, pitch, dx, dy)  {
1     x = eye_x; y = eye_y; z = eye_z;
2     j = 0   bottom pixel in the column
3     m = pitch/dpk;   first horizon
4     i = 0;   voxel at foot position
5     while (i < f) {   f is far
        Step in ray_k direction
6       y += dy; x += dx; z -= m;
        Gets h from the height map
7       h = HeightMap(x,y);
8       if (h > z) {   height above horiz.
9         c = ColorMap(x,y);
10        do {
            paint the pixel
11          ColorBuffer[col,j] = c;
            move one pixel up
12          j += 1;
            update horizon coef.
13          m -= 1/dpk;
            correct horizon height
14          z += i/dpk;
15          } while (h > z);
16      }   end if
17      i += 1;   next voxel
18    }   end while
19  }   end CastRay

Algorithm 1 - Terrain floating horizon.

Figure 4 also shows that the slope of the first
horizon is given by:

m0 = pitch / dpk (1)

and the change in the slope, as we move up from pixel j
to (j+1)  at voxel i, can be given by:

mj+1 = (pitch − (j+1)) / dpk = mj − 1/ dpk (2)

Lines 3 and 12 of Algorithm 1 show, respectively, the
initialization and the update of the horizon slope.

The change in the horizon height, z̧  at voxel
position i, can be computed by setting hpi equal to 1 in
the equation shown in Figure 4, yielding the equation
shown in Line 13 of Algorithm 1.  The division in this
line of the algorithm can be easily avoided by
computing this change incrementally.  For the sake of
clarity we present the algorithm without implementation
optimizations, which are left to the reader.

To increase the speed of the Floating Horizon
Algorithm applied to terrain maps, [Freese+95] and
[LaMothe95] suggest two approximations: [a] all pixel
columns are at same distance from the eye, i.e., dpk=dp;



and [b] the angle between two consecutive sampling
planes is constant.

Frederick et all [Frederick+96] have shown that
these approximations distort the resulting images.
To combine two different algorithms, one must not
accept any distortion in one of them which is not present
in the other.  If this is not so, a building, for example,
would be moved in the terrain as the position where it is
located gets distorted.  For this reason, no
approximation in the conic projection is allowed for the
purpose of this paper.

5  Image Composition

The strategy proposed in this paper to combine the
Z-Buffer with the Floating Horizon Algorithm is
illustrated in Figure 5.

Height 
Map

Color
Map
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Color
Buffer

Depth
Buffer

OpenGL

Result:
Terrain + Objects

Objects

glDrawPixels glDrawPixels

Figure 5 - Strategy to combine both algorithms.

5.1  Camera Model

The projection in OpenGL is defined in a camera model
defined by the following parameters: eye, ref, up, left,
right, bottom, top, near, and far.

The conic projection used in the Floating Horizon
Algorithm is defined by: [a] the observer’s position
which is equivalent to the eye; [b] a view angle which
can be easily used to define the ref point; [c] a distance

to the projection point dp = 1, which can be assumed to
be near; [d] a number of terrain slices (steps) in the rayk

direction which can be assumed to be equal to far; and
[e] a camera angle and a pitch which can be used to
compute the OpenGL window as shown in Figure 6.

Note in figure 6 that the factor h/w is required to
maintain the aspect ratio between the window in the
projection plane and the window where the image is to
be drawn.

bottom = - pitch [2 tg(α) /w]
left = - tg(α) right = tg(α)

top = (h-pitch) [2 tg(α)/w]
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Figure 6 - Parameters for the OpenGL camera.

5.2  Depth Computation

To combine images generated by the Floating Horizon
Algorithm with the Z-Buffer primitives, the depth value
of each pixel in the terrain image is needed.  As shown
below, this depth is a function of the distance from the
corresponding point in the terrain to the projection
plane.  This suggests a slight modification in
Algorithm 1.  In the version described in section 4, one
steps along the terrain in unit steps; thus, the points
where the terrain is sampled belong to the circles shown
in Figure 7.  For the purposes of depth computation, it is
more convenient that we sample the terrain in slices
which are parallel to the screen, represented by the
dashed lines in Figure 7.

This also makes the processing of each pixel
column more efficient. In the original version, each
column screen k has its own set of slopes and height
variations, which are inversely proportional to the
distance dpk between the eye and that column.
Therefore, these coefficients differ from the ones
corresponding to the central column by the factor cosθk.
However, if the terrain is sampled according to the
dashed lines, horizontal steps are corrected by the factor
1/cosθk, causing the height variations to be the same as
the ones in the central column.  Therefore, slope and



height updating becomes the same for all columns,
provided that the unit vector (dx, dy) is scaled by the
factor 1/cosθk for each column k.  Note that this
produces the same gain in efficiency as the
simplifications proposed by [LaMothe95] and
[Freese+95] without the undesired distortions.

xe

-zi

θk

Horizontal
View

dpk = dp /cos θk

dp=1

dpk

-ze (view)

i

rayk
i=1

i=2 i=3
Figure 7 - Distances in rayk direction.

Even with the above simplification, depth
computation for all slices i is still expensive, due to the
non-linear nature of the conic projection.  This relation
can be obtained by the homogeneous matrix, P, given
by equation (3).  This matrix is used by OpenGL
([Neider+93] and [Martha+94]) to transform between
the eye and the screen coordinate systems.
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where l, r, t, b, n, f stand for left, right, top, bottom, near
and far, respectively.

Thus the screen coordinate, zs, can be computed
from  the eye coordinate, ze, by:

( )
z

f n
fn

z

f ns
e=

+ +

−

2

(4)

OpenGL also provides a function called
glDepthRange,  which specifies a linear mapping
between the depth range [-1,1] and a chosen depth
range.  The default values for this new range are 0.0 for
the near and 1.0 for the far distance.  With these values,
Equation (4) must be modified by:

′ = +
z

z
s

s 1

2
(5)

With the above modifications, Algorithm 1 steps
through the terrain model in slices parallel to the
projection plane, as shown in Figure 7.  The coordinate
ze as a function of the slice i is then given by:

z ie = − (6)

Replacing equations (6) in (4) and (4) in (5) we can
have the depth value for each slice i given by

depth
f

f n

i
f n

=
− ×

−
(7)

It is important to note that this relation is invariant
with the pixel column, the observer’s position, and the
view direction.  That is, we can pre-compute all depths
and store them in a vector of dimension far.  It is
important to note, however, that all these simplifications
are only valid in the case where the view direction is
horizontal, as shown in Figure 3.

6  Implementation

The terrain rendering implementation in the strategy
proposed in Figure 5 follows Algorithm 1 with the
following changes: [a] variable dpk is assumed to be
constant and equal to 1; [b] the norm of increment
(dx, dy) is not 1, but 1/cosθk, as explained in section 5.2;
and [c] every time a voxel is painted, its depth is stored
in the depth buffer.  This is done by including the
following line code just after line 11 in Algorithm 1:

11A DepthBuffer[col,j] = Depth[i];

We are assuming here that the depth vector has already
been pre-computed in the beginning of the program by
means of the procedure shown in Algorithm 2.

DepthVector(n,f) {
  for (i=0; i<=(f-n); i++)
      Depth[i]=(f-(f*n)/i)/(f-n);
}

Algorithm 2 - Depth vector computation.

7  Tests

To test the ideas presented here, the terrain model
illustrated in Figure 1 was rendered; the resulting image
is shown in Figure 8.

When the objects shown in Figure 9 are inserted in
the terrain model according to the plan shown in
Figure 10, the result are images such as the one shown
in Figure 11.



Figure 8 - Image generated by Floating Horizon.

Figure 9 - Objects to be added to the terrain

Figure 10 - Plan view of terrain and objects.

Figure 11 - Image with terrain and objects.

To evaluate the efficiency of the proposed strategy
we measured the performance of the algorithm in two
different computers: a PC Pentium 166 MHz, and a
Silicon Indigo 2.  The average time to generate a frame
in two animated sequences is shown in Table 1.
The first sequence renders the terrain with the objects
(Figure 11) and the second renders the terrain without
the objects (Figure 8).  Average times were computed
using 10 frames.

Note, in Table 1, that the time spent in depth
computation in the Floating Horizon Algorithm is very
small. The largest time is spent transferring the buffers
to OpenGL.  To load the color buffer we spent as much
time as we did with the terrain rendering.  To load the
depth buffer we had to spend twice as much time as
Floating Horizon did.  The efficiency of the function
responsible by these transfers, glDrawPixels , has
been object of many discussions in the news group
news:comp.graphics.api.opengl .  It is
conceivable that better results could be obtained with a
more efficient version of this procedure.

8  Conclusions

The method proposed to compute depth information in
the Floating Horizon Algorithm is very efficient and
does not impact its performance.

Even with the low performance of the function
glDrawPixels , the results obtained with the
proposed strategy are far better than by making use of
Z-Buffer to render the terrain.  This fact reinforces the
need for a specific algorithm to approach this class of
problems.

Although the aliasing problem was not severe in
the examples presented here, the authors believe that it
may became a serious concern if real aerial photos were
used.
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Terrain with objects Terrain without objects
PC SGI PC SGI

Steps in the Algorithm t(s) t(%) t(s) t(%) t(s) t(%) t(s) t(%)
Floating Horizon 0.05 23 0.18 51 0.04 50 0.13 76
Z-Buffer load 0.11 50 0.11 31 - - - -
Color Buffer load 0.04 18 0.04 12 0.04 50 0.04 24
Objects 0.02 9 0.02 6 - - - -

Total Time 0.22 100 0.35 100 0.08 100 0.17 100
Frames/sec. 4.6 3.0 14.1 5.9

Table 1 - Time in seconds for each step of the proposed strategy.

Terrain with objects Terrain without objects
Terrain represented by PC SGI PC SGI
(a) Points on top faces 0.62 0.83 0.63 0.83
(b) Top faces 0.28 0.50 0.29 0.50
(c) Frontal faces 0.24 0.48 0.24 0.48
(d) Straight line segments 0.43 0.46 0.44 0.47
(e) Blocks 0.07 0.17 0.07 0.17

Table 2 - Frames per seconds for Z-Buffer algorithm.

10  Availability

A version of the program used in this paper for
Windows95/NT and the sample files shown in Figure 1
are available in http://www.tecgraf.puc-rio.
br/~szenberg/artigo _sib97/program.zip .
With this program the user can fly over the terrain using
keyboard arrows.
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