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Abstract. In this paper we exploit the power of contractive mappings to create special image effects. Un-
der this framework, images are represented as the attractor of an Iterated Function System (IFS) and can be
reconstructed using Fractal Interpolation. By controlling parameters of the process, we obtain a wide range
of image effects.
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1 Introduction

Special effects with images are very important in differ-
ent fields. In particular we could mention the film and
video industry and the digital publishing market. There is
a great number of commercial software that can be used
to obtain different image effects such as Adobe Photo-
shop, Fractal Paint, Corel Paint, Kaos Power Tools, etc.

Also, there is a vast literature covering the subject
of special effects with images. These techniques range
from the use of linear filters to non-linear ones, such as
warping filters.

In this paper we introduce a new technique for ob-
taining special effects using an image codec based on
contraction mappings of the plane. The image is encoded,
and its reconstruction is parameterized in such a way that,
by changing conveniently the parameters, we obtain dif-
ferent effects on the reconstructed image. This process
allows us to produce visual results that are hard to achieve
by other means. Moreover, it is a general method for cre-
ating image effects based on patterns and textures.

1.1 Related Work

Contraction mappings of the plane have been used for
quite a while to obtain image compression. In this con-
text the technique is calledfractal image compression.
The results are described in Barnsley and Hurd [2] and
Barnsley and Jacquin [3]. A very good explanation of the
techniques can be found in Fisher [4], where you can find
details of the main existing algorithms.

This is the first work to use the powerful technique
of contraction mapping encoding to obtain special effects
with images.

1.2 Overview

The paper is organized as follows: Section 2 studies con-
traction mappings, introduces the concept of partitioned
iterated function systems(PIFS) and presents thecon-
traction mapping theoremwhich is the basis for the en-
coding theory using contractive mappings. Section 3 in-
troduces a technique to encode and decode grayscale im-
ages using contraction mappings. Section 4 shows how to
apply the codec introduced in Section 3 to obtain special
effects with images. Section 5 gives several examples,
and Section 6 comments on future work.

2 Contractive Mappings

A contractionis an application that decreases distances.
More precisely, a mappingF : A �! B is a contraction
whend(F (x); F (y)) � sd(x; y) , with 0 � s < 1. The
numbers is called acontractivity factorfor F .

We will illustrate the definition above with one ex-
ample. LetF be defined on the unit square and given by
F (x; y) = (x

2
+ 1

4
; y
2
+ 1

4
) = 1

2
I +( 1

4
; 1
4
), whereI is the

identity map of the plane. ThenF is a contraction with
contractivity factors = 1=2, where distance on the plane
is measured in the usual way (euclidean distance). Fig-
ure 1 shows the unit square transformed by the function
F .

A very important property of a contractionF :A !
A from a setA to itself is the existence of a unique point
that remains fixed. That is, there exists a unique point
p 2 A such thatF (p) = p. The pointp is called the
fixed pointof F . In the above examplep = (1=2; 1=2).
The existence of a fixed point is a classical result stated
precisely in the theorem below:
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Figure 1:

Theorem 1 (Contraction Mapping Theorem) Let F :

A ! A be a contraction on a complete metric space.
Then F has a unique fixed point p. Furthermore, for any
x 2 A, the sequence(x; F (x); F 2(x); F 3(x); : : :) of iter-
ates of x by F, converges to p.

Notice that the theorem guarantees the existence,
and also gives a method to compute the fixed point. For
an arbitrary pointx 2 A the sequence of iterates ofx
by F , (x; F (x); F 2(x); F 3(x); : : :), is called theorbit of
x by F . The contraction mapping theorem says that the
orbit of any point converges to the fixed pointp.

2.1 Iterated Function Systems

In this section, we will introduce a distance on a collec-
tion of plane sets and show how to apply the contraction
mapping theorem to encode any element from this collec-
tion. We will consider only bounded and closed subsets
of the plane.

LetB be the collection of plane sets, we want to de-
fine a metric onB with perceptual characteristics, that is
two sets are close to each other, whenever they are, per-
ceptually, almost indistinguishable. This is illustrated in
figure 2 for two sets of distance". The precise definition
is given below.

ε

Figure 2:

LetA andB be sets inB , the distance between them
is defined by

d(A;B) = max
�
[A;B]; [B;A]

	
;

where

[A;B] = maxfd(x;B) ; x 2 Ag; and

[B;A] = maxfd(x;A) ; x 2 Bg:

This distance turns the collection of plane sets into a
complete metric space.

Suppose we haven mapsF1; : : : ; Fn on the plane.
We can define a mapF : B �! B by

F (A) = F1(A) [ � � � [ Fn(A); A 2 B:

It is possible to prove, see [4], that if each mapFi is a con-
traction, the mapF is also a contraction onB. Moreover
if the contraction factor of eachFi is si, the contraction
of F is given by the maximum value among thesi’s. It
follows from the contraction mapping theorem, that there
exists a unique setK 2 B such thatF (K) = K. The
mapF :B ! B is called anIterated Function System
(IFS). The fixed point ofF in B is called theattractor for
theIFS.

As an example, consider three contractions

F1(x; y) = (
x

2
;
y

2
) =

1

2
I ;

F2(x; y) = (
x
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2
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; 0);

F3(x; y) = (
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4
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);

and letA be the unit squareA = f(x; y) ; 0 � jxj �
1 and 0 � jyj � 1g. Figure 3 shows the action ofF
on theA.

2

3F (A)

F (A)F (A) 1

F

0 1

11

0 1

Figure 3:

Figure 4 shows some iterates of the sequence
Fn(A). This sequence converges to the set known as the
Sierpinski Triangle. From the contraction mapping theo-
rem, we obtain the Sierpinsky triangle independent of the
starting setA.

In resume, the Sierpinsky triangle is reconstructed
from the IFSF = fF1; F2; F3g using an arbitrary set as
the starting point to iterate. This means that we can use
the IFS as an encoding of the Sierpinsky triangle. A very
interesting question can be posed now:is it possible to
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Figure 4:

use IFS’s to obtain a similar encoding for an arbitrary
set of the plane?

To state a solution to this problem, we introduce an
affine IFS. That is, an IFSF =

S
i Fi such that each con-

tractionFi is defined by an affine mapping of the plane:

Fi

�
x

y

�
=

�
ai bi
ci di

��
x

y

�
+

�
ei
fi

�

The action of an affine mapping consists of rotation,
reflection, translation, shearing and scaling. Therefore
the fixed point of an affine IFS has a distinguished fea-
ture: it is composed of scaled version of itself, possibly
modified by some of the warpings defined by some plane
affine mapping. That is, it has a fractal affine self-similar
structure. Of course, not every plane set has such a ge-
ometric fractal structure, but it is intuitively convincing
that by subdividing an arbitrary set of the plane, we find
many pieces that are approximately equal, up to an affine
plane transformation. This is illustrated for the boundary
of the set shown in Figure 5.

Figure 5:

Therefore, it is reasonable to expect that by conve-
niently subdividing a plane set, we are able to describe it
as the fixed point of some affine IFS. This result is known
as thecollage theorem. A precise statement of it, and a
proof, can be found in [1].

3 Images and Contractive Mappings

In this section we will show how to apply the encoding
method described in Section 2 to obtain a representation
for grayscale images.

3.1 Image Space

A grayscale image is defined by functionf : U �! R

whereU is a subset of the plane, called the support of
the image. The valuef(x; y) represents the grey level at
the point(x; y) 2 U . In most cases the setU will be a
rectangle.

A binary image is one where the image functionf
assumes only values0 or 1. In this case,f defines a sub-
set of the plane, characterized by the points of the plane
wheref assumes value0 (black points). This remark al-
lows us to deal with binary images as plane sets. In par-
ticular, the encoding technique for plane sets described in
the previous section can be used to encode binary images.

Non-binary images are not perceptually identified
with plane sets, and we must find a different way to mea-
sure the distance between two images, in order to encode
them using contractions. This is done by identifying the
imagef with its graph

G(f) = f(x; y; f(x; y)) ; (x; y) 2 Ug:

We must find a distance between two image graphs with
perceptual characteristics: close images should look sim-
ilar. Since the eye perceives intensity levels by an aver-
aging process, a reasonable choice is to use the average
metric

d(f; g) =

�Z
U

jf(x; y)� g(x; y)j2dxdy

�
1=2

:

With this metric the Contraction Mapping Theorem ap-
plies to the space of grayscale images.

3.2 Representation by Contractive Maps

As in the previous section we will look for a sufficiently
great number of attractors pertaining to the grayscale im-
age set, in such a way we can replace an original image
by one of these attractors, with a minimal perceptual lost.
By identifying a grayscale imagef :U � R2 ! R with
its graph, we define affine maps on the “graph space”, by

Wi

0
@ x

y

z

1
A =

0
@ ai bi 0

ci di 0

0 0 si

1
A
0
@ x

y

z

1
A+

0
@ ei

fi
oi

1
A

The familyWi of affine mappings is comprised by
two families of affine maps. A familyFi of plane affine
mappings

Fi

�
x

y

�
=

�
ai bi
ci di

��
x

y

�
+

�
ei
fi

�

and a one-dimensional family of affine mappings

z 7! siz + oi; z 2 R:

Anais do IX SIBGRAPI, outubro de 1996



316 GOMES, MOTA, DA SILVA , VELHO

The family Fi acts on the image domain, and the1D-
family acts on the gray levels of the images.si scales the
image gray levels, and it is calledcontrast. The parameter
oi adds a constant amount of gray to the image values,
and it is calledbrightnessparameter.

Let f be a image overU andR1; � � � ; Rn a partition
of U such that there are subsetsD1; � � � ; Dn in U satisfy-
ingFi(Di) = Ri for eachi ( see figure 6). Define

W (f) := W1(f jD1) [ � � � [Wn(f jDn);

where

Wi(f jDi) = fWi(x; y; f(x; y)); (x; y) 2 Dig:

Fi

Di

Ri

Figure 6:

W defines a mapping from the space of images onto
itself. If we choose theFi to be contractions and the
si � 1, then we can prove thatW is also a contraction.
Therefore, it has a fixed pointfW .

The contraction mappingsWi between pieces ofU
with the above properties constitutes what is called aPar-
titioned Iterated Function System (PIFS). The setsDi are
calleddomainsand the setsRi are calledranges.

Now, again, we want to solve the inverse problem,
that is, given an imagef overU we hope to find aPIFS
that hasf as its fixed point. In practice, we look forPIFS
with a fixed pointfW close tof . So we can encode an
imagef by storing the contractionW =

S
iWi, the do-

mainsDi and the associated rangesRi. For decoding,
one starts with an arbitrary initial imageg and applyW
repeatedly tog until we get a sufficiently good approxi-
mation offW .

In resume, the problem is to find the setsRi, the
corresponding setsDi and the transformationsWi. In the
next section we will present a method to accomplish this.

3.3 Computing the Representation

Suppose we have a256 � 256 grayscale imagef . Con-
sider a regular grid of8�8 non-overlappingsquares. This
grid creates a partitionR1; R2; : : : ; R1024 of the image
domainU . LetD be the collection of all16 � 16 sub-
squaresDj of the image domain (see figure 6). In order
to find aPIFSto encodef , it is necessary to find, for each
Ri, a setDi inD such thatf jDi is similar tof jRi by an
affine transformWi.

Given a setDi intD there are eight ways to map it
overRi. Moreover the domainDi is four times the size
of any range setRi. Therefore, we must subsamplef jDi.
In conclusion, we have to make464648 comparisons in
order to choose theDi inD that minimizes the distance

d
�
Wo(f jD); f jRi

�
where Wo is an affine domain transformation which
leaves the gray values unaltered. That is, a transforma-
tion of the type

Wo

0
@ x

y

z

1
A =

0
@ ai bi 0

ci di 0

0 0 1

1
A
0
@ x

y

z

1
A+

0
@ ei

fi
0

1
A :

This enables us to choose the coef-
ficientsai; bi; ci; di; ei andfi corresponding to the best
domain transformWi. After we do this for each range
Ri we need to find optimal values for the contrastsi and
the brightnessoi to obtain the best transformWi. It is a
easy task if we are using the RMS metric. Suppose we
have the setsDi andRi with respective pixel intensities
given byd1; � � � ; d64 (after subsampling) andr1; � � � ; r64.
In order to obtain the bestsi andoi for Wi we have to
minimize the error

E(o; s) =

64X
i=1

(s � di + o� ri)
2:

We reach the minimum ofE when its partial derivatives
are zero and it happens when

s =

h
64 �

P
64

i=1 diri �
P

64

i=1 di
P

64

i=1 ri

i
�
64 �

P
64

i=1 d
2

i �
�P

64

i=1 di

�
2

�

and

o =
1

64

"
64X
i=1

ri � s �

64X
i=1

di

#

4 Image Reconstruction and Special Effects

The PIFS representation is commonly used for image
compression. In such an application, the original image
is reconstructed from a compact description with minimal
distortion.

However, this representation could also be used for
creating special effects. If the parameters of the process
are carefully manipulated, we may alter the reconstructed
image, introducing desired visual features into it. Note
that, in this case, the reconstructed image will be different
from the original encoded image.

In the rest of this section, we describe how the
computational machinery of contractive mappings can be
controlled to produce these special effects.
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4.1 Fractal Interpolation

The scheme for encoding and decoding an image using
PIFSis essentially a process of sampling and reconstruc-
tion (interpolation). The sampling process is based on the
principle that if a region of the image is sufficiently small
then it is a scaled copy of itself up to an affine transfor-
mation. We subdivide the image in regions and associate
to each region an affine contractionWi. The valueoi is
greatly influenced by the mean intensity of the rangeRi,
so the setfo1; : : : ; ong is roughly a subsampled copy of
the image. The contractions have the information nec-
essary to increase the resolution. By iterating the affine
mappings we are reconstructing the details from coarse
information. This process is calledaffine fractal interpo-
lation. It is illustrated in Figure 7 for1D-images (i.e. a
scan-line of an image).

Figure 7:

Note that, the iteration process produces a sequence
which starts with an arbitrary image and converges to
the encoded image. Most importantly, the intermediate
images in this sequence are interpolations “in a fractal
sense” between the initial and final images. Therefore,
by selecting one of these iterates we obtain an image that
combines features of both images according to its index
in the sequence.

4.2 Parameters

The reconstruction method used in the decoding phase of
thePIFScodec depends on several parameters. The main
parameters of this process are:

� The initial image;

� The number of iterations.

� The size of the range-domain pairs.

As we have seen in the previous subsection, if the
iteration process is carried out just a few times, we ob-
tain an image that resembles the encoded image but also
incorporates features of the initial image.

The above parameters control the visual effects. The
choice of initial image is perhaps the most important pa-
rameter, since it defines the kind of features that will be
incorporated into the image. Here we will use regular
patterns and textures.

The number of iterations indicates the interpolation
level, and therefore the strength of the initial image fea-
tures.

The size of the ranges influences the feature gran-
ularity, while the ratio of range/domain sizes gives the
contractivity factor. Here the size of the domains will be
twice the size of the ranges.

4.3 Algorithm

The whole process is constituted, essentially, by the fol-
lowing steps:

1. choice of parameters to encode the image;

2. image encoding;

3. selection of the initial image;

4. choice of parameters to decode the image; and

5. image decoding.

The proper combination of the choices made in 1,
2, and 3 are the key to achieve a desired effect in the
reconstructed image.

5 Examples

In this section we will illustrate the use of contraction
mappings to create image effects. We will show several
examples generated by applying the method of Section 4
to test images. We will also analyze the relationship be-
tween the various parameters in the process and its influ-
ence in the final image.

5.1 Test Images and Patterns

We have selected two test images, Lenna and Island, that
are shown respectively in Figure 8 (a) and (b). They are8

bit grayscale images with resolution of512� 512 pixels.
These images depict the most common subjects of real
world applications: a portrait and a natural landscape.

The initial image for the fractal interpolation will be
composed by a regular pattern. The geometry and con-
trast of the pattern will greatly influence the effect ob-
tained. We will use, for our examples, the patterns that
appear in Figure 9 (a) and (b). The first is formed by
squares and the second by stripes. Each type of pattern
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(a) (b)

Figure 8: Images of (a) Lenna and (b) Island.

is defined by its own construction parameters. For the
square pattern, the parameters are the size of squares and
the distance between them. For the stripe pattern, the pa-
rameters are the distance between the stripes and their
slope.

(a) (b)

Figure 9: Patterns - (a) Square and (b) Stripe (b)

We will see that the relationship between pattern res-
olution and domain size is very important in the final ef-
fect. Pattern elements in the image are clipped, scaled
and copied to a new location at each iteration. Therefore,
the resolution of the pattern should be roughly the same
as the domain size.

5.2 Results

We now present a series of examples demonstrating the
influence of the number of iterations in the final effect.

Figure 10 is the first iteration of the reconstruction
sequence for Lena. The initial image is a pattern formed
by 12 � 12 black squares distancing4 pixels from each
other. The domain size is16� 16 pixels.

Figure 11 is the second iteration of the reconstruc-
tion for the Island. The initial image is a45 degree stripe
pattern with width and separation of 10 pixels. The do-
main size is16� 16 pixels.

Figure 12 is the third iteration of the reconstruction
sequence for Lena. The initial image is formed by a stripe
pattern with width and separation of 10 pixels. The do-
main size is16�16 pixels. Note that, although we cannot
see the pattern itself, a subtle texturing effect is obtained.

Figure 10: First iteration with square pattern.

Figure 11: Second iteration with stripe pattern.

Figure 12: Third iteration, and detail

This is more clearly shown in the enlarged fragment of
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the eye.
Figure 13 shows two fragments of the fourth itera-

tion of the reconstruction sequence for the Island image,
using the same parameters of the second example. Here,
the sequence already converged to its fixed point and,
consequently, the final image is almost indistinguishable
from the original. But, as can be seen, different parts have
better convergence than others. The clouds are perfectly
reconstructed, while the palm trees exhibit blocky arti-
facts. This is because the uniform image partition scheme
does not adapt to local image characteristics.

Figure 13: Two details of the fourth iteration for the Is-
land

5.3 Analysis

In the following we present some examples that clarify
the relationship between the parameters of the process.
We begin investigating the interdependence of domain-
range sizes, number of iterations and pattern contrast.
Next, we analyze the effects of varying the ratio of pat-
tern and domain sizes. We, then, discuss the influence of
pattern intensity in the rate of convergence. Finally, we
demonstrate the result of domain rotation on patterns that
have directional features.

Figure 14(a) was obtained with the following param-
eters: one iteration,16� 16 domains,8� 8 ranges, and
16 � 16 black square patterns distant4 pixels apart. A
similar result was obtained in Figure 14(b) with param-
eters: two iterations,32 � 32 domains,16 � 16 ranges,
and32 � 32 black square patterns distant8 apart. Ob-
serve that both images have the same kind of effect but,
the first image has greater contrast, while the second has
better intensity balance.

Figure 15 shows the different effects achieved by
varying the pattern size with a fixed domain size of
16 � 16. In Figure 15(a) the pattern is half of the do-
main, in Figure 15(b) the pattern and domain have the
same size, and in Figure 15(c) the pattern is twice the
domain size.

Figure 16 illustrates the effect of the pattern mean
intensity over the final image. The mean intensity of Lena

(a) (b)

Figure 14: Comparison - number of iterations.

(a) (b) (c)

Figure 15: Comparison - size of the patterns.

(a) (b) (c)

Figure 16: Comparison - initial image intensities.

image is123. The images in Figures 16(a), (b) and (c),
were obtained in one iteration, with pattern mean inten-
sity respectively equal to59, 123, and157.
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Figure 17 shows the effect of rotation transforms
over domains. The image in Figure 17(a) was generated
with two iterations, and16 � 16 ranges. The initial im-
age was a stripe pattern with width and separation of 32
pixels. The detail in Figure 17(b) is an enlarged piece
of the image that exhibits the diagonal pattern in various
orientations.

(a) (b)

Figure 17: Effects of domain rotation.

6 Conclusions

In this paper we have presented a new method to gener-
ate image effects using contractive mappings over image
spaces. This method employs an image encoding / recon-
struction scheme based on Partitioned Iterated Function
Systems (PIFS), which represents the image as the fixed
point of a set of contraction transformations. In such a
scheme, encoding amounts to analyzing image similari-
ties and reconstruction consists of applying transforma-
tions iteratively to an arbitrary image until it converges to
the encoded image.

We have shown that the above reconstruction proce-
dure can be seen as an affine fractal interpolation between
the initial and final images. Our method is based on the
observation that by selecting an appropriate initial image
and controlling the interpolation process, it is possible to
create powerful image effects. Moreover, we have illus-
trated, through several examples, that a wide variety of
visual features can be obtained with our method, rang-
ing from rich graphic patterns to very subtle textures. We
also have discussed how to control the right combination
of parameters in order to generate a desired image effect.

6.1 Current Work

Current work is going into several directions, both to en-
hance the method, as well as, to turn it into a professional
image processing tool.

First, we intend to adopt a quadtree-based image
partition scheme. This is a more general decomposition,
which has as a special case the uniform partition that we

currently use. The main advantage of employing this de-
composition is that it produces effects adapted to the im-
age characteristics. Figure 18 shows the result of an early
experiment with quadtree decomposition.

Figure 18: Adaptive image partition

Second, we would like to extend our method to color
images. This is a straightforward extension of our present
algorithm, which works only with gray scale images. In
terms of image representation, we will have to deal with
a color space, such as RGB, HSV, or IYQ. In terms of
the effect generation, we will have more parameters to
control. In particular, it would be interesting to employ
color patterns derived from the palette of image colors.

Third, we intend to implement this method as a Pho-
toshop plug-in, making it widely available as a produc-
tion tool for graphic artists. Important issues in that re-
spect are: efficient processing and interface design.
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