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Abstract. The image alignment problem has as input a set of different images from a single object or sev-
eral identical objects. One instance of the object in each image is misaligned relatively to the other in a given
image, that is, the objects lie in different positions and orientations. Thus, the problem consists in finding the
homogeneous planar transforms for each of those instances. The process is not simple in the case of noisy im-
ages. Nevertheless, it is possible to tackle some cases of the image alignment problem using template match-
ing. This work describes two methodologies that were developed to align noisy images of protein quaternary
structures obtained by Transmission Electron Microscopy (TEM). These structures can be geometrically de-
scribed by regular prisms and polyhedra. One of the methods uses the traditional approach for this problem --
exploring image similarities. The second one explores the geometric simplicity of the objects being imaged by
using template matching in order to solve the problem. The results show that there are cases where the template
matching method achieves higher precision and computational efficiency to align that kind of image when
compared to traditional ones.
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 1 Introduction

Several Computer Vision [Ballard and Brown (1982)] and
Digital Image Processing [Castleman (1979)] applications,
such as 3D reconstruction of proteins from electron mi-
crographs [Radermacher (1992)], deal with the image
alignment problem in one or more steps of their imple-
mentations .

The image alignment problem has as input a set of
images of the same object or of identical objects. In each
image, there is a instance of the object in a different posi-
tion and orientation. The problem is to estimate the planar
position and orientation of the object in each image. Once
they are known, homogeneous planar transforms are cal-
culated for each image in order to give as result images
where the object appears in the same position and orienta-
tion.

A generic solution for this problem can be achieved
by exploring image similarities. However, this approach is
not trivial when imaging is done under noisy conditions; in
this situation, the images of the same object are unlike
enough to difficult similarity matches. Also, the usual
similarity method  chooses a reference image to which all
others are aligned to [Harauz and Boekema (1992)]. So
one has to carefully choose the reference image since a
wrong choice can incorrectly bias the alignment of the

whole set.

Nevertheless, it is possible to accomplish better solu-
tions to the image alignment problem when some previous
knowledge about the imaged objects is available. That
knowledge can be a set of geometric models, or templates,
of the objects. In this case, the image alignment problem
can be solved by using well known techniques such as
template matching [Rosenfeld and Kak (1982)]. After
matching a template to the images to be aligned, the solu-
tion to the problem is straightforwardly obtained by re-
covering the transforms that describe the template position
and orientation in each image.

An example of  a class of objects that can be de-
scribed by templates is that composed by quaternary pro-
tein structures . Such biomolecular complexes can be
geometrically described in terms of regular polyhedra and
prisms [Gilbert (1976)], as depicted on Figure 1. In par-
ticular, the icosahedral template also fits to bigger protein
assemblies, the icosahedral virus capsids [Stannard
(1995)].

The shape of such objects is of great biological im-
portance and can be determined by 3D reconstruction
from TEM images. However, even large molecules as
proteins are close to the resolution limit of TEM, and the
imaged structures are very noisy, as shown in Figure 2.



The sixfold prismatic shape of the proteins presented there
is clearly perceived. However, it also can be noticed that
not only the noise-to-signal ratio of the image is high, but
also the background is somewhat heterogeneous. These
combined factors contributes to a low similarity between
images of the protein in the same characteristic view.
Fortunately, the signal-to-noise ratio of TEM images of
such objects can be reduced by the image averaging tech-
nique. This technique consists in creating a high-resolution
image from a great number of images of identical mo-
lecular assemblies in the micrograph by averaging the
intensities of their corresponding pixels. Clearly this
method requires that all images are aligned. Traditionally,
this alignment is performed based on image similarity,
such as correlation function-based procedures [Van Heel
et al. (1995)].

(a)

(b) (c) (d)

Figure 1: the basic geometric models for quaternary
protein structures. They can assume configurations
such as (a) regular polyhedra; (b) regular prisms; (c)
twisted regular prisms and (d) double-twisted regular
prisms.

As pointed out before, TEM images of such objects
however are suitable for alignment by template matching.
In particular, the sample preparation technique known as
negative staining [Steven and Navia (1980)] guarantees
that every structure in a micrograph lies on a plane, which
already imposes constraints in their orientations. The typi-
cal views then can be matched by simple planar templates
allowing for an easy implementation of reasonable com-
putational cost.

This work proposes the application of template
matching in order to achieve better results to the alignment
of TEM images. It will be restricted to negatively stained

quaternary protein structures and some species of icosahe-
dral virus. The efficiency of the method in terms of com-
putational cost and quality of the final result is measured
and compared with those achieved by a similarity-based
image alignment methodology. The following sections
give a more precise definition of the image alignment
problem and the geometric constraints of the type of im-
age described here. It also describes both template-
matching methodology proposed here and the similarity
method which is used for comparison purposes. Results of
both methodologies are shown and discussed.

Figure 2: transmission electron micrograph of a nega-
tively stained sample of earthworm hemoglobin mole-
cules. Downloaded from the web site of the Biology
Department of the Brookhaven National Laboratory
(http://bnlstb.bio.bnl.gov/).

2 Definition of the Problem

In this section, the image alignment problem is defined.
The geometrical constraints of protein quaternary struc-
tures and their orientations on a negatively stained sample
are also formally described.

2.1 The Image Alignment Problem

Let O  be an object with an attached orientation vector 
r
v .

O  lies on an imaging plane parallel to 
r
v . Let A  be an

ordered set of n  images. Each image a Ai ∈  has been

obtained by imaging O  with the same device D . For
each ai , O  is rotated and translated along  the imaging

plane by a planar transform Ti , yielding a set of corre-



sponding orientation vectors 
r r
v vi i= T . Thus, the image

alignment problem is to find another ordered set S  of  n
transforms where

 ∀ ∈ ≠ =S S S Si j i i j jS i j v v, , ,
r r

.

That is, the application of S  to A aligns the images in A ,
where O  will have the same position and orientation in all
images. The set of these aligned images is the solution for
the problem. Figure 3 depicts the configuration of one
instance of this problem and its solution.

Although the mathematical definition of the problem
deals with an orientation vector intrinsic to the object, that
vector is not previously known in real problems.

2.2 The Orientation of  Polyhedra on Planes

A homogeneous density  for the quaternary protein struc-
tures is assumed. (Actually, that density is not homogene-
ous. However, density variations are symmetrically dis-
tributed along the volume of protein quaternary structures.
Hence, the assumption of uniform density does not invali-
date the following discussion.) The quaternary protein
structures are geometrically modeled here as simple poly-
hedra of the following classes.

Regular Solids: regular tetrahedra, cubes, octahedra,
dodecahedra and icosahedra.

Regular Prisms: prisms with n + 2  faces where n
faces are rectangles and two faces are regular polygons
with n sides.

Twisted Regular Prisms: polyhedra with 2 2n +
where 2n  faces are isosceles triangles and 2 faces are
regular polygons.

Double-Twisted Regular Prisms: polyhedra with
4 2n +  where 4n  faces are isosceles triangles and 2 faces
are regular polygons.

The orientation of the defined polyhedra on a plane,
considering the effect of a gravitational field perpendicu-
lar to that plane, is now discussed. (The same discussion is
valid considering any other attractive force between the
molecule and the imaging plane, like intermolecular inter-
actions.) Clearly, the set of stable orientations for the
polyhedra includes only orientations where a face of the
polyhedron coincides with the imaging plane. The stability
of such orientations also requires that the projection of the
geometric center of the polyhedron on the imaging plane
lies inside the face that coincides with the plane.

Thus, since those constraints are posed to polyhedral
orientation, it is easily seen that the set of projections of
the polyhedra on the plane is also limited. For instance, a

regular prism has only as projections regular polygons and
rectangles. For regular solids the projections are even
simpler, being only regular polygons.
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Figure 3: an instance of the image alignment problem
and a solution. In (a), the object O  is shown with an
attached vector 

r
v . In (b), several images of  O  in

different planar orientations are displayed as well as
the corresponding 

r
vi  vectors. Finally, a solution is

shown in (c); notice that the first image remains un-
changed, because it was used as a reference.

3 The Methodologies

The aforementioned approaches to the image alignment
problem case discussed in this paper are formally de-



scribed in this section. The similarity-based algorithm, as
well as the template matching-based one, are presented
and their complexities are analyzed.

However, a simple framework is firstly presented for
both methodologies. This framework handles the discrete
nature of images and their transforms. Gray-level images
[Pavlids (1982)] (represented as matrices of intensities
ranging in the set { }0 1, ,2,...,255 ) will be used here. It is

assumed that all images in the ordered input set of images
A  are isomorphic to each other, that is, have the same
height and width, given respectively by functions ( )h A

and ( )w A .  Planar image transforms are implemented in

an “inverse way”, that is, to each pixel of the output image
it is assigned the intensity of the corresponding pixel in the
input image; this approach is used to provide antialiasing
[Rogers (1985)]. Also, rotations and translations are per-
formed separately, such that rotations are defined around
the viewing axis by an amount α  with respect to the co-

ordinate ( )x y, , denoted by the operator ( )( )R , ,z x yα
(adapted from [Craig (1989)]).

3.1 The Similarity-Based Method

The similarity-based image alignment method described
here is basically an exhaustive search algorithm operating
in a discrete space of orientations. It determines the best
reference image by trying each a Ai ∈  as a reference

image.

For each ai , the center of mass of the other images

are superimposed to the center of mass of ai  by means of

translations. The center of mass ( )m a of an image a A∈
is given by

( )
[ ]

( )

[ ]
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The application of a translation on an image b  in order to
superimpose its center of mass to that of an image a  will
be denoted as ( )m a b, . Once the mass centers are super-

imposed,  each a Aj i≠ ∈  is rotated in all possible ways

modulo the discrete representation. The best orientation
for the current image is chosen by the criterion of mini-
mum Euclidean distance [Machado (1994)] to the refer-
ence image. That distance between two images a  and b
is denoted as ( )d a b, . The best reference image yields the

minimum sum of minimum Euclidean distances to the
other images. Then, the best transforms for the best refer-
ence image are considered the solution for the problem. A
high-level description of the algorithm is given below:

1. ( )M n w A h A← 255 ( ) .

2. { }C c c cn← 1 2, ,..., .

3. { }B b b bn← 1 2, ,..., .

4. ( ) ( )( )( )d h A w Aα ← arctan / min ,2 .

5. For i  from 1 to n  repeat steps 6 to 12.

6. b ai i← .

7. For all aj i≠  repeat steps 8 to 12.

8. m M n← / .

9. While α π< 2  repeat steps 10 to 11.

10. if ( )( )( ) ( )d a R m m a a m a a mi z i j i j, , , ,α



 <  then

( )( )( ) ( )m d a R m m a a m a ai z i j i j← 



, , , ,α  and

( )( )( ) ( )b R m m a a m a aj z i j i j← α , , , .

11. α α ∂α← + .

12. if ( )d a b
j i

Mi j,
≠

<∑  then ( )M d a b
j i

i j←
≠
∑ ,  and

C B← .

At the end of the execution of the algorithm, the best solu-
tion found for the image alignment problem is stored in
C .

An operation suitable for measuring the complexity
of the algorithm is the number of distance measurements.
In order to estimate that number, the number of measure-
ments in a image scanning is first determined. An image
scanning is the measurement of the distances between
images considering all rotations relevant to the discrete
representation used. Putting in another way, a image scan-
ning corresponds to steps 9 and 10 of the algorithm. Thus,
the number of measurements during an image scanning is
about

( ) ( )( )( )t
h A w A

= 2

1

π
arctan / max ,

.

The total number of image scannings performed by the
algorithm is ( )n n −1 . Hence, the complexity of the algo-

rithm is ( )O n t2  on the number of distance measurements.



3.2 The Template-Based Method

The template-based method operates individually in each
image instead of experiencing all possible correlations
between images as the similarity-based method does. For
each image, the method performs basically two steps. The
first one is the extraction of edges in the image to be
aligned. The second step is the scanning of the image with
the template with all possible sizes, orientations and posi-
tions under the discrete framework used. The transform
(size, orientation and position) that provides the best
match between the template and the edges of the original
image is chosen. Those concepts are formally defined
next.

A non-linear edge detector is used for edge extrac-
tion. Using that detector, ( )e a , the edge extraction image
of a given image a , has its pixel intensities defined by

{ }
e a x y a x y a x h y v

h v
( )[ , ] max [ , ] [ , ]

, , ,
= − + +

∈ −1 0 1
,

for those pixels x y,  that are not part of the image border;

otherwise, ( )[ ]e a x y, = 0 .

The case of regular polygonal templates is discussed
in detail. In terms of representation, such templates are
binary images [Barrera and Banon (1994)]. The template
of a regular polygon of diameter ∆  and with f  sides is a

binary image ( )p f∆,  with ∆ ∆×  pixels with the polygon

drawn by one-pixel lines centered in the image.

The matching ( )m a b,  between a binary image b

and a gray-level image a  is measured as the sum of inten-
sities of the pixels of a  that correspond to true (white)
pixels in b . b  is shifted relatively to a  by a vector
( )h v, . The matching is then defined as

( )( ) [ ]
[ ]

m a b h v a x h y v
b x y

, , , ,
,

= + +
=

∑
1

.

 This matching is used here to evaluate how good a tem-
plate (rotated and/or translated) adjusts to the edges of an
image.

Finally, the shifting of an image a  by h  pixels along
the horizontal direction and v  pixels along the vertical
direction is denoted as [ ]h v a, .

With the above definitions, the high-level algorithm
for the template-based method (considering a regular
polygonal template) is presented below:

1. { }C c c cn← 1 2, ,..., .

2. For i  from 1 to n  repeat steps 3 to 12.
3. M ← 0 .

4. For ∆  from ( ) ( )( )min ,w A h A  down to 3 repeat steps 5

to 12.
5. α ← 0 .
6. ( )dα ← arctan /2 ∆ .

7. While α π< 2 f  repeat steps 8 to 12.

8. ( )( ) ( )b p fz← R , , ,α ∆ ∆ ∆2 2 .

9. For  x  from 1 to w A( ) − ∆  repeat steps 10 to 11.
10. For y  from 1 to h A( ) − ∆  repeat step 11.

11. if ( ) ( )( )m e a b x y Mi , , , <  then ( ) ( )( )M m e a b x yi← , , ,

and ( ) ( )[ ] ( )( )c
w A

x
h A

y Rz x y bi ← − − − − − + +∆ ∆ ∆ ∆
2 2 2 2

, , ,α .

12. α α ∂α← + .
When the above algorithm terminates, C  contains the
template-based solution for the image alignment.

The upper limit for the complexity of the regular po-
lygonal template matching algorithm is given by

( ) ( )( )n w A h A tmin ,

in the number of matching measurements.

Since the inequality ( ) ( )w A h A n, >  usually holds for

real applications, the template-based method is theoreti-
cally slower than the similarity-based one. However, the
template representation offers the following possibilities
for faster implementations:

•  The template images do not need to be actually
transformed; the template can be simply redrawn in a
different position/orientation, which is computationally
cheaper.

•  Just the pixels corresponding to the white pixels of
templates have to be visited; thus, the coordinates of those
white pixels can be stored reducing the area to be scanned.

The simplifications above where explored in the im-
plementation evaluated. That caused the template-based
method to be faster than the similarity-based one for the
case of regular polygons.

The above algorithm can be easily adapted to deal
with more complex templates, like rectangles. The case of
matching rectangular templates is tested in this work.
However, since rectangles are characterized by two di-
mensions (width and height) instead of one (radius), the
complexity of an algorithm for matching rectangular tem-
plates is correspondingly larger.

4 Results

The algorithm was implemented in C++. All tests were
executed in a machine with a 133 MHz AMD 586 proces-



sor with a 256 Kbytes cache memory and 16 Mbytes of
RAM running Windows 95 with interactive load
[Hennessy and Patterson (1990)].

The alignment of regular polygonal objects was
evaluated using the images shown in Figure 4. Those im-
ages were presented as the input set A  to the programs
corresponding to both methodologies.

Figure 5 shows the solution for the image alignment
problem presented by the similarity-based methodology. A
visual inspection indicates that images 1, 2 and 3 are
aligned to each other, though the misalignment of images
4 and 5 is noticeable.

Figure 4: the input set A  of images used for the
evaluation of the methodologies when processing regu-
lar polygonal objects. These images where extracted
from the micrograph shown in Figure 2 using the tech-
niques described in [Campos and Coelho (1996)].

Figure 6 shows the template matching. It is important
to note that images 4 and 5 have a shape somewhat differ-
ent from that of a hexagon due to lack of precision in the
segmentation process. However, the fitting of the hexa-
gons is very good even for those images. Features not
corresponding to hexagons are simply discarded by the
matching template.

 As pointed out in the previous section, the template-
based method described here can be easily adapted to deal
with more complex templates. The image input set pre-
sented in Figure 7 is used for evaluating the methodolo-
gies for rectangles. Figure 8 shows the results using both
methodologies with the same input set.

Qualitative evaluations cannot supply strong evi-
dence favoring one method or another. Therefore, the rest
of this section discusses quantitative techniques for evalu-
ating the quality of each method.

1 2 3 4 5

Figure 5: a solution for the image alignment problem of
the image set introduced by Figure 4. Image 2 was the
one chosen by the algorithm as a reference.

Figure 6: result of the application of the edge detection
to the image set (top); best hexagons defined for each
image drawn over them (middle); alignment performed
by using the transforms given by the hexagons (bottom).

Figure 7: the input set A  used for the evaluation of the
methodologies in the case of rectangular objects. Images
extracted from Figure 2 using the segmentation tech-
niques described in [Campos and Coelho (1996)].

Figure 8: the alignment of the input set presented in
Figure 7 by the similarity-based method (top) and by the
template-based method (middle).

As mentioned before, the main objective in the
alignment of images of quaternary protein structures is the
image averaging phase. Hence, the averaged images will
be used for quantitative evaluation of the methodologies
presented. The average a  of an image set A  has

( ) ( )h A w A×  pixels with intensities given by

[ ]
[ ]

a x y

a x y

n

i
i

n

,

,

= =
∑

1 .



Figure 9 shows the averaging of the images of both input
sets aligned by both methodologies.

 

Figure 9: image averaging for the images aligned by the
similarity-based method (left) and by the template-based
method (right).

Symmetry is the main characteristic of protein quater-
nary structures. Therefore, an evaluation parameter based
on this characteristic was defined.  Since the regular po-
lygonal case studied has a sixfold rotational symmetry, it
is expected that the rotations of the averaged image
around its center by { }k rad kπ 3 0 1 3 4 5, , ,2, , ,=  would be

equal to each other. Therefore, the sum of the Euclidean
distances between the described rotations is used as a
measurement of quality of alignment methodologies re-
sults. This measurement can be formally defined as

( ) ( ) ( )q a d R
i

n
x y a R

j

n
x y az z

j i
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i
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Clearly, n = 6  for the case of hexagonal polygonal ob-
jects  and n = 2  for the case of rectangular objects.

The point ( )x y,  used as the center of rotation is dif-

ferent for each case. For the average of the images aligned
by similarity, the center of mass of the average was used.
For the average of the images aligned by template match-
ing, the geometric center of the image was used, where all
the aligned images are positioned by the template-based
method.

Sharpness can also be used as a metric. The result of
averaging a misaligned set of images is expected to be
blurred, while the averaging of well-aligned images tends
to be well defined, with sharp features. Since sharpness is
related with “bright” edges, a simple way to compute
“sharpness” would be the total sum of pixel intensities of
the result of applying a border detector over the image.
Hence, it can be defined the function

( ) ( )
( )( )

c a e a x y
y

h A

x

w A

=
==

∑∑ [ , ]
11

.

The table below summarizes the results after applying
the proposed evaluation metrics. It can be seen that, for
hexagonal objects, the template-based method has slightly
higher quality than the similarity-based -- 1,6% under the

( )c a  measurement, but presents a significant difference

(18,8%) with the ( )q a  measurement. However, for the

case of objects modeled by rectangles, the similarity-based
methodology is slightly better using both parameters – a
quality 9,3% lower using the symmetry criterion  and
5,4% lower using the sharpness criterion. More experi-
mental data is needed in order to reach a final conclusion.

Metric

( )q a ( )c a

Similarity- Hexagon 54850 220727

Based Rectangle 1119 165295

Template- Hexagon 46178 224358

Based Rectangle 1223 156851

Differences between the performances for hexagonal
and rectangular template matchings are also seen in terms
of computational efficiency. The table below shows exe-
cution time for both methodologies for hexagonal objects.
The average time for the template-based method was
459.2 seconds, while the same average for the similarity-
based methodology is 517.9 seconds - a difference of
about 12.8%.

CPU Time (s)

Similarity-based Template-based

948 419

465 453

491 427

446 343

439 353

447 534

514 560

453 625

452 451

551 427

Average: 517.9 Average: 459.2

However, as predicted by the complexity analysis, the
template-based method is very time consuming in the case



of rectangular templates. In fact, while the similarity-based
method also spent some hundreds of seconds while align-
ing the rectangular objects, the template-based method
spent some hours.

4. Conclusions and Future Work

The methodology based in template matching introduced
here showed good results in terms of quality of the final
result and mainly in terms of computational efficiency for
the case of regular polygonal objects. However, the com-
plexity analysis and results for the case of rectangular
templates shows that the template-based method for more
complex objects is much more time-consuming than the
standard similarity-based method. Preliminary results
obtained also rises the suspect that the quality of the tem-
plate-based alignment for such objects can also be of
lower quality.

A future improvements can possibly avoid these great
differences of computational efficiency among the differ-
ent templates used. That improvement would probably
come from the use of local instead of global and exhaus-
tive search for template matching. The local search could
be done by using gradient search techniques.

 However, considering those classes of objects with
polygonal projections, the methodology can also be ex-
tended through slight modifications to solve problems
unrelated to image alignment. Image segmentation, as well
as pattern recognition and classification, are suitable to the
template matching approach presented here. They repre-
sent another promising areas for future work.
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