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Abstract. In this paper we exploit the power of contractive mappings to create special image effects. Un-
der this framework, images are represented as the attractor of an Iterated Function System (IFS) and can be
reconstructed using Fractal Interpolation. By controlling parameters of the process, we obtain a wide range
of image effects.
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1 Introduction 1.2 Overview

Special effects with images are very important in differThe paper is organized as follows: Section 2 studies con-
ent fields. In particular we could mention the film andraction mappings, introduces the concept of partitioned
video industry and the digital publishing market. There isterated function system@IFS) and presents theon-
a great number of commercial software that can be usédction mapping theorerwhich is the basis for the en-
to obtain different image effects such as Adobe Phot@oding theory using contractive mappings. Section 3 in-
shop, Fractal Paint, Corel Paint, Kaos Power Tools, etctroduces a technique to encode and decode grayscale im-

Also, there is a vast literature covering the subjecages using contraction mappings. Section 4 shows how to
of special effects with images. These techniques ranggply the codec introduced in Section 3 to obtain special
from the use of linear filters to non-linear ones, such asffects with images. Section 5 gives several examples,
warping filters. and Section 6 comments on future work.

In this paper we introduce a new technique for ob-
taining special effects using an image codec based on
contraction mappings of the plane. The image is encode?, Contractive Mappings
and its reconstruction is parameterized in such a way that, o — .
by chanaing conveniently the parameters. we obtain diae] contract_|0n|s an appll_catlon that degreases d|st§nces.

y changing y p )
ferent effects on the reconstructed image. This proces ore precisely, a mapping : A — B Is a contraction
) W%‘Iend(F(x),F(y)) < sd(z,y) ,with0 < s < 1. The

allows us to produce visual results that are hard to achieve . 0
P numbers is called acontractivity factorfor F'.

by other means. Moreover, it is a general method for cre- - " .
ating image effects based on patterns and textures. We wil |IIustrat_e the defm'tlor." above with one ex-
ample. LetF' be defined on the unit square and given by
Fz,y)=(£+1,2+1) =174 (1,1), wherel isthe
identity map of the plane. TheR is a contraction with
contractivity factors = 1/2, where distance on the plane
Contraction mappings of the plane have been used f& measured in the usual way (euclidean distance). Fig-
quite a while to obtain image compression. In this condre 1 shows the unit square transformed by the function
text the technique is calleffactal image compression F.
The results are described in Barnsley and Hurd [2] and A very important property of a contractidi: A —
Barnsley and Jacquin [3]. A very good explanation of thed from a setA to itself is the existence of a unique point
techniques can be found in Fisher [4], where you can finthat remains fixed. That is, there exists a unique point
details of the main existing algorithms. p € A such thatF'(p) = p. The pointp is called the
This is the first work to use the powerful techniquefixed pointof F'. In the above example = (1/2,1/2).
of contraction mapping encoding to obtain special effect€he existence of a fixed point is a classical result stated
with images. precisely in the theorem below:

1.1 Related Work

Anais do IX SIBGRAPI (1996) 313-320



314 GOMES, MOTA, DA SILVA, VELHO

where
i
1 [A,B] = maxX{d(z,B); z€ A}, and
F [B,A] = max{d(z,A); z € B}.
— 12
This distance turns the collection of plane sets into a
. complete metric space.
0 1 Suppose we have mapsFi, ..., F, on the plane.

We can defineamap : B — B by
Figure 1: F(A)=F (A U---UF,(A), AeB.

Itis possible to prove, see [4], that if each nfgps a con-
Theorem 1 (Contraction Mapping Theorem) Let F' :  traction, the mayF is also a contraction of. Moreover
A — A be a contraction on a complete metric spaceijf the contraction factor of each is s;, the contraction
Then F has a unique fixed point p. Furthermore, for anyf £ is given by the maximum value among thgs. It
X € A, the sequencr, F(z), F?(z), F*(z),...) of iter-  follows from the contraction mapping theorem, that there
ates of x by F, converges to p. exists a unique sek € B such thatF'(K) = K. The

Notice that the theorem guarantees the existenc Sg F :f f_> g 'S.Ca";(,j. anlt_erattleld dFL;]nCtlon Sy].:stem
and also gives a method to compute the fixed point. FtL )- The fixed point off” in B is called theattractor for

an arbitrary pointc € A the sequence of iterates of eIIZS. | ider th .
by F, (z, F(z), F2(z), F*(z),...), is called theorbit of s an example, consider three contractions
x by F'. The contraction mapping theorem says that the Ty 1
orbit of any point converges to the fixed pojnt Fi(z,y) = (3,5) =50
x 1y 1 1
2.1 lterated Function Systems Fy(z,y) = (§ Ty 5) =5l+ (5’ 0);
In this section, we will introduce a distance on a collec- (5 ) (f + 1, LA 1) = 1[ + (1, 1),
tion of plane sets and show how to apply the contraction 2 42 20 2 4°2
mapping theorem to encode any element from this colle%—nd letA be the unit squarel = {(z,y) ; 0 < |z| <

tion. We will consider only bounded and closed subsetf, and

of the plane. _ on theA.
Let B be the collection of plane sets, we want to de-

fine a metric on3 with perceptual characteristics, that is

0 < |y| < 1}. Figure 3 shows the action &t

two sets are close to each other, whenever they are, per- 4 11\
ceptually, almost indistinguishable. This is illustrated in
figure 2 for two sets of distanee The precise definition F FA)
is given below. —
Fi(A) | FAA)
0 10 1
Figure 3:

Figure 4 shows some iterates of the sequence
F™(A). This sequence converges to the set known as the
Sierpinski Triangle From the contraction mapping theo-
rem, we obtain the Sierpinsky triangle independent of the
starting setA.

In resume, the Sierpinsky triangle is reconstructed
from the IFSF = {F}, F», F5} using an arbitrary set as
the starting point to iterate. This means that we can use
the IFS as an encoding of the Sierpinsky triangle. A very
d(A,B) = max{ [A, B], [B,A]}, interesting question can be posed nadwit possible to

Figure 2:

Let A andB be sets i3 , the distance between them
is defined by
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3.1 Image Space

A grayscale image is defined by functigh. U — R
"= whereU is a subset of the plane, called the support of
the image. The valug(z, y) represents the grey level at

the point(z,y) € U. In most cases the sét will be a
rectangle.
Figure 4: A binary image is one Wh_ere the image functipn
assumes only valugsor 1. In this casef defines a sub-
set of the plane, characterized by the points of the plane
use IFS’s to obtain a similar encoding for an arbitrarywheref assumes value (black points). This remark al-
set of the plan@ lows us to deal with binary images as plane sets. In par-
To state a solution to this problem, we introduce agicy|ar, the encoding technique for plane sets described in
affine IFS. Thatis, an IFF" = | J; F; such that each con- the previous section can be used to encode binary images.
tractionF; is defined by an affine mapping of the plane: Non-binary images are not perceptually identified
with plane sets, and we must find a different way to mea-
T a; b T e sure the distance between two images, in order to encode
F < y ) - ( ¢ d; > ( y ) < fi > them using contractions. This is done by identifying the

. . . . . imagef with its graph
The action of an affine mapping consists of rotation,

reflection, translation, shearing and scaling. Therefore G(f) = {(z,y, f(z,y)); (z,y) € U}.

the fixed point of an affine IFS has a distinguished fea-

ture: it is composed of scaled version of itself, possiblyVe must find a distance between two image graphs with
modified by some of the warpings defined by some plangerceptual characteristics: close images should look sim-
affine mapping. That is, it has a fractal affine self-similailar. Since the eye perceives intensity levels by an aver-
structure. Of course, not every plane set has such a g&ging process, a reasonable choice is to use the average
ometric fractal structure, but it is intuitively convincing metric

that by subdividing an arbitrary set of the plane, we find 1/2

many pieces that are approximately equal, up to an affine d(f,g) = </ f(z,y) — g(az,y)|2da:dy> _

plane transformation. This is illustrated for the boundary U

of the set shown in Figure 5.

With this metric the Contraction Mapping Theorem ap-
plies to the space of grayscale images.

3.2 Representation by Contractive Maps

As in the previous section we will look for a sufficiently
great number of attractors pertaining to the grayscale im-
age set, in such a way we can replace an original image
by one of these attractors, with a minimal perceptual lost.
By identifying a grayscale imagé U ¢ R?> — R with

its graph, we define affine maps on the “graph space”, by

Figure 5: v a; bi 0 v “
9 ' Wil vy = ci d;i 0 y |+ fi
0 0 s z 0;

Therefore, it is reasonable to expect that by conve-

niently subdividing a plane set, we are able to describe it The family WW; of affine mappings is comprised by

as the fixed point of some affine IFS. This resultis knowgyg families of affine maps. A family7; of plane affine
as thecollage theorem A precise statement of it, and a jappings

proof, can be found in [1].

() = (5 a)()-(%)
3 Images and Contractive Mappings Y ¢ d; Y i

In this section we will show how to apply the encodingand a one-dimensional family of affine mappings
method described in Section 2 to obtain a representation

for grayscale images. zw+r siz+0;, z€R.
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The family F; acts on the image domain, and th®- Given a setD; int D there are eight ways to map it
family acts on the gray levels of the imagesscales the over R;. Moreover the domai®; is four times the size
image gray levels, and itis calledntrast The parameter of any range seR;. Therefore, we must subsamglgD;.

o; adds a constant amount of gray to the image valuel) conclusion, we have to mak&§4648 comparisons in

and it is calledbrightnesgparameter. order to choose th®; in D that minimizes the distance
Let f be aimage ovel/ andR;, - - -, R,, a partition
of U such that there are subséls, - - -, D,, in U satisfy- d(Wo(f|D)a f|Ri)

ing F;(D;) = R; for eachi (see figure 6). Define where I, is an affine domain transformation which

W (f) == Wi(f|D1) U+ UWa(f|Dn), Ic_aaves the gray values unaltered. That is, a transforma-
tion of the type

where
T a; b; O T e;
Wl(.ﬂDl) :{Wi(:n,y,f(a:,y));(:n,y) EDl} W, ) = ¢ di 0 Yy + fi
z 0 0 1 z 0
This enables us to choose the coef-
’7 ficientsa;, b;, ¢;, d;, e; and f; corresponding to the best
‘ /,i—» R domain transforni¥;. After we do this for each range
B 1 R; we need to find optimal values for the contrasand

the brightness; to obtain the best transfori;. Itis a
easy task if we are using the RMS metric. Suppose we
have the set®); and R; with respective pixel intensities

] given byd, - - -, dg4 (after subsampling) and, - - - , 7¢4.
Figure 6: In order to obtain the best ando; for W; we have to

i . . minimize the error
W defines a mapping from the space of images onto

itself. If we choose the; to be contractions and the )
s; < 1, then we can prove that is also a contraction. E(o,s) = Z(S ~di+o—m)".
Therefore, it has a fixed poirfty . =1

The contraction mappindd/; between pieces df  We reach the minimum oF when its partial derivatives
with the above properties constitutes whatis call®dia  are zero and it happens when
titioned Iterated Function System (PIEShe setd; are

64

calleddomainsand the set®; are calledanges [64 S i - a0 ri]
Now, again, we want to solve the inverse problem, $= o ol 2
that is, given an imag¢ overU we hope to find #I1FS {64 Sy dE - (Zi:l di) ]

that hasf as its fixed point. In practice, we look f®IFS

with a fixed pointfy, close tof. So we can encode an and

image f by storing the contractiol” = | J, W;, the do- 64 64
mains D; and the associated rang&s. For decoding, 0= 1 Zri 5. Z d;
one starts with an arbitrary initial imageand applyiV 64 Py =
repeatedly tq; until we get a sufficiently good approxi-

mation of fy. 4 Image Reconstruction and Special Effects

In resume, the problem is to find the sdis, the L .
corresponding setB; gnd the transformatiori§’;. In the The PIFS _representatlon IS cqmmonly useo_l for image
next section we will present a method to accomplish thig.0 M Pression. In such an apphcatlon,.th.e ongmal 'mage
IS reconstructed from a compact description with minimal
distortion.

However, this representation could also be used for
Suppose we haveZb6 x 256 grayscale imagg. Con- creating special effects. If the parameters of the process
sider aregular grid of x 8 non-overlapping squares. This are carefully manipulated, we may alter the reconstructed
grid creates a partitio®;, R», . . ., R1924 Of the image image, introducing desired visual features into it. Note
domainU. Let D be the collection of all6 x 16 sub- that, in this case, the reconstructed image will be different

squaresD; of the image domain (see figure 6). In orderfrom the original encoded image.

3.3 Computing the Representation

to find aPIFSto encodef, itis necessary to find, for each In the rest of this section, we describe how the
R;, asetD; in D such thatf|D; is similar to f|R; by an  computational machinery of contractive mappings can be
affine transformiv;. controlled to produce these special effects.
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4.1 Fractal Interpolation As we have seen in the previous subsection, if the
iteration process is carried out just a few times, we ob-
'gn an image that resembles the encoded image but also
gcorporates features of the initial image.

The scheme for encoding and decoding an image usi
PIFSis essentially a process of sampling and reconstru
tion (interpolation). The sampling process is based ontH he ab | the visual eff h
principle that if a region of the image is sufficiently small | "€ above parameters control the visual effects. The
then it is a scaled copy of itself up to an affine transforcnoice of initial image is perhaps the most important pa-
mation. We subdivide the image in regions and associaf@meter, since it defines the kind of features that will be
to each region an affine contractio¥,. The valueo; is incorporated into the image. Here we will use regular

greatly influenced by the mean intensity of the rafye patterns and texture_s. _ o ) )

so the sefoy, ..., 0.} is roughly a subsampled copy of The number of iterations indicates the interpolation

the image. The contractions have the information ne&gvel, and therefore the strength of the initial image fea-
essary to increase the resolution. By iterating the affiné!"®S:

mappings we are reconstructing the details from coars _The SIZ€ of the_ranges mfluences th? featgre gran-
information. This process is calledfine fractal interpo- ularity, while the ratio of range/domain sizes gives the
lation. It is illustrated in Figure 7 foil D-images (i.e. a contractivity factor. Here the size of the domains will be

scan-line of an image). twice the size of the ranges.

4.3 Algorithm

The whole process is constituted, essentially, by the fol-
lowing steps:

1. choice of parameters to encode the image;

i 2. image encoding;

. selection of the initial image,;

3
—_ — - 4. choice of parameters to decode the image; and
5

image decoding.

/\/_\ The proper combination of the choices made in 1,

2, and 3 are the key to achieve a desired effect in the
reconstructed image.

Figure 7: 5 Examples

In this section we will illustrate the use of contraction

Note that, the iteration process produces a sequengeappings to create image effects. We will show several
which starts with an arbitrary image and converges texamples generated by applying the method of Section 4
the encoded image. Most importantly, the intermediat® test images. We will also analyze the relationship be-
images in this sequence are interpolations “in a fractalveen the various parameters in the process and its influ-
sense” between the initial and final images. Thereforgnce in the final image.
by selecting one of these iterates we obtain an image that
combines features of both images according to its index{ Tegt Images and Patterns

in the sequence. )
We have selected two test images, Lenna and Island, that

are shown respectively in Figure 8 (a) and (b). Theyare
bit grayscale images with resolution ®f2 x 512 pixels.

The reconstruction method used in the decoding phase Diiese images depict the most common subjects of real
thePIFScodec depends on several parameters. The maiprld applications: a portrait and a natural landscape.
parameters of this process are: The initial image for the fractal interpolation will be
composed by a regular pattern. The geometry and con-
trast of the pattern will greatly influence the effect ob-
tained. We will use, for our examples, the patterns that
appear in Figure 9 (a) and (b). The first is formed by
e The size of the range-domain pairs. squares and the second by stripes. Each type of pattern

4.2 Parameters

e The initial image;

e The number of iterations.
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@) (b)

Figure 8: Images of (a) Lenna and (b) Island.

is defined by its own construction parameters. For the
square pattern, the parameters are the size of squares and
the distance between them. For the stripe pattern, the pa-
rameters are the distance between the stripes and their
slope.

Figure 10: First iteration with square pattern.

NN
RN
(a) (b)

Figure 9: Patterns - (a) Square and (b) Stripe (b)

We will see that the relationship between pattern res-
olution and domain size is very important in the final ef-
fect. Pattern elements in the image are clipped, scaled
and copied to a new location at each iteration. Therefore,

the resolution of the pattern should be roughly the same ] ) ) )
as the domain size. Figure 11: Second iteration with stripe pattern.

5.2 Results

We now present a series of examples demonstrating the
influence of the number of iterations in the final effect.

Figure 10 is the first iteration of the reconstruction
sequence for Lena. The initial image is a pattern formed
by 12 x 12 black squares distancingpixels from each
other. The domain size i x 16 pixels.

Figure 11 is the second iteration of the reconstruc-
tion for the Island. The initial image is4b degree stripe
pattern with width and separation of 10 pixels. The do-
main size isl6 x 16 pixels.

Figure 12 is the third iteration of the reconstruction
sequence for Lena. The initial image is formed by a stripe Figure 12: Third iteration, and detalil
pattern with width and separation of 10 pixels. The do-
main size isl6 x 16 pixels. Note that, although we cannot
see the pattern itself, a subtle texturing effect is obtained@his is more clearly shown in the enlarged fragment of
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the eye.

Figure 13 shows two fragments of the fourth itera-
tion of the reconstruction sequence for the Island image,
using the same parameters of the second example. Here,
the sequence already converged to its fixed point and,
consequently, the final image is almost indistinguishable
from the original. But, as can be seen, different parts have &
better convergence than others. The clouds are perfectly &
reconstructed, while the palm trees exhibit blocky arti-
facts. This is because the uniform image partition scheme
does not adapt to local image characteristics.

@) (b)

Figure 13: Two details of the fourth iteration for the Is-
land

5.3 Analysis

In the following we present some examples that clarify
the relationship between the parameters of the process.
We begin investigating the interdependence of domain- :_-
range sizes, number of iterations and pattern contrast.
Next, we analyze the effects of varying the ratio of pat- (a) (b) (c)

tern and domain sizes. We, then, discuss the influence of

pattern intensity in the rate of convergence. Finally, we Figure 15: Comparison - size of the patterns.
demonstrate the result of domain rotation on patterns that
have directional features.

Figure 14(a) was obtained with the following param- g& =
eters: one iteratior,6 x 16 domainsg8 x 8 ranges, and [
16 x 16 black square patterns distahpixels apart. A
similar result was obtained in Figure 14(b) with param-
eters: two iterations32 x 32 domains,16 x 16 ranges,
and32 x 32 black square patterns distadapart. Ob-  #
serve that both images have the same kind of effect butk
the first image has greater contrast, while the second hafg™,
better intensity balance.

Figure 15 shows the different effects achieved by (@) (b) (©)
varying the pattern size with a fixed domain size of
16 x 16. In Figure 15(a) the pattern is half of the do-  Figure 16: Comparison - initial image intensities.
main, in Figure 15(b) the pattern and domain have the
same size, and in Figure 15(c) the pattern is twice the
domain size. image is123. The images in Figures 16(a), (b) and (c),

Figure 16 illustrates the effect of the pattern meamvere obtained in one iteration, with pattern mean inten-
intensity over the final image. The mean intensity of Lenaity respectively equal t89, 123, and157.
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Figure 17 shows the effect of rotation transformgurrently use. The main advantage of employing this de-
over domains. The image in Figure 17(a) was generatedmposition is that it produces effects adapted to the im-
with two iterations, and6 x 16 ranges. The initial im- age characteristics. Figure 18 shows the result of an early
age was a stripe pattern with width and separation of 32periment with quadtree decomposition.
pixels. The detail in Figure 17(b) is an enlarged piece
of the image that exhibits the diagonal pattern in various
orientations.

@) (b)

Figure 17: Effects of domain rotation.

6 Conclusions

In this paper we have presented a new method to gener-
ate image effects using contractive mappings over image
spaces. This method employs an image encoding / recon- .
struction scheme based on Partitioned Iterated Function Second, we would like to extend our method to color

SystemsRIFS), which represents the image as the fixedA9ES- This i.s a straightforvva_r d extension OT our present
point of a set of contraction transformations. In such glgorlthm, which works only with gray scale images. In

scheme, encoding amounts to analyzing image similafi€rms of image representation, we will have to deal with

ties and reconstruction consists of applying transforma: color space, such as RGB, HSV, or IYQ. In terms of

tions iteratively to an arbitrary image until it converges tg"e effect generation, we will have more parameters to

the encoded image control. In particular, it would be interesting to employ

We have shown that the above reconstruction proc&-0 lor pqtterns _derived fr_om the palett_e ofimage colors.
dure can be seen as an affine fractal interpolation between Third, we mtend' to '.mp'.emem th|_s method as a Pho-
the initial and final images. Our method is based on th’igShOp plug-in, mgklng' it widely avalla.ble as a produc-
observation that by selecting an appropriate initial imag'é-On tool for g'ra'tphlc artlsts.. Importgnt ISSues In 'that re-
and controlling the interpolation process, it is possible tSPECt are: efficient processing and interface design.
create powerful image effects. Moreover, we have illus-
trated, through several examples, that a wide variety df References
visual features can be obtained with our method, rangf1] M. F. Barnsley. Fractals Everywhere. Second Edi-
ing from rich graphic patterns to very subtle textures. We  tion. Academic Press Professional.
also have discussed how to control the right combination

of parameters in order to generate a desired image effed¢] M- F. Barnsley and L. P. Hurd. Fractal Image Com-
pression. AK Peters, Ltd., Wellesley, Ma., Decem-

ber 1992.

Figure 18: Adaptive image partition

6.1 Current Work

Current work is going into several directions, both to en-[3] M. F. Barnsley and A. Jacquin. Applications of

hance the method, as well as, to turn itinto a professional ~Recurrent lterated Function to Images. SPIE Vis.
image processing tool. Comm. Image Proc., 1001:112-131, 1988.

First, we intend to adopt a quadtree-based images) v. Fisher. Fractal Image Compression. Springer-
partition scheme. This is a more general decomposition, - \grlag, 1995.

which has as a special case the uniform partition that we
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