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Abstract. The Point Containment predicate which specifies if a point is part of a mathematically defined
shape or not is one of the most basic notions in raster graphics. This paper presents a technique to counteract
the main disadvantage of Point Containment algorithms: their quadratic time complexity with increasing
resolution. The implemented algorithm handles complex geometries such as self-intersecting closed curves.

1 Introduction strategy, generating pixels directly from curves and thus
avoiding the difficulties in curve rendering tackled by

. - - lassen [12] and Lien et al. [13]. In Corthout—Pol point
perform raster graphics operations such as filling an

troki H Point Contai t-based algorith ontainment technique [2, 3, 4, 5], the problems of dis-
stroking. However, Foint Lontainment-based algortnmg ;s ation are acknowledged and tackled by casting the
generally have been judge to be too slow [14]. In [9]

. roblem to be solved as a discrete integer problem from
Forrest expressed the need for an eficient and robust al Re outset rather than attempting to accommodate all the
rithm to decide if a given pointis part of a mathematically

defined shape. Such an algorithm was later developed roblems of numerical accuracy which follow from float-
' . . . oint discretisation, geometric approximation, or a
Corthout et al. [2, 3, 4, 5] and implemented in dedlcate&/g po! ! satl 9 Ic approximat

o . . o Ss rigorous approach to discretisation later in the ren-
silicon, the Phgros chip fabn.caf[ed by Philips, on SlJppo{:}ering process. Corthout and Pol’s thesis contains details
of the PostScnpf[ page description Iangu_a'ge.. of the overall integer precision required for rendering on a

The most widespread approach tofilling is scan COMhosen device together with proofs of robustness and ac-

Quracy. Furthermore, the method lends itself to hardware

)l(rhplementation: the Pharos chip implements the point

pensive presorting and marking phase before they C@®ntainment algorithm in full and could be used serially

cpmpflj_t:: tlh(?[tactus lintervals (.)f lpI)o]ints contzlr;)ed w:jthg 'Srin a variety of parallel configurations. The algorithm
gion. The 1atter phase — speciaty for curved boundares;s ¢ q oy parallel hardware using Pharos chips.

requires careful attention to both geometric and numeric The major disadvantage of the Point Containment

The Point Containment paradigm is a natural way t

conversion of polygons where the end points of spans ?%n. In [5], Corthout and Pol describe a way to reduce

incrementally updated and pixels in between are fille he time complexity of the Point Containment approach

Atsome stage the intersection formula derived in the conz quasi-linear. This paper presents a method whose time

tinuous plane and usually cqmputed using real_ arithme_t(':complexity depends not on the resolution but only on the
has to _be mappt_ad t(.) _the d|scrfat_e pla_ne. This mappi rimeter of the polygon boundary.

necessitates an implicit or explicit epsilon-test that ma

cause incorret results [17, 8, 2].

Brooks [1] quoting Poulton points out that if curren
hardware trends continue, the number of pixels per primin [5], Corthout and Pol state and prove a version of
itive rendered by hardware will approach unity, and irthe Jordan curve theorem for regions bounded by non-
such circumstances we might as well compute pixels dsimple discrete curves which is the basis of their point
rectly from the underlying geometry rather than first apeontainment technique. To enunciate this theorem, we
proximating the geometry by polygons or line segmentslescribe the basic mathematical structure built on the dis-
The point containment approach is an example of thisrete plané2, which will also be used to develop the fast

t2 The mathematical structure



point containment algorithm presented in this paper. __ / dz

Building on the discrete plane, the notion of list will 2mi J oy 2 — e (L)
be used to represent the vertices of a polygon as well gagg
the control points of a Bzier curve. Alist of lengthn is

1 d
an element of the set W.(L*, L") = —/ —
210 J (1) % — (L))
A, ={L:[0.n] = Z?}. 1 / dz
T o - o (T2)
Alist L is called aclosed list or alternatively a polygon, 2w Jpu(Lr) 2 (L)

iff L(0) = L(n). The set of all lists will be denoted by ~ whereL! is a closed list. With ¢ as defined abovéy. is
and the set of closed lists hy,. Letdg be the metric on called cross-weight functionNote that, differently than

72 x 7.* defined by the analytic version, the geometric version is more suit-
able to implementation.
dg (z,y) = max{|z, — z2|, [y1 — y2|} - With this linking between the geometric and the an-

alytic version of the winding number, Corthout and Pol

Alist L is called8-connected iff thels distance between giate and prove the discrete version of the Jordan curve
any two consecutive points is at mdstUsing the well  theorem for non-simple closed curves.

known metricsd, anddg [15, 5] we can define respec- o

tively 4- and6-connected lists. A regioR in Z2ism- 1heorem 2.1 (Corthout-Pol) Letp be an angle with ir-
connectedit € {4, 6,8})iffforall z,y € R, there exists ratl_onal tangent. Qlyen any closed. ligt?, 'th.e Cross
am-connected lisL. embedded o such that(0) = = weight functiori¥, divides the plan&? into a finite num-

andL(n) = y. ber of regions with point® of equal winding numbers
The point containment algorithm must detect, for 1 / dz
each given query point and outline, whether it is con- 2mi J 1y 2 — @p(P)

tained in the region enclosed by the outline or not. This L _
detection is based on the conceptvaihding number Precisely, one of these regions is infinite, and that region

There are two ways to define the winding number: thgontains points Wi2th zero winding number. Furthermore,
analytic version employs a complex line integral and thwhen for any listZ.* of lengthn, we have

geometric version counts the number of direct intersec- 1 dz 2 1 dz
tion with a ray. _/ 2 — o (L2) —/ Nz —o (L2 )
For the geometric version, lete R? be given and 2m S 2 eolly) © 2mi ozt 2 #o(Lin.)
consider the functiofiv. : A x A — Z defined by: we must have(L') N p(L?) # 0.
o W.: Ao x AUA x Ag = Z,W.(L', L) =0 The last part of this theorem states that under certain con-
ditions, the polygonal embeddings of two lists must have
o W.: A x Ay = 7Z, a point in commom. The Corthout—Pol Point Contain-
ment technique is based on this result.
(LY N (L) =0 = W.(L',L?>) =0
p(LY) Npe (L?) # 0 = W (L', L?) = 3 Filling
signal (A(LY) x A(L?))?)

In this section, we will describe a specific rasterizing
where(A(L') x A(L?))* denotes the-coordinate function based on the cross weidht, to fill the interior
of the cross product between the vectard.') and  of polygons and discret_e@ier closed curves.
A(L?) (embedding inR? is implicit), ¢(L) is the Consider the functions
usual embedding ifR? that represents the line seg- .
— F,(L,P)=1 L P >).
mentL(0)L(1) andy. (L) = (L) + <. p(L, P) = lim W,(L, <@, P>)

o W.: A xAn, — Zforn, >10rn, > 1by: and let the rasterizing functiafi be defined by

Wo(LLL?) = Y0 S W< L LY, > F = 11%1}7,).
< L3, L3 >) . ! o
] . Taking thep size infinitesimally small minimizes the ef-
Takinge as a paie = (q,r) ore = (r,q), whereg € Q— et of thep translation [5].
Z andr € R — Q, Corthout and Pol show that¢Z (L) As F distributes over concatenations, the first step

forall L € A;. Under this restriction on they prove that Of its implementation is to sum over the polygonal sides
of the list argument. The algorithm for this is:

W.(L', L*) = i/
o(

dz IHereR? is embedded ifC for the evaluation of the complex line

2 Ly 2 —p:(L3)) integral.



winding_number(List L, Point P)

=

sum<-0;

For each position i of L (not including the
last element)
sum<-sum-+Contribution(L[i]-P,L[i+1]-P);

return sum;

n

hw

The step(3) computes the contribution of each line

Contribution(LO,L1)

1. Compute the values
minx = min(LO.x,L1.x)
maxx = max(L0.x,L1.x)
miny = min(LO.y,L1.y)
maxy = max(LO.y,L1.y)
2. If minx>0 or miny>=0 or maxy<0
return O ( According to remark (R1))

segment to the winding number. The translation of each Compute s=signai(L0.y - L1.y)

element in the list is to speed up the evaluation of the

4. If maxx<=0
return s ( According to remark (R2))

Contribution procedure whose goal is to compute ead) Compute the vector v

term on the decomposition df (L, P). The elements
used to compute the contribution of each line segmergt

are represented in the Figure 1.

-

I~

L
1

v.x = LOy - Lly
vy = L1x - LO.x

If v.x=0
return O ( According to remark (R3),
first condition)
7. If v.x<0

V.X = -norm.x
V.y = -norm.y
8. If InnerProduct(LO,v)>0 (Second condition
of the remark (R3))
return O
9. return s

Bézier curves can be incorporated on the case of
polygonal lists, first converting the curve into a polyg-
onal list, and evaluating the rasterizing function on this
list. As one of the essential aspects of the Point Contain-
ment paradigm is the exclusive use of integer arithmetic,
both Bézier curve and the polygon into which the curve

Figure 1: The elements of the contribution procedure is converted must be described with integers. But, nu-

merical errors may arise due to this polygonalisation. To

To compute the value of each term on the decomp@void this, Corthout and Pol [5] describe the notion of

sition of F'(L, P) we use the following remarks [5]:

(RY) If (PY > maz{L!} Vv PY < min{LY} vV P¥ <
min{L?}) thenF(L, P) = 0.

(R2) If (PY < maz{LY} A PY > min{LY} A P* >
maz{L?}) thenF(L, P) = signal(LY — LY).

(R3) Let min{LY} < PY < maz{L!} and
min{L¥} < P* < maz{L?}. Letl be the line
through the line segmeitit

e If [ is parallel to theg-axis, thenF'(L, P) = 0.

e If [ is not parallel to the:-axis, thenA (L)Y #
0. Letwv be the vector perpendicular tpsuch
thatv” > 0: v = +—(A(L)Y, —A(L)"). Let
¢ = Lo - v, thusl is described byz, y) - v = ¢.
We have:

P-v>c¢= F(L,P) = signal(L§ — LY)
P.v<c=F(L,P)=0

discrete BZier curves in a discrete model space which is
of higher precision than device space. Based on this, they
derive a recursive algorithm to compute the curve wind-
ing number based on the corresponding control points.

4 Coherence with Point Containment

As we have remarked earlier, for each point in the im-
age its winding number with respect to the given outline
needs to be executed. Thus, if we have an image of res-
olution n, the time complexity i%)(n?).cyn, wherec,,,
is the cost of the interior/exterior test, that is, the Point
Containment has quadratic behaviour with respect to res-
olution.

There is a way to reduce the time complexity of
the Point Containment to almost linear behaviour using a
technique calledoherence testingdet L a closed list and
F arasterizing function be given. A regidnis calledco-
herent with respect to the filled outlideiff R is a subset
of a single class of the equivalence relatiorZsrinduced
by F.

The Contribution procedure implements these re-  Note that if in the coherence testing a region is
marks which evaluates the contribution of each line sedound, it is only necessary to evaluate the winding num-

ment to the winding number:

ber for just one element inside the region.



The problem is: how to find these regions? Corthoud The new approach to filling coherence

and Pol [5] describe a general method to detect COhere”ﬁ%te that the approach of quadtrees to detect coherent re-

with filling: gions is not optimal, because it finds squared coherent
regions that can be frequently embedded into greater re-
gions. For example, in Figure 3 the white leaves could
be embedded into 2 x 2 square as they have the same
winding number.

Theorem 4.1 (Corthout—Pol) Let (my,ms) € {(4,4),
(4,6),(4,8),(6,4),(6,6),(8,4)}. If L is a closed;mn;-
connected list, and' is amy-connected region, theR ¢
{Li}®T = P — T is coherent with respect tb.

The symbolb denotes the usual Minkowski addition (e.qg.
see [10], [16]). This theorem states that the coherence of
the tile P—T is implied when a single Point Containment
test with a stroked outline returns negative. In Figure 2,
regions indexed by?, and P, are filling—coherent, but
the regionP; is not. Note that the= assertion is not true.

Figure 3: Decomposition to find coherence

Interior of L

Our approach is to detect an element of each coher-
ent regions and propagate its colour to the whole region.
The algorithm uses two auxiliar procedurd3etection
andPropagation
ListL The Detection procedure tries to find a point of inte-
rior of L:

Boolean Detection(Point P,List L, Point Q)

Figure 2: Coherence tests for filling 1. If( P has a neighbour V belonging
to the interior of L, with

) . . i . diferent from INTERIOR_COLOUR)
For this, take the tail = L; W R(L,); since a filled tail 2. Q< V

contains no points, any regidd — T is coherent, while 3. return TRUE
{L;} ® T need not be empty. 4. else return FALSE

Given a point) belonging to interior of., the Prop-
4.1 Time complexity with coherence agation procedure assigns the INTERIGRLOUR to

. . .. all points on the coherent region that contaihs
Following the above methods, we can derive an algorithm P g an

for filling curves with coherence.
When an image is to be generated, first we dete€ropagation(Point Q)
whether the entire image is coherent, and if so, what Queue < EMPTY:
colour it has. If not, the image is subdivided into four;  enqueue(Q,Queue);
quadrants, and applied the described procedure recsr- Colour(Q)<- INTERIOR_COLOUR;
sively to each of the four quadrants. Note that this pro3-  While(Queue is not EMPTY)

.. L ) P <- dequeue(Queue);
cedure always finishes, because a point is coherent. T@e For all neighbour T of P that

stopping points of this algorithm are coherentregions. =~ has not colour INTERIOR_COLOUR
The recursive structure of this algorithm creates & Colour(T)<-INTERIOR_COLOUR
quadtree Hunter and Steiglitz [11] show that the number’- enqueue(T,Queue);

of nodes in the quadtree is of ord@(p + n), wherep is
the perimeter of the contour, amds the maximum sub- Finally, the Fillingwith_coherence procedure fills
divison level. As the number of Point Containment testBy calling the Detection procedure to find a coherent re-

needed to build the tree depends linearly on the numbaron and, if such a region exists, it fills the region using
of nodes, the number of tests is also of or@&p + n), o Propagation procedure :

that is, if coherence is used, the algorithm has almost lin-
ear time complexity.



Filling_with_coherence(List L) Proof: Suppose that the Detection procedure found a
point (). According to the theorer@.1: Q € W C

1. For each point P in the image int(L) , |W| is finite andW is m-connected, for any

Colour(P) <- EXTERIOR_COLOUR

2. Embedd the points of L on the image, setting m € {4,6,8}. Observe thatV is maximal connected
their colours to INTERIOR_COLOUR coherent. Now let us prove that the Propagation proce-
i- FO'Irf egcth Ii’_o'“(tPPL ('g“) L TRUE dure covers exactly all points insid&. As W is con-
. etection(”,L, IS . 2 . .
5 Propagation(P.L.Q) nected, there exists A-—path linking@ to P for all P

in W. Thus, P is enqueued just once. From this, we
The following results analyses the steps of the proconclude that the procedure covéis. The regionV’
posed algorithm. Firstly, we introduce some notationis |imited by a closed sublist! of L and L' U W is
Theinterior of a closed listL will be denoted bynt(L) m-connected. Observe that all ponﬁé c I Satisfy
Let W be am-connected region. Theoundaryof L will  Colour(P)=INTERIOR.COLOUR. Thus, they are not

be denoted by = {P € W|3Q ¢ W,d(P,Q) = 1}, enqueued and the Propagation procedure can not reach
whered is the metric associated . A path (or a the exterior ofiV.

Z>—path between two points® and Q( the path ends)
is a sequenc¢Vy = P, Va,---,V,o1,V, = Q}, where The following theorem shows that our algorithm

d(Vi,Viz1) = Lforalli = 1,..,n — 1. The points finds the maximal connected coherent regions of the in-

Vi(i # 1,n) are called internals. Note that, W is a terior of L.

m-connected region then always there exists a path link-

ing P and@ forall P,Q € W. Theorem 5.1 The Filling-with_coherence algorithm
finds the maximal connected coherent regions of the in-

Lemma5.1 LetL be aclosed listand® € int(L). Then o0, of I, whereL is a closed list.

there exists a path with end poinisand ) (Q € L),

whose internal points are containedint(L). Proof: If int(L) = (), there are no interior points and
Proof: If int(L) = 0, then the result holds. iut(L) # the Detection procedure always returns FALSE. Thus, the

0, according to the Theoreml, P € W C int(L), Propagation procedure is never called.

|W| (the cardinality of the selV’) finite and W is m- If int(L) # 0, thenIWy, Wa, -, W C int(L),
connected, for anyn € {4,6,8}. W is limited by a Suchthatni(L) = U;_; Wi andW; # 0. Using theorem
closed sublist! # () of L, and more¥T € L' exists 2-1 We haveW; nW; = 0, Vi # j. Suppose that there
S € W such thad(T, S) = 1. Itis clear thatV U L' is  €XiStsWV; not detected by the aIg_orlthm. Qbserve tha_lt the
m-connected. Thus, there exist&Z&-path{Vi, ..., V,} only way to detect a point of; is by_usmg the ;ubhst
linking P to any pointQ € L. If n = 2, there are no L' that boundsv;. Th_erefore, Detectio{, L1, Q) is a_I—
internal vertices and then the lemma holds.nlf> 2, Ways FALSE. According to the Lemndal, such aregion
consider the sef = {Vi,...,V,,} Nnint(L). ltis clear does not §X|st.AppIy|ng lemm@a2 for each(; returned
that it can be choosen a subgét= {V;,,...,V;, } of 1, Dy Detectionf’, L, Q;), the result holds.

suchthat;, = P,d(V;,,V; =1,l=1,..,k—1and

z+1)

consequently there exists a po@te L, d(Q,V;,) = 1. The Corthout—Pol Point Containment test is only

Thus, the path of the lemmais), Vi,, ..., Vi, = 1]3}_ performed in the Detection procedure. This test is called,
To introduce the next lemma we need the followingit Mostm times for each query points € {4, 6, 8}. .

definition: Thus, the Detection procedure has time complexity

o o i O(1).cyn, Wherec,,, is the cost of Point Containment
Definition 5.1 LetW be a limited region o%?2 and L be

a closed list.WV is called maximal connected coherent if
W is m-connectedw(L, P) = w(L,Q) forall P,Q € s called just once. Thus, the total number of calls to the

W andifV' C 27 satisfies: Point Containment test i8(p), wherep is the perimetér
e WCV of the list.

Finally, for each point in the list, the Detection test

¢ VV m-connected
e IT € V,3S € W, such thatw(L,T) = w(L, S)

5.1 Comparison of theoretical results

Three approaches to perform the filling task were given:
thenV = W. the initial quadratic version, the quasi-linear version and

Lemmab.2 If a point ) is detected by the Detection our resolutlon-lndependent\_/ers_lon.
. , Observe that any rasterization process has two com-
procedure, then the Propagation procedure assigns lthon steps:
TERIORCOLOUR to all pointsP € W, whereW is a ps:
maximal connected coherent region that cont@is 2perimeter of the discrete curve represented by the list.




e Testing: the pointsinthe image are tested to decidare: resolution-independent complexity, simple struc-
if they are interior or not. tures and suitable to hardware implementation.

) ) . ) The research done in this paper can be further ex-
* Propagation: According to the interior/exterior po- ended in both theoretical and practical directions.

sition, the collour_of points are ghanged. Note thatz Current work is going to investigate the optimal-
for any rasterization process, this step has quadraiig of our method and to perform other raster operations
behaviour with respect to resolution. such as stroking. By doing this we would be provid-

The Table 1 summarize the theoretical complexities df9 & framework to support the efficient production of
i_tlallased two-dimensional images using Point Contain-

these approaches, according to the preceding ste cladd}
PP ng P ng step ment based techniques [6, 7].

fication.
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