
Building Interactive Animations using VRML and Java

FABIANA SALDANHA TAMIOSSO1 , ALBERTO BARBOSA RAPOSO1 ,
L ÉO PINI MAGALH ÃES1;2, IVAN LUIZ MARQUESRICARTE1

1State University of Campinas (UNICAMP)
School of Electrical and Computer Engineering (FEEC)

Dept. of Computer Engineering and Industrial Automation (DCA)
CP 6101 – 13083-970 – Campinas, SP, Brazil

Phone: +55-19-239-8385 – Fax: +55-19-239-1395
fabiana, alberto, leopini, ricarte@dca.fee.unicamp.br
2University of Waterloo – Computer Science Dept. – Computer Graphics Lab.

200 University Ave. W Waterloo, On N2L 3G1, Canada
Phone: +1-519-885-1211 ext. 2041 – Fax: +1-519-885-1208

lpini@cgl.uwaterloo.ca

Abstract. This paper exploits the combination of VRML (Virtual Reality Modeling Language) and Java
for the construction of highly interactive animations, whose behavior is defined in real-time by user’s ac-
tions. The animations are modeled in VRML, which allows the definition of a Java program to process and
generate events that determine the behavior of scene elements. An application for the generation of Java
graphical interfaces was developed, aiming to establish the communication between the user and the VRML
environment, sending parameters to the program that controls the animation.

1 Introduction

A scripting environment general enough to include all
the animation paradigms (e.g., keyframe, kinematics, dy-
namics, and behavioral) [1, 10], presenting real-time char-
acteristics, powerful enough to support both user interac-
tion and the construction of graphical interfaces has al-
ways been a necessity in the field of Computer Modeled
Animation. However, such environment has not been cre-
ated yet.

Nevertheless, the conjunction of VRML (Virtual Re-
ality Modeling Language) and Java is a step towards all
these needs. VRML [11] is a file format to describe rich
3D environments that enable the user to interact with them.
A custom protocol to communicate with Java programs
is one of the most important features of VRML regarding
animation development.

Java [2] is a platform-independent, object-oriented
language, which can be used to control the movements
in a VRML scene, using any animation technique. As a
general-purpose language, Java can also be used to con-
struct user interfaces.

Real-time presentation of animations, although
presently at the cost of rendering quality, is guaranteed by
efficient VRML browsers, like Cosmo Player [8], Com-
munity Place [9], and Liquid Reality [3], among others.
Current browsers may execute as built-in tools for Web
browsers and as autonomous tools.

In this paper we present strategies we have used to
achieve the integration of VRML and the Java user in-

terface, in order to develop highly interactive computer
modeled animations.

In the next section we introduce the VRML features.
In Section 3 we give details about its integration with Java
and present techniques and facilities we have developed
to enable the user to have a tight control over the anima-
tion. In Section 4 we show some examples of interactive
animations using VRML and Java, developed following
different animation paradigms. Our conclusions are pre-
sented in Section 5.

2 VRML

The main goal of the current version of VRML – 2.0 –
is to provide a rich 3D interactive graphical environment,
allowing the user to define static and animated worlds,
and to interact with them [6, 11].

The improvements of this version of VRML include:
development of more realistic scenes, prototyping (ca-
pacity to encapsulate nodes to create a new one), direct
interaction with the user via sensors, interpolators, and
creation of “intelligent” animations using scripts.

The paradigm to produce VRML scenes is based
on nodesdefining a scene graph. Each node defines a
name, a type, and default values for its parameters. There
are two kinds of parameters:fields and events. Fields
can be called simply “fields” (private) or “exposedFields”
(public). Eventscan be sent from a node to another by
an “eventOut” parameter and received by an “eventIn”.
This can also be done by exposedFields (exposedField



= eventIn + field + eventOut). Events signalize changes
caused by external stimuli and can be propagated by the
nodes usingRoutes, which connect an eventOut to an
eventIn of the same type (see Figure 1). Events and
Routes drive the animation of the worlds.

Route

eventIn

eventOut
eventOut

eventIn

Node 4

Node 2Node 1

eventOut

eventIn

Node 3

Figure 1: Nodes connected by routed events.

There are many kinds of nodes in VRML. For in-
stance, we may citegeometric nodes(that define geo-
metric objects),illumination nodes, grouping nodes(that
group children nodes and other grouping nodes, causing
the group to exhibit common behavior and defining the
hierarchical structure of a VRML file) and, particularly
important for animated worlds,sensor nodesand inter-
polator nodes.

Sensor nodesgenerate events based on user actions;
the TouchSensor node, for example, detects when the user
clicks the mouse over a specified object (or group of ob-
jects), and generates an eventOut. This eventOut may be
routed to other eventIn(s), and cause the start of an ani-
mation. Sensors are responsible for the user interaction
in VRML. Furthermore, they are not restricted to gen-
erate events based on user actions; the TimeSensor, for
instance, automatically generates an event at each tick of
the clock, being normally used as the animation clock.

Interpolator nodesdefine the keyframes of an ani-
mation, interpolated by a linear function. An example
is the PositionInterpolator node, where the user defines
n key positions andn time instants (each instant asso-
ciated to a key position). Used in conjunction with a
TimeSensor, the PositionInterpolator generates an event
at each clock tick, representing the current position, re-
sulted from the interpolation function.

The events generated by sensor and interpolator
nodes routed to geometric, illumination, and grouping
nodes may define interesting keyframe animations. A
typical example is illustrated in Figure 2. In this exam-
ple, a TouchSensor is linked to a TimeSensor, meaning
that the user’s click over a certain object starts the clock.
The TimeSensor is linked to a PositionInterpolator, send-
ing time values for the interpolation function. The inter-
polator is finally linked to a geometric node, defining, at

each instant, the new position of the object.
Nevertheless, the routing approach is limited, since

it does not allow the handling of a whole class of behav-
iors that depends on logic operations (e.g., it is not pos-
sible to choose between two predefined trajectories) [5].
VRML overcomes this limitation defining a special node,
calledScript, that allows the user to connect the anima-
tion to a program, where the events can be processed.
This program can be written in any programming lan-
guage, but we will consider only Java, since it is presently
by far the most used one.

3 Controlling Animation Behavior in VRML with
Java

Script nodes, via their associated programs, bring deci-
sion logic and state management into VRML. Animations
modeled with VRML can use a Java program to deter-
mine the trajectory to be followed, for example. This pro-
gram is capable of receiving, processing and generating
events that control the animation behavior.

By the use of Script nodes, it is possible to model an-
imations using more complex techniques than keyfram-
ing. For example, the time generated by a TimeSensor
may be routed to a Script node associated to a program
that calculates the position of an object based on a kine-
matic (or dynamic) functionf(t). The new position calcu-
lated by the program may then be sent as an eventOut
from the Script node and routed to a geometric node,
whose associated object will move according tof(t). This
kind of VRML and Java integration is illustrated in Fig-
ure 3.

position
newat each

clock tick
t move

f(t)

Java Program

TimeSensor Script Geometric Node

Figure 3: Events routing in an animation with the Script
node.

The combination of VRML and Java is a very pow-
erful tool for the control of animations behavior. Interac-
tive animations that have their behavior defined by user
actions can be modeled with VRML using a Script node
and its associated program, which is capable of receiving
parameters from another Java application, responsible for
the user interface. We have developed an interaction tool
to enable the creation of a “control panel” for the anima-
tion, in which the user defines the values of parameters



start
over an object

user clicks at each
clock

calculate
interpolation
function position

new move

TouchSensor TimeSensor Geometric NodePositionInterpolator

tick

Figure 2: Events routing in a typical keyframe animation.

that control the animation in real-time (e.g., the user may
alter the velocity or acceleration of a certain object in a
kinematic animation).

3.1 IUlib: an Application for User Interface Support

In order to facilitate the creation of the user interface and
enable its connection to the program associated to the
Script node (from now on, we will call it “Script pro-
gram”), we have implemented an application called IUlib.
Using this application, it is possible to easily construct
the graphical interface, responsible for sending animation
control parameters to the VRML file.

The IUlib generates a Java source file (.java) includ-
ing a class responsible for all the treatment necessary for
the graphical components of the user interface and an-
other one, responsible for the data transmission to the
VRML file, via the Script program. This Java source
file, after compilation, generates an executable class (the
graphical interface) defining methods that allow the Script
program to obtain the user’s data. The class responsible
for the data transmission uses methods of the other class
(the one responsible for the user interface) to read such
data, since this second class determines which graphical
components are associated to animation control parame-
ters.

The transmission methods are based on standard Java
packages (Java.net and Java.io). The Script program
should be able to receive the data, using methods of the
same packages.

In our scenario, the Script program receives data
from the user interface. The communication between this
interface and the Script program is based on the client-
server model. The user interface is the server, and the
Script program is the client. The VRML file starts the
Script program, that connects to the interface, request-
ing data from the server. The interface then sends the
requested data, the Script program processes them and
returns the results to the VRML file. This approach is
schematized in Figure 4.

Both the server and the client are defined to be ex-
ecuted in the user’s host machine, on a specified port.
These definitions are included in a shell script, becom-
ing transparent for the user.

The communication between the VRML file and the

Script program follows the standards proposed in the
VRML specification [11]. For that reason, we will not
detail it in this paper.

The connection between the Script program and the
user interface is responsible for the transmission of the
animation control parameters defined at real-time by the
user.

The construction of the user interface using the IUlib
is accomplished by combining several graphical compo-
nents defined by the Java language, such as Labels, But-
tons, Scrollbars, etc. The first window that appears during
this construction process asks the name of the Java pro-
gram that is going to be generated. The second window
(see Figure 5) shows the options of graphical components
that can be included in the user interface. For each op-
tion chosen, a new window appears. Figure 6 shows the
window for the definition of a scrollbar. It is possible
to define maximum and minimum values for the Scroll-
bar, its initial value, its orientation (horizontal or verti-
cal), among other parameters defined by the Java stan-
dard libraries. Since the Scrollbar represents a numerical
value, this value can be associated to an animation control
parameter and sent to the VRML process.

Figure 5: IUlib window: choosing graphical components
for the user interface.



ClientScript node.wrl Java sockets

eventOut
(processed)VRML file

Server

eventIn Request for data

User InterfaceScript Program
User data

Figure 4: Communication schema in our scenario.

Figure 6: IUlib window: including a Scrollbar to an ani-
mation control parameter.

The animation control parameters can be associated
to Scrollbars, CheckboxGroups, and TextFields, select-
ing the optionSend to VRMLin the corresponding win-
dow. This option creates the communication methods
necessary to send the parameter’s value to the Script pro-
gram. These communication methods simply define that
the specified value will be sent to the client when it re-
quests an update of its control parameters (this update
can happen at each clock tick, at each animation cycle,
and so on, depending on the implementation).

The graphical components appear in the user inter-
face and are sent to the client in the same order they have
been created.

In the next section we will present some examples of
interactive VRML animations using interfaces and com-
munication facilities developed with the IUlib.

4 Examples

In this section we present three VRML animation exam-
ples using the Script node to process events. The first one
is a keyframe animation, whose behavior is defined by
user actions applied directly in the scene (i.e., it does not

use an external user interface). The following examples
show similar animations implemented according to more
sophisticated paradigms (kinematics and dynamics) us-
ing external interfaces to send control parameters.

The examples are platform-independent. They are
visualized with a simple browser implemented with meth-
ods of Liquid Reality [3], a set of Java class libraries pro-
viding the functionality needed to write out, to render,
and to manipulate a VRML scene. IUlib was used to im-
plement the user interfaces.

4.1 Keyframe Animation

Using the keyframe paradigm, the animator predefines
the initial and final frames of an animation sequence (the
key frames) and an interpolation function or a set of in-
terpolated values responsible for the transformations be-
tween those frames. Time and number of frames in this
case play similar roles.

In the animation shown in Figure 7, a sphere can fol-
lows two elliptical trajectories, depending on which “but-
ton” is chosen (the “buttons” are represented by the two-
colored cube at the right side). If the user clicks on the
left button, the sphere will follow an internal trajectory,
and if he/she clicks on the right one, the sphere will fol-
low an external trajectory.

In the VRML file, the trajectories are defined by two
PositionInterpolator nodes, the buttons are TouchSensor
nodes, and a Script node is used to recognize which sen-
sor has been touched by the user and to choose the correct
trajectory for the sphere.

4.2 Kinematic Animation

The previous example was adapted to use a kinematic
model, in which the animator defines the movement us-
ing an equation (or an equation system) with kinematic
variables (e.g., objects position, velocity, acceleration) as
a function of time. If the model is appropriately defined,
movements more realistic than those using interpolation
can be obtained.

The elliptical trajectory of the sphere is calculated
according to the following equations:



Figure 7: Keyframe animation (in the upper frame the
sphere follows an internal trajectory, and in the other
frame it follows an external one).

x = a � cos�
y = b � sin�
z = 0

� = �o + !t+ 

t2

2

where (x; y; z) represents the spatial position of the
sphere;a andb are the size of the ellipsis’ horizontal and
vertical semi-axis, respectively;! is the angular velocity;

 is the angular acceleration; andt is the time.

The VRML implementation of this animation fol-
lows the strategy presented in Figure 3. A TimeSensor
continuously generates t values and sends
them to the Script node, that is associated to a program
that calculates the positions of the sphere according to
the previous equations.

Using an external interface constructed with
IUlib, the user can alter the trajectory to be followed,
changinga andb values. In addition, it is also possible to
control the movement’s characteristics altering the values
of ! and
.

The user interface that controls these parameters
and the animation developed are shown in Figure 8. The
interface is composed of Labels, Scrollbars, and Check-
boxGroups. Each Scrollbar is associated to a Checkbox-
Group. The first one is related to the ellipsis’ semi-axis
(a andb) and the other is related to the kinematic parame-
ters (! and
). The alterations in the Scrollbar change the
value of the parameter associated to the selected Check-
box. These values are transmitted to the Script program,

that calculates the trajectory, which is immediately mod-
ified.

Figure 8: Kinematic animation controlled via a user in-
terface.

4.3 Dynamic Animation

Dynamic animations define the movements using an equa-
tion (or an equation system) with dynamic variables (e.g.,
mass, force) as a function of time. If the model is well
designed, more realistic movements can be achieved than
by the last two techniques. On the other hand, model-
ing is more complex and the movement’s control using
dynamic variables is not “natural” for the animator [1].

The dynamic simulation of an elliptical trajectory is
based on the Kepler’s law for the attraction between two
celestial bodies (a planet follows an elliptical trajectory
around the Sun, located on the ellipsis’ focus).

The mathematical development of this model can be
found in [4], being out of the scope of this article. The
resulting equations are:

t =

s
a3

G � (m1 +m2)
� (E � � � sinE)

E = arcsin(

p
1� �2 � sin�
1 + � � cos� )

wheret is the time;a is the ellipsis’ horizontal semi-axis;
� is the ellipsis’ eccentricity (relation between the dis-
tance from the center to the focus and the semi-axisa

— 0 � � < 1); G is the universal gravity constant;m1



andm2 are the masses of the bodies;� is the angle that
defines the spatial position(x; y; z) of the moving body;
andE is another parameter related to the position of the
same body.

In order to determine the position as a function of
time, we should isolateE in the first equation, which is an
ordinary equation. To compute the complex solution for
this equation it would require a long processing time, not
adequate for interactive animations. However, we found
an alternative solution suitable to our animation purposes,
based on the construction of a table that relates time val-
ues to regular intervals of�. � is varied in intervals of 2
degrees and the corresponding times are calculated; the
time received from the TimeSensor is then compared to
the values of the table to determine the current position
of the body.

The position of the body is determined from� based
on the following equations:

x = r � cos� + a � �
y = r � sin�
z = 0

r =
a � (1� �2)

1 + � � cos�
The construction of the table relating� to t requires

a relatively long processing time, when compared to an
animation cycle interval. For this reason, a new table is
constructed only when the user has changed at least one
control value and the body is passing in the initial posi-
tion. Therefore, the effects of a user alteration in a control
parameter will be noticed only in the following cycle.

The user’s control parameters for this dynamic ani-
mation area, �, m1, andm2. However, we are dealing
with celestial bodies, and small alterations in the masses
will not have perceptible effect on the movement. For this
reason, we added another control parameter, the exponent
of the mass, enabling larger variations on the masses of
the bodies. The user interface for this animation, built
with IUlib as in the previous example, is shown in Figure
9.

5 Conclusions

VRML enables the development of interactive animations
by the use of sensor nodes and the routing of events
through the nodes. The conjunction of VRML and Java
through the Script node enables the definition of more
complex animations.

In this paper, we contributed to achieve a better in-
teraction with the user, by the creation of graphical in-
terfaces (Java applications) that send animation control
parameters to the Script program.

A large amount of time would be spent by the ani-
mator for the creation of this interface. To facilitate the

Figure 9: User interface for the dynamic animation.

animator’s work, we have developed IUlib, a tool to eas-
ily and rapidly construct the graphical user interface for
control and communication with the animation, remain-
ing for the user only the development of the Script pro-
gram.

The IUlib allows the animator to create any type of
communication interface to VRML, using several types
of graphical components. This communication, in our
case, is used for animation control, but it can be reused
with other goals (e.g., definition of colors of geometric
objects). Our objective is to make the user interface
reusable also for other kinds of applications, offering fa-
cilities for the user via a VRML extension (prototyping).

In the next steps of this work, we plan to facilitate
even more the creation of interactive VRML animations,
working on the definition of the Script program, regard-
ing the communication with the user interface and the
definition of movements (the development of the Script
program can be supported by a script editor, like the one
presented in [7]). We plan to develop a library contain-
ing different kinds of movements (generated by the var-
ious animation paradigms) that can directly receive the
parameters from the user interface. The user should then
only choose a movement among the library’s predefined
movements and control its parameters via the interface.

Interactive VRML animations, like those presented
in this work, can be used in a variety of applications
such as distance learning, scientific simulation, cooper-
ative environment, among others.

Furthermore, the combination of VRML and Java
is not restricted to the control of animation behaviors.
As a general-purpose language, Java can be used to con-
nect a VRML scene to the external world (outside the
VRML file). As stated by Lea [5], VRML applications
could query databases and display results, display disk
contents, access the Web, and interact with users, via
menus, buttons, and so on, opening several other possi-
bilities for the improvement of this work.



Acknowledgements: We would like to thank CAPES,
FAPESP, CNPq, DCA - FEEC - UNICAMP, and the Com-
puter Science Dept. of the University of Waterloo for the
support of some authors.

References

[1] J. T. F. Camargo, L. P. Magalh˜aes, and A. B. Ra-
poso. Fundamentos da Animac¸ão Modelada por
Computador, 1995. Tutorial presented at VIII SIB-
GRAPI (http://www.dca.fee.unicamp.
br/projects/prosim/publiPS.html ).

[2] M. Campione and K. Walrath. The Java Tuto-
rial - Object-Oriented Programming for the Inter-
net. The Java Series. Addison–Wesley, 1997. On-
line version: http://java.sun.com/nav/
read/Tutorial/index.html .

[3] Dimension
X. Liquid Reality. (http://www.microsoft.
com/java/gallery/lrpro.htm ).

[4] D. T. Greenwood. Principles of Dynamics.
Prentice-Hall, Inc., 1965.

[5] R. Lea. Java and VRML 2.0 Part 1: Ba-
sic Theory. VRML Site Magazine, Febru-
ary 1997. (http://www.vrmlsite.com/
feb97/a.cgi/spot2.html ).

[6] L. P. Magalhães, A. B. Raposo, and F. S. Tamiosso.
VRML 2.0 — An Introductory View by Examples,
1997. Online tutorial:
http://www.cgl.uwaterloo.ca/
˜lpini/tutorial/vrml-tut.html .

[7] A. B. Raposo.Um Sistema Interativo de Animac¸ão
no Contexto ProSIm. Master Thesis, DCA – FEEC
– UNICAMP, 1996.

[8] Silicon Graphics, Inc. Cosmo Player, 1997.
(http://vrml.sgi.com/cosmoplayer/ ).

[9] Sony Corporation. Community Place, 1997.
(http://vs.spiw.com/vs/ ).

[10] N. M. Thalmann and D. Thalmann.Computer An-
imation - Theory and Practice. Springer-Verlag,
1985.

[11] VRML Consortium. The Virtual Reality Model-
ing Language Specification ISO/IEC DIS 14772-
1, April 1997. (http://www.vrml.org/
Specifications/VRML97/DIS/ ).


