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Abstract . This study presents an algorithm for three-dimensional reconstruction of tomographic images
based on reconstructed two-dimensional slices, using a modification of the technique of additive algebraic
reconstruction and the spline function for interpolation of the intermediary planes in volumetric
reconstruction. Development of the method was first destined to image reconstruction of the
minitomographer at the National Center for Research and Instrumentation Development for Agriculture
(CNPDIA) of the Brazilian Agricultural Research Company (EMBRAPA), which is dedicated to soil
science.  Evaluation of the results of the method was based on phantom images and soil samples, with 2mm
spatial resolution, 60 samples per projection, a 3 degree angle between projections, a 59.9 KeV Americium
(241 Am) energy source, and a ten-second time per projection sample. The results prove the usefulness and
reliability of the method, which is also applicable to other tomographic systems.
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1- Introduction

Over the past few decades, computerized tomography
has been increasingly employed as a very useful
technique in multidisciplinary applications, ranging from
modern medicine using X-ray computerized tomography
(CT) and Nuclear Magnetic Resonance (NMR) to the
study of materials such as soils.

In 1917, J. Radon [Radon(1917)], for the first time,
hit upon a formula for this calculation, which became
known as the “Radon Transformed”. But it was only in
1921 that Bocage [Bocage (1921)] introduced
conventional tomography, or the focal X-ray trans-
mission plan. In 1963, the physicist A. M. Cormack
[Cormack(1963,1964)] made a decisive contribution to
computerized tomography. These  results  led  to  the
development,  in  1973, of the first commercial
tomographer, built by engineer G. N. Hounsfield
[Hounsfield (1968,1973)].

With the advent of microelectronics, which led to
the production of microcomputers with large memory
storage capacity and fast data processing, as well as the
development of increasingly sensitive detectors and high

precision, low cost electronic components, it became
possible to develop computerized tomographers
dedicated to specific applications. Tomography by X-ray
or γ-ray transmission, in particular, in addition to its
applications in the field of medicine, has been used
extensively in studies in the field of soil physics
[Crestana et al. (1986)], [Cruvinel(1987)], [Vaz et
al.(1989)], [Cruvinel et al. (1990)], [Cruvinel--Crestana
(1996)].

In conventional tomographic processes, a given
section of the body being studied is presented as a map
of two-dimensional linear attenuation coefficients which
depends on several parameters, such as radiation energy,
chemical composition and material density of the body
under tomographical study [Hendee (1983)], which
furnishes quantitative information regarding the body’s
material density and qualitative information regarding its
form.

Tomography has made great breakthroughs over a
short period of time. These breakthroughs involve
reduced time for acquisition of data, for reconstruction,
and improved image quality.  More recently, improve-



ments have involved aspects of contrast, reduced noise,
and determination of the attenuation coefficient.

Although each of these factors is important, this
work proposes a method for the reconstruction of 3D
images that optimizes time in data acquisition and image
reconstruction by means of a reduced number of
tomographies. The images of these tomographies are
reconstructed using the Algebraic Reconstruction
Technique introduced by Gordon, Bender and Herman
[Gordon--Bender--Herman (1970)], [Gordon--Herman
(1971)], [Gordon (1973)], [Herman (1973)], [Gordon
(1974)] and, by means of spline interpolation,
intermediary slices of the tomographies are created,
forming a set of 2D images that are then piled up,
forming the final 3D image of the object under study.

The use of interpolation to create intermediary
sections of the tomographies is necessary when the
tomographies made of the object being studied are not
continuous, that is, when there is a space between each
tomographic image that would allow for the insertion of
one or more additional images.  Thus, the creation of
interpolated planes serves to provide continuity to the
image, without spaces being left between the 3D image
slices.

Section 2 presents the basic principle of the
algebraic reconstruction technique with its fundamental
equations, where the reconstruction plane is discretized
in a matrix (nxm) shown in figure 1, and the material
used for this work, i.e. the minitomographer and the
phantom. Section 3 presents the modified ART
algorithm proposed for the reconstruction of 2D images.
Section 4 gives the definition and use of the spline
function. The results of this study are presented in
section 5, showing the images and their histograms.
Section 6 presents a quantitative analysis of the results
by means of histograms, while our conclusions are
presented in section 7.

2 - Materials and methods

The method of algebraic reconstruction was first
introduced in 1970 by Gordon et al. During the 70s
several other studies based on the algebraic
reconstruction technique were also developed [Gordon--
Herman(1971), Gordon(1973), Gordon(1974)]. The
method for algebraic reconstruction of images is based
on a reconstruction space ( R ), which is divided into a
finite number of Ri (i = 1,2,..., n) elements to each of
which an fi  density is associated. The distribution of
unknown densities is approximated by the values
determined by the reconstruction algorithm for each
element. It is assumed that the density function is equal
to zero outside of the R reconstruction space. Figure 1

illustrates the reconstruction space. The points in the
reconstruction space illustrate the 

&

ri  centroids attributed
to each Ri  element.

Figure 1- The two-dimensional R reconstruction
space with the Radiation-Radius-Detector set.

Radiation incides on a detector, furnishing a p
j

measurement which will compose an element of the Pj

projection at a given θ angle. This radiation goes
through the object by an Sj path, that is represented in
figure 1 by the shadowed area.  In this particular case
radiation runs through the R space in parallel rays at a θ
angle and the width of the radius is determined by the
opening of the rays’ collimators.

Effective interaction between the radiation rays and
the Ri elements is schematically presented by the
intersection between the Sj path of the ray and the  Ri

elements,  represented  by  Sj ∩ Ri .
In the algebraic reconstruction method it is also

assumed that each projection is divided into m non-
superimposed projection elements (pj , j=1,2,…,m). The
behavior of Sj in R depends on the angle of projection.
Thus, since 

&

r represents a centroid in R and f(
&

r )
represents the unknown density function in 

&

r  , then:

f ( r ) d r p j
S j

& &

≈∫      for j=1,2,...,m           (I)

where pj is the experimental measure of the j-th element
of the f(

&

r ) projection. The "≈" sign indicates that the
measuring process is not exact.

Thus, a projection element pj of the projection at
angle  θ  will be given by:

  p f(r)drj
S Ri
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≈
∩
∫∑ & & for j=1,2,...,m

        i=1,2,...,n.           (II)

An approximation for the unknown density
function f(

&

r ) is obtained by determining the fi values



for each Ri region. The best estimate results when fi is
the mean value of f(

&

r ) over the Ri region, that is:
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       for  i=1,2,...,n     (III)

With the algebraic reconstruction method, an exact
result for the densities cannot be reached due to the
limited number of tomographic projections, because of
data degeneration during the process of acquisition and
tomographic sweeping, and due to the reconstruction
algorithm’s iterative characteristics.

Because the f(
&

r ) function varies over the Ri
region, particularly for heterogeneous objects, its value
in Sj ∩ Ri is unknown. However, one can presume, by

the best estimates, that fi is the mean value of f(
&

r ) over
Ri, so the integral over Sj ∩ Ri can be estimated by the
geometric fraction presented in equation (III), being
given by:
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   for i=1,2,...,n
       j=1,2,...,m        (IV)

multiplied by fi  , that is :

f(r)dr w fij i
S j Ri
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≈
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             j=1,2,...,m        (V)

where wij is the portion (or part) of the Ri area
intercepted by the path of the Sj ray in relation to the
total area of the Ri element. It thus follows that equation
(II)  becomes  a  set of  linear equations of the unknown
fi , that is:
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To evaluate the method, tomographic phantom
images and soil samples were obtained with the
minitomographer developed by CNPDIA-EMBRAPA.
This minitomographer uses X-ray and γ-ray as sources of
radiation [Cruvinel(1987), Cruvinel et al. (1990)]. The
hardware has a mechanical table, an X-ray or γ-ray
emission source, 2 collimators with variable size
windows, a cristal detector of the NaI(Tl) type, an
electronic pulse counter, an electronic processing system
for nuclear measures and a microcomputer.

The time required for data acquisition depends on
the size of the sample, the desired resolution, and the

equipment’s precision. This experiment used 2mm
spatial resolution, 60 samples per projection, an angle of
3° between  projections, a 59.9  KeV  Americium (241

Am) energy source, and a preset time of 10 seconds per
projection sample.

Figure 2 shows a conceptual drawing of the
diagram of the phantom used to evaluate the method.
The phantom is non-symmetrical and non-homogeneous,
containing three different densities related to the
Aluminum (Al), Calcium (Ca) and SiO2 elements. For
this study, 6 two-dimensional tomographies ( S3, S4, S5,
S6, S7, S8 ) were made and 3 planes ( S34, S45, S78 )
per spline  interpolation were generated.

 
    Figure 2 - Phantom  with different attenuation

coefficients and slices.

3 - The modified ART algorithm (ARTAM)

The algebraic reconstruction algorithm developed for
this work has a function, called a correction factor,
which is used to determine the area that each ray
intercepts in the reconstruction matrix. Each ray does not
always intercept every element of Ri reconstruction and,
for that reason, only the value of the part that is
intercepted by the ray was taken. This happens in the
case of all the ray’s elements, except for the 0°, 90°, and
180° angles. The ray’s correction factor (Fc) is
calculated taking into consideration the area that
intercepts it in the R reconstruction space (AR), the area
of a reconstruction element (Aler) and the number of
reconstruction elements contained in the ray (Nel), given
by:

                       Fc
AR

(A1er)(Nel)
=                         (VII)

Operation of the algorithm is started using an initial
estimate for the solution. This initial estimate for the
solution will be constant and equal for all the fi.

  SiO2



Defining the initial estimate as f i
0 for the solution

and f i
q  the q-th estimate after q iterations, this will be

given by :

                         f f
p
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m
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                         (VIII)      

where n is the number of reconstruction elements in the
R space and m is the number of rays per projection.

Once the initial estimates are given, the algorithm
will find the next estimates in the following manner:
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i such that &r si j∈  , j=1+modmq  and q=0,...,Km- 1.

In equation (IX), pj
q  is the sum of the

reconstruction elements representing the Sj path after q
iterations, the “max” function finds the maximum value
between two values so that fi is always positive, the
modm function calculated the rest of the division of q by
m, K is the number of projections and Nj is the number
of reconstruction elements that the j ray intercepts in the
R reconstruction space.

In each iteration, the difference is calculated
between the data obtained for an element of measured
projection (pj) and the sum of the reconstruction
elements that it represents (pj

q ). The correction is

divided uniformly by the Nj reconstruction elements
contained in the Sj path and added to the previous
estimate.

The calculation is repeated for the set of projection
elements until the result converges toward a reasonable
solution. In this study, assurance of convergence was
reached by using the criterium for convergence by
discrepancy between the measured and calculated
projection elements, which optimizes machine time and
provides easy implementation. The criterium for
convergence by discrepancy is reached using equation
(X), that is:
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where q is the number of the iteration, m is the number
of projection rays, Nj is the number of reconstruction
elements contained in the Sj path, pj is the value of a
projection element measured on the minitomographer,

Fc is the correction factor and pj
q  is the sum of the

reconstruction elements representing the Sj path after q
iterations.

4 - The B-spline

In addition to the 2D reconstruction method with the
modified  algebraic  reconstruction  technique,  the      B-
spline technique was used in order to obtain planes
intermediary to those obtained by tomography.

The B-spline is a mathematical technique for
modeling curves and surfaces. It is formed by parts of a
polynomial that is segments of continuous curves and
these segments are united by points called nodes,
approximating the  control points P0  throught Pm.

The B-spline offers the advantages of exerting local
control over the curve, that is, when a value is altered,
only the points near this value are altered.

The curve segments are defined by a set of blending
functions that are dependent on the interval between the
node values and are defined alternatively according to
the blending functions of minor order.

The general formula of the B-spline [Farin (1990)]
is given by equation (XI), i.e.:

p (t) P N (t)i i,k
i 0

m

=
=

∑                 ( XI )

where p(t) is the polynomial of the B-spline, Pi  is  the  i-
th control point, Ni,k is the blending function considered
and k is the order of blending function.

The blending functions can be defined,
alternatively, by:

N
1 se t t t
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+            (XII)

where the t parameter takes on values in the [t0 , tm+k]
interval  and  (m+1) is the number of control points.  In
the B-spline technique, the subsequent blending
functions are defined recursively as :
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where Ni,k is the blending function of k order for the Pi

control point. The node values [t0 ,t m+k ] are chosen
following the rule below:

   ti = 0               if  i < k

   ti =i-k+1       if k<i<m    t ∈ [ 0 , m-k+2 ]          (XIV)

   ti =m-k+2      if  i > m

The B-spline takes, as  points in each image, the
values of the coefficients that have the same coordinates
(x,y) in the matrix images and aproximate them. In this
way values are obtained for intermediary planes to the
planes obtained experimentally.

5 - Results



Figure 3 shows the 2D images of the reconstruction by
the ARTAM algorithm and images of the planes
generated B-spline.

Figure 4 illustrates the histograms with their
respective Gauss curves of the figure 3 images.  Table 1
supplies the parameters of the Gauss curve of the
reconstructed and interpolated images, where Chi^2 is
the difference between the value of the Gauss curve and
the real value of the image histogram, the center of the
Gauss curve indicates the mean value of the image
attenuation coefficients and the standard deviation
indicates the mean deviation from the center of the
Gauss curve.

S34 is the image generated by the B-spline between
images S3 and S4, S45 is the image generated by the B-
spline between images S4 and S5 and S78 is the image
generated by the B-spline between images S7 and S8.

Image Chi^2 Gauss
Center

Standard
 deviation

S3 2095.56 52.69 ± 0.47 13.40 ± 0.94
S34 1282.17 52.57 ± 0.39 13.19 ± 0.80
S4 1906.33 52.61 ± 0.44 13.53 ± 0.88
S45 1070.54 52.54 ± 0.34 12.87 ± 0.69
S5 1774.66 52.58 ± 0.41 13.30 ± 0.84
S7 1928.39 52.67 ± 0.36 11.49 ± 0.72
S78 1158.33 52.63 ± 0.28 10.69 ± 0.56
S8 1939.22 52.73 ± 0.36 11.69 ± 0.73

     Table 1 - Parameters of the Gauss curve of the
image histograms

(a) S3

 

(b) S34

 

(c) S4

 

(d)  S45

(e)  S5 (f) S7 (g) S78 (h) S8

Figure 3 - Images reconstructed by ARTAM (a,c,e,f,h) and  images generated by B-spline (b,d,g).
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Figure 4 - Histograms ( frequency of ocorrency versus linear attenuation coeficients in 1000/cm) of the images
reconstructed by ARTAM (a,c,e,f,h) and the images obtained by B-spline (b,d,g)



6 - Analysis of the results

The results are analyzed quantitatively by means of the
Gauss curve parameter histograms, since the histograms
furnish a quantitative description of the appearance of
each image or plane.

An analysis of the value of the Chi^2 parameter in
table 1 shows a significant variation between the values
of the reconstructed images and those of the interpolated
ones. This is due to the non-symmetry and non-
homogeneity of the phantom, since the points of each
image taken as the point of interpolation have different
values, resulting in a coefficient value that is
intermediary to them at the point generated at the
interpolation.

Observing table 1 it can be noted that the center of
the Gauss curve has a very small variation of around
0.25. In this case, the standard deviation was also subject
to a small variation. This happened because the phantom
is non-homogeneous and non-symmetrical. Thus, it was
to be expected that there would be some variation in the
image’s quantitative and qualitative data, as can be seen
in the histograms and images of figure 3.

In the interpolation, when only one plane is
generated between the interpolated images, it can be
seen, from table 1, that the standard deviation of the
images is subject to a very small variation in relation to
the images used in the interpolation.  Analyzing the
results of the phantom one can see a distortion in the
region relative to the attenuation coefficient of the Silica
due to the non-symmetry of the phantom, and it is
because of this non-symmetry that the attenuation
coefficients are the same at only a few of the points. In
the other areas where the coefficients are not the same a
coefficient value is produced that is intermediary to the
values of the images used in the interpolation, which was
already expected. Even so, however, the result obtained
is considered satisfactory and the image resulting from
the interpolation presents a good quantitative result.

It can be seen, from figure 3, that the images
obtained through interpolation show less contrast than
the images reconstructed by means of the method
presented in this study. This method also presents some
border effects which are stronger in the images
generated by interpolation. This effect is caused by the
large difference between the levels of gray of the areas,
but it can be reduced through appropriate techniques.

It was noted in this study that the more planes are
generated by interpolation between every two images
reconstructed by ARTAM, the better are the quantitative
and qualitative results of the images generated.

7 - Conclusion 

This study shows that it is feasible to use the ARTAM
algorithm and the Spline function for 3D tomographic
image reconstruction in the minitomographer dedicated
to agriculture.  There are solutions for the algorithm’s
limitations according to specific applications, such as,
for example, the use of filters to improve the image and
by producing tomographic splices close to each other in
order to avoid excessive distortion of the interpolated
image. The 3D reconstruction algorithm employed is
useful in the sense that it optimizes reconstruction and
image acquisition time, since, by using interpolation, the
time spent on the tomography is reduced to one half or
even less, depending on the number of images one wants
to produce through interpolation between each splice
obtained tomographically.
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