Act: an easy-to-use and dynamically extensible 3D graphics library

WALDEMAR CELES JONATHAN CORSON-RIKERT

Program of Computer Graphics, Cornell Universtity
{ celes,jcr} @graphics.cornell.edu

Abstract. This paper presents Act, an object-oriented library for projects from specialized 3D
graphics applications to simple interactive educational programs. Act meets the needs of both occasional
and expert graphics programmers, offering a high-level access to the OpenGL library and additional
features including object creation, manipulation, and interaction. An interpreted language allows the Act
library to be extended easily and dynamically.

Keywords. 3D graphics library, object-oriented interactivity, educational programming, dynamic software extendibility

I ntroduction One is the Open Inventor toolkit [Wernecke, 1994a],
developed originally at Silicon Graphics, Inc. but now
available also on other platforms through other vendors.
The second is the ALICE application environment for
programming simulations in virtual worlds, developed
by the University of Virginia’s User Interface Group
[Pausch et al., 1995].
The developers of the Inventor graphics toolkit
while also providing the flexibility and extensibility ~SCudht to extend the power of earlier immediate-mode
and display-list graphics libraries by incorporating

needegszneéplﬁr“}s has emerged as a leading Crosgypport for direct interaction with objects in 3D [Strauss
platform graphics library [Thompson, 1996]. OpenG and Carey, 19?1_2]..The tOOIIII('t r_\as r?atured_mto Open
provides many specialized resources for 3D renderinnvemor’ a sophisticated collection of 3D objects using

4 : hierarchical scene graph structure. Object types

and can be implemented in hardware to accelerate : ;
') Include geometry, attributes, transforms, and groups, in
performance [Neider et al., 1993]. However, learning tQ - : . : ?
: o . addition to behaviors. Subportions or the entire graph
write applications that use the OpenGL library

. . o - . i isk. ++
effectively is not a trivial task. Working at a hlgherCan be written to or read from disk. Normal C

abstraction level is desirable, even for programmers wi{ﬁcmt'es for extension through object inheritance are
: . X supported [Wernecke, 1994b], and advanced
well-developed graphics programming skills.

This paper presents Act, a simple and small "bra%rogrammers can extend the scene graph concept by

The ability to create and manipulate 3D graphic objects
has become a highly desirable feature for computer
applications, from specialized 3D solid modelers and
animation systems to simple educational programs. The
very diverse domain of these applications creates the
need for a graphics library that can be learned and
productively used by occasional graphics programmers,

providing versatile tools to create and manage 3 dapting templates called node kits. The Inventor file

L . ormat serves with minor changes as the default file
applications. Act serves as a layer of abstraction abo¥c§mat for VRML [VRML 2.0, 1996]

OpenGL, managing all graphics rendering while Inventor comes with a viewer offering a high level

providing many additional features such as ObJe%;f initial functionality, but integration into a full GUI

creation and interaction. The library is independent ?lbrary for custom applications remains problematic

any GUI (Graph!cal User Intferface) library. Act is aISOacross platforms. Users who only wish to build a 3D
fully and dynamically extensible through the use of an

interpreted language. Our goal has been to provide b Irt‘ﬁerface for a dor_naln-specmc application are likely to
: %md Inventor relatively complex. The extensions to the
expert and new programmers high-level access 10

OpenGL functionality and speed in an environmericene graph structure offer powerful tools, but the scene
conducive to rapid prototyping graph traversal mechanism can be confusing and

sometimes restrictive. For example, Inventor event
handlers must be integrated into the scene graph
Related work structure itself, and functionality depends on correct
The need for a high level 3D graphics APl has begslacement.
evident for many years, and a number of commercial ALICE decouples simulation from rendering and
toolkits already offer solutions for the professionaimplements a more flexible scene graph structure to
graphics programmer. We will discuss our owravoid pitfalls that programmers experience with strictly
approach in the context of two other toolkits whicthierarchical scene traversal. ALICE makes use of an
seem to have been designed with similar goals to ouisterpreted language (Python) and offers a number of

features also targeted at new programmers, but appears The following sections describe the library’s

intended as an application framework for virtual reality features in greater detail and illustrate through examples

simulations rather than a more general 3D graphicsAPI. how Act may be used by both expert and occasional
The Act library offers asimple but versatile toolkit — graphics programmers.

to create and manage 3D objects, using OpenGL.

Objects are active, in the sense that their behaviors can Scene graph

be defined, and interactive, in the sense that their .
: . , Graphics scenes are naturally composed of sets of
behaviors can depend on other objects or on user

actions. The library is also GUI independent, aIIowin@eJeeCrt]Zeniri;znggg V\I/glo a: e?}'ﬁ;?]rg:y tch organlzeb
easy integration with the programmer’s GUI of choice. P! S periormance by
seeking to minimize the amount of data passed between
CPU and frame buffer. These models can be traced at
Features least back to PHIGS [Foley et al., 1996], and Inventor,
Act is an object-oriented library implemented in C++ALICE, and the VRML Spec structure their scenes
that offers a high level access to the OpenGL graphibgerarchically. Our Act library works in a similar way,
library. Using Act, a client application createsoffering the programmer different objects which may be
manipulates, and renders structured graphics scenes. gambined to compose a hierarchical model of the scene.
independent GUI system (or simply a window systenfjigure 2 illustrates the main branches of the C++ class
must provide a drawable area where OpenGL rendd#grarchy used to implement the library.
the images. For interaction, the GUI system sends Act
2D (raster precision) events, which Act converts into 3D
events. The client application in turn binds these 3D
events to object behaviors. Figure 1 illustrates the
structure of a typical Act application.

“““ ™ | C++client

ActLua AP)l Tan event Al:rAPll Tso event Material

2D t
Actlua | =—= Act X ul
\.

>

Figure 2: Main branches of class hierachy.

’ Lua client

OpenGL | — Screen

-
—_—

Figure 1. Typical Act application. At the topmost level, thiem represents the base

Act implements several notable features fof!2SS Of any other graphic object, representing anything
graphics scene structure and interaction. Taken togeth&2t can logically be part of a graphic scesetting,
these features allow any programmer to easily arfgRnsformation, object, attribute, and callback derive
quickly create sophisticated 3D applications. directly from item. The setting class represents global

. Objects carry their own coordinate Systems:;cene rendering ;ettlngs, such as whether to mcIud'e fog.
which can be directly manipulated: The transfprnntlon c!as_s represents geqmetrlcal

- The client application can grab events in aﬁransformatlon.s es’Fabllshlng the initial poslltlonslof
extensible way, powerful enough to handle anrenderable o.bjects in the scene. Transformation pbjects
interaction and program any dependency among objec (€ pu_mulatlve and gdopt the same f:onventhn of

. The library automatically manages and makesépemfymg transformations to an object's coordinate

. . System as OpenGL.
available undo and redo resources; he object class represents objects having physical
» Through creating 3D logical canvases an Theobjec P J g pny

o 4 ; i eaning or serving as a container for other objects.
constraining the cursor, programming 3D interaction h%ach object has implicitly defined a local coordinate
been simplified without being GUI-dependent;

system and therefore can be freely transformed without
» The library is accessible and fully extensibl y y

:) eaf‘fecting others. When specifying an object
through the interpreted language Lua [lerusalimschy ﬁtansformation, the programmer may choose the most

al., 199_6], aIonving a very high level of abstraction a”%ppropriate system to specify the parameters. For
supporting rapid programming. example, defining the movement of the hands of a watch

on the wrist of a moving robot may be easier if we
choose the watch (not the robot or the hands themselves)
as the reference system for our transformation
parameters.

The light and primitive classes have their natura
meanings and have their usual derived classes.

The scene class represents a container for other
items. It can also contain other scenes, which allows the
creation of hierarchical models. Except settings and
lights, which have global effect, no item in a scene
affects objects outside of that scene, and the previous
rendering state is restored after rendering a scene.

Instead of directly creating multiple instances of a
single object, the programmer uses the link class.
Defining a link creates a reference to the linked object,
but the link has its own coordinate system. Both the
original object and the link object can thereafter be
manipulated independently. The use of links (in the
place of direct multiple instances) simplifies both the
implementation and use of the library.

With links, the data structure needed to implement
the scene structure is therefore a conventional tree,
allowing backward traversal to obtain a specific

in the objects themselves. For instance, setting an object
field (e.g., the radius of a sphere), applying a
transformation to an object, and inserting an item in or
removing an item from a scene will each generate a
corresponding editing event. Any application built on
top of the Act library (a client) can then grab these
events to create and update dependencies among
objects. As an example, animating the movement of a
train may be achieved by initially programming each car
to follow its leader, and then animating only the lead
car.

Each editing event will also generate an entry into
the undo buffer, which is automatically managed by the
library and made available to client applications. To
extend the library, clients can also register additional
editing and interaction events and notify Act of their
occurrence. These events are then handled by Act's
internal event dispatching mechanism. Clients may also
post events to the undo buffer if appropriate.

The ability to register new events not only allows
for extensibility but also helps to guarantee portability
across platforms. For example, the library itself does not
know about external interaction events (such as mouse

rendering state and minimizing the need for using paths or keyboard events); it is the binding GUI's
to identify an item in the scene. From the programmer’s responsibility to register and notify such events. Once
point of view, however, the scene is represented byhéndings are established for a GUI library, the binding
graph since links allow multiple instances of itemsbecomes a reusable extension of that library. If the client
Following Inventor, we generally call the scene structurehooses the external events’ bindings with care, one can
a scene graph. easily interchange one GUI library with another one, as
The display list class allows the user to gainlong as the new GUI library is capable of generating the
performance by combining non-volatile objects into @ame sort of events.
display list (a concept implemented in OpenGL) as a The client binds an event to a resulting action by
single unit. registering a callback function to be called whenever the
The attribute class represents rendering attributesvent occurs on an object. For editing events, this
assigned to the renderable objects in the scerwllback has two purposes: validating the action and
Currently, it may be a simpleolor, a material, or a creating dependency among objects. The library itself
texture. An attribute sets the current state value; thus,does not have knowledge about the semantic meanings
new attribute replaces the previous one within any scemested in objects by the client; turning event validation
in the hierarchical scene graph. over to the client allows greater control and flexibility
Finally, the callback class allows a program to for applications [Celes, 1995]. For instance, applying a
attach a function at an appropriate point to the scetmansformation to an object may be prohibited if the
graph to be invoked whenever the scene graph déient does not allow objects to interpenetrate.
traversed. Therefore, callbacks introduce procedural The way the client creates an event binding
mechanisms to change the description of the scene. between an object and a resulting action adapts the Tk
approach [Ousterhout, 1994]. The object to which the
binding applies can be a single instance or a class name

Event handling ow a st ; >
Act uses an event-driven approach to define objegPCh assphere or primitive, in which case the binding

behaviors. There are two kinds of evemtditing events appl!es Fo all mstancgs of that class. An |nst:_:1nqe—based
: : . binding is more specific than a class-based binding, and
and interaction events. As would be expected, editing

vent ; nerated b ditin cation whi%derived class binding is more specific then a base class
cvents are generate y € 9 operations, nding. Whenever an event occurs, the most

: %tpecifically matched binding is triggered first. Then,
directly change the state of the scene graph. depending on the callback return value, the same event

The d[lbrary hltself genherates edltlng evEntqs sent up the affected object's class hierarchy to the
corresponding to changes In the scene graph or changgse ¢jaqs bindings. The client can choose whether all

matched bindings should be triggered. As recognized by
Tk developers, sending the same event upward may be
important for allowing clients to create instance-specific
behavior without interfering with general class behavior.

We also extend this concept of binding to deal with
our hierarchical model. If an object has no binding for
an interaction event, that event is transferred to its
parent object in the scene graph. A client program can
therefore manipulate complex objects by creating
bindings to their root scenes, instead of creating
bindings for that event on each of the different objects
that compose the scene.

Event bindings and undoable actions are stored in
buffers selectable by the client. The client application
can create separate event buffers for each of severa
interactive modes. Each application mode defines the
event bindings it needs, and event bindings applicable to
other modes do not interfere when that mode is active.
While in a walkthrough mode, for example, there is no
need to know which events are bound by other modes.
Hence, interactive modes can be reused across
applications.

Being able to create multiple undo buffers also
allows the client to edit different scenes independently,
or to use the undo/redo resources to handle temporary
actions (such as interactive tasks) without interfering
with the main undo/redo resources. For example, to
provide feedback while moving or rotating an object
interactively, it may be useful to activate a temporary
undo buffer to transform the object, display it, and then
undo the transformation each time feedback is
requested.

Three-dimensional canvas

To be able to interact with the objects in the scene, the
Act library provides three-dimensional canvases, which
the client program binds to underlying two-dimensional
windows that support OpenGL. The Act three-
dimensional canvas transforms mouse positions from the
GUI into athree-dimensional cursor.

The three-dimensional cursor is defined by its 3D
position and orientation. When unconstrained, the 3D

The 3D cursor may also be constrained, which
greatly facilitates programming interactive tasks. Using
the library core classes, the cursor can be constrained to
move on a virtual plane, in a virtual line, on a virtual
sphere, or along a virtual circumference. Constraints
may be created to apply to individual objects, and when
activated restrict cursor motion according to the
geometry defined with the constraint. For example, a
client may use constraints to restrict moving an object
on a plane, rotate it about a center point, or to create
specialized manipulators.

When the client specifies a 3D canvas, it must also
create ecamera to view the scene. Each 3D canvas can
have only one camera attached, but a scene may be
displayed simultaneously in several canvases.

Interpreted language binding

The Act graphics library is a C++ library and any C++
application can access the library features described
above. For programmers comfortable in C++, any
extension can be implemented by creating new derived
classes conventionally. Direct calls to OpenGL functions
may also be integrated if necessary.

However, occasional graphics programmers need
easy access to (sometimes sophisticated) graphics
features to create front-end interfaces for their domain-
specific applications, or to illustrate concepts by
graphically simulating simple models (e.g., for
educational purposes). The vast range of applications
that such a library could benefit highlights the biggest
challenge of its design: how do we create a graphics
library that at the same time meets the needs of both
expert and occasional graphics programmers?

The Act library meets this challenge through the
use of Lua, an interpreted language that combines data
description facilities and conventional procedural
features, using a clear and simple syntax. Lua also
provides mechanisms to support object oriented
programming and to extend its own semantics, being
smoothly integrated with C++. As an example, the code
below represents a valid Lua construction that, with the
appropriate binding to the graphics library, creates a

cursor position “maps” to a point on the surface of thecene and stores it in the variabd¢Scene. Then, any
closest object in the scene, with its orientatioscene method may be called througliScene.

corresponding to that surface normal. To automatically
find this point on an object surface, the library traces a
ray from the raster cursor position through the scene.
The tracing operation considers only objects in the scene
that can respond to the event being dispatched. For
instance, while moving the mouse, only objects bound to
the "moving mouse” event will be considered. This is nyscene: realize()
done automatically so that the client does not need to

enable/disable objects to gain efficiency in tracing rays tlnl adtdmotn, Lua _sulpgprts allthe _convent||onal
through the scene. control structures, including expressions, loops,

nyScene = Scene {
Posi tional Li ght {position={0, 10, 0}},
Material {anmbient={1,1, 1},
di f fuse={1, 0, 0}

Sbhere {radi us=2. 5}

conditional statements, and function calls, and al of
them can be combined in defining the scene graph.

Even more important is the ability to easily create
auxiliary data structures, besides the scene graph itself.
The scene graph with its hierarchical structure is
adeguate to describe the scene and support rendering.
There may be clearer and more efficient ways to traverse
a data structure for other purposes, however. For
example, suppose we are creating and animating a
model of the solar system, with its planets and
corresponding moons. We create a scene graph to
represent the model, but, instead of traversing the entire
scene graph looking for objects that should be animated,
it is much easier to create an auxiliary data structure to
manage when, how, and which objects should be
animated. For each time step (perhaps triggered by a
separate simulation process), we traverse the auxiliary
data structure to position the planets and moons, and

Figure 3: Chess game interface.

and can support interactive movement,
advanced game features such as movement validation

This approach works fine for rendering the pieces
but more

then issue a single “redraw canvas” command to the Agpuld have to be created and managed for each instance

library, which renders the scene in its current state.

Lua provides associative arrays that can be used to

of each game piece.

A more experienced programmer would gain

implement not only ordinary arrays but also symbotéveral advantages by creating a new class for each type
tables, sets, records, etc. This makes the creation QjfPiece. A new pawn class could be derived from the

auxiliary data structures very natural,

even fopcene class, with a cone and a translated sphere

occasional programmers. In fact, any graphic object fHtomatically inserted into it by the constructor.

Lua is represented by an associative arrayaljie in

-- Create a pawn class deriving from scene

Lua) and thus can store any other field, besides those classPawn = ActClass {name = “Pawn’}

used by the graphics library.

-- Class constructor

From Lua, one can access any feature of the C++ function Pawn (self)

library. We have also bound almost all OpenGL
functions to Lua. Expert programmers can combine
direct calls to OpenGL with calls to the graphics library,
as in C++. One can also fully dynamically extend the
library. Using Lua, programmers can create a derived
class from any class in the C++ library and access its
these
extensions are done using an interpreted code, they can

base methods or redefine them. Because

be dynamically loaded by any other client.

-- create corresponding C++ object
local obj = LuaActScene:new(classPawn)
-- automatically add children
Cone {radius=obj.radius,
height=obj.height,
scene=obj

}
Translation {0,0bj.height,0; scene=obj}
Sphere {radius=obj.radius/2, scene=0bj}
-- add any additional initialization

return obj
end

We clarify Act's features for novice, intermediate
and expert programmers by describing alternative - Instances are created using the new class

implementations for a chess game using the interpreted ©
language. In the following code fragments, we illustrate

ne_instance = Pawn {radius=0.4, height=1.0}

Therefore, because the pawn has its own class,

different ways to represent pawns, which for the sake péwn behavior (for example, movement validation) can

simplicity we build from a cone with a sphere on the tope defined

(Figure 3).

A novice could collect a cone and a translated

through class-hased event
promoting modularity and allowing reuse.
To gain performance and minimize storage, an

bindings,

sphere into a scene named “pawn”, and then createa@ert programmer could take one further step and

instances of each color piece via links to the original.

-- Create one original
pawn = Scene {
Cone {radius = RADIUS, height = HElI GHT},
Transl ation {0, HEI GHT, 0},
Sphere {radi us = RADI US/ 2}

pre-defined scene

-- Instances are created using |inks
one_i nstance = Li nk{pawn}

create a new primitive class, directly calling OpenGL
functions, instead of using the existing cone and sphere
primitives. At this point, after prototyping each piece, it
may also be worth converting to C++ for improved
performance, athough the interpreted language will
support al three approaches.

Applications and extensions

To illustrate the versatility and applicability of the
library, we will now describe some of the current
research and education projects using Act. The
applications presented here access conventional widgets
such as menus using TkLua, a library to access the Tk
toolkit from Lua [Figueiredo et al., 1996]. Some of the
applications are C++ programs accessing the C++
graphics library. Others are purely Lua code, accessing
the Act graphics library through an interpreter that
simply initializes the library and executes the interpreted
code.

Medical visualization application

The first example is a C++ application that only
accesses the C++ Act library and does not use the Lua
extension. The application reconstructs a 3D model of
human arteries based on x-ray images (Figure4). The
3D artery model is reconstructed using data from x-ray
images, which must first be correctly positioned in 3D
space.

o s
O

5% o
-, \\\\

PR .

Figure 4: Application to reconstruct a 3D artery model.

Once fixed in 3D space, x-ray (raster) values are
mapped to a global 3D coordinate system using an
appropriate hierarchical model to represent the scene. In
addition to providing objects and event handling for a
3D interface, the Act graphics library makes it very easy
to deal with different coordinate systems using the
library resources, freeing the application itself from
algebraic transformations.

Animated solar system model

We have developed an animated model of the solar
system with its planets and major moons for educational
purposes, written entirely in Lua so as to be accessible
for modification and extension by high school teachers.

Act’s hierarchical model for describing a scene is ver
useful for this application, which gains simplicity from
dependency among planets and their correspondi

moons. The following code illustrates the definition of
the scene graph to represent the earth and its moon.

sun = Scene {

Scene { -- Earth and its npon subscene
Texture {image=Image{“earth.omp”}},
Sphere {radius=1.0, name="globe"},
Scene { -- moon
Texture {image=Image{“moon.bmp”}},
Sphere {radius=0.2725};
name = "moon",
eccen = 0.055, smAxis = 385/AU,
inclination = 5.0, period = 27.322

r;ame ="earth",

eccen = 0.017, smAxis = 1,

inclination = 0, period = 365.256
h

.

With Act's hierarchical model, we animate each
moon in relation to its planet in the same way that we
animate each planet in relation to the sun. From the
moon we can consider the earth as a fixed reference, so
when animating the earth’s orbit about the sun, the moon
(hierarchically below the earth) will automatically
follow the earth movement. This dependency does not
preclude us from revolving the earth sphere (rather than
the whole earth scene) independently about its own axis
without affecting the moon.

Note that we can store any desired field in an
object in addition to the library’s graphics attributes. For
the solar system model we store data to compute the
position of the object (period, orbit major axis,
eccentricity, and orbit inclination). As discussed earlier,
we constructed an auxiliary data structure storing a list
of all planets and moons for purposes of animation.

A simple 3D modeler

We created a simple 3D modeler entirely written in Lua
to demonstrate the use of the library and allow scenes to
be created for educational projects (Figure 5).

File Edit Attrib Geld

Jrr

Figure5: A simple 3D modeler.

The program allows the user to interactively create
primitive shapes (cuboid, sphere, cylinder, cone, and
torus) with a color or pre-defined texture, translate and
rotate shapes, and undo or redo any action. Including all
Tk widgets, the modeler requires only 1100 lines of Lua
code.

The following code illustrates how the modeler
implements the interactive mode to rotate objects about
their origins. Whenever the mouse button is pressed on
an object, the cursor is constrained to move on a virtua

Act supports saving screen images to a file and
saving and reloading scenes; the metafile used to store a
saved scene is ssimply Lua code describing the scene.
For the program to support reloading stored scenes, it is
enough to include a command to execute the saved
metafile. This is the same approach aready used by the
EDG system [Celes et ., 1995].

Collision detection
We have demonstrated Act's support for handling

sphere centered at the object's local system origifixternal events through an extension for collision
When the user moves the mouse, the program providégtection using the RAPID library [Gottschalk et al.,
feedback displaying the object at its new positionl996]. We first register a new ‘collision’ event with Act.
However, the rotation is only really performed when th&ach time a new primitive is inserted in the scene, we
user releases the button. The main code calls tHeen grab the resulting event, build a corresponding
function to create the event buffer and turns it activeollision detection structure (an OBB-Tree with the
whenever required. Note that this code can be load&RAPID library), and associate it with the primitive.
and used by any other applicacation to provide the saMéhenever a primitive is later edited or transformed, we

interactive mode.

-- Creates constraint and tenporary undo
rot_constr = OnSphere{center=Tripl e{0, 0, 0}}
rot_tnmpUndo = Undo {10}

-- Press button

-- Constrains the cursor.

function rot_bpress (obj, data, cv)
rot_constr:constrainer(obj)
rot_constr: poi nt (data: point())
cv:constraint(rot_constr)
return Act. oK

end

-- Button notion
-- Rotates object, redraws scene for
-- feedback, and undoes the rotation.
function rot_bnotion (obj, data, cv)
| ocal prev = ActUndo: current (rot_tnpUndo)
obj : rotate(data: angl e(), data: normal ())
cv:redraw()
rot _t mpUndo: undo()
Act Undo: current (prev)
return Act. XK
end

-- Button rel ease

-- Really rotates the object and redraws the
-- scene. Then it renopves the constraint.
function rot_brel ease (obj, data,cv)

obj : rotate(data: angl e(), data: normal ())
cv:redraw()

cv:constraint(nil)

return Act. XK
end

-- Creates and sets event buffer
-- The given canvas is passed as an extra
-- paraneter to the call backs.
function rot_createMde (cv)
|l ocal event = Event {}
event : bi ndl nteracti on(

"ButtonPressl", " Cbject", rot_bpress,cv)
event : bi ndl nteracti on(

"ButtonMtionl", " Cbject", rot_bnotion,cv)
event : bi ndl nteracti on(
“ButtonReleasel","Object",rot_brelease,cv)
return event

end

grab the event and check if performing such operations
would result in object inter-penetrations. If our
extension library detects a collision, we notify Act of
this ‘collision’ event, which Act makes available to the
client application. The application can then determine
whether to allow object inter-penetration, using the
event's returned value to report its validation in the
same way any other editing event can be handled.

Rigid body physical simulation
We are currently integrating the Act graphics library
with a rigid body physical simulation library. The goal is
to create a simple virtual laboratory where teachers and
students can experiment with physical concepts. Aside
from improving the accuracy and efficiency of the
physical simulation itself, the challenge here is to obtain
an easy-to-use interface so that teachers and students can
build their own models for simulations.

While a 3D interactive environment described in
Lua or created using our simple modeler will appeal to
both teachers and students, the ability to establish
appropriate constraints to focus interactivity may be the
most critical factor for successful educational
applications. To introduce the concept of trajectory, for
example, a teacher can construct an experimental game
where students try to score a basket. Because Act
supports controls constraining the students to change
only the direction of the shot, not the starting point or
initial velocity, the game can focus on the effect of the
initial angle on the ball trajectory. Without low-level
library support for constraints, it would be a very
challenging task to program appropriate interactivity.

Conclusion References

Developers of 3D graphics applications face several W. Celes, L. H. de Figueiredo, and M. Gattass, "EDG: a
programming challenges, and 3D interfaces are often tool to easily create interactive graphic interface” (in
omitted because of the skill and effort required to build Portuguese), VIl SIBGRAPI, 1995.

them. A tool a a high abstraction level is necessary 0y, Celes, "Customizable modeling of hierarchical
prov_lde' the appropriate framework for 3D graphics pjanar subdivision”, Ph. D. Thesis (in Portuguese),
application devel opment. Computer Science Dept., PUC-Rio, 1995.

The Act library is very small when compared to L. H. de Figueiredo, R. lerusalimschy, and W. Celes,

Inventor or VRML applications, yet is quite versatile.) . ;
: S . Lua: an Extensible Embedded Languadet, Dobb’s
Using Inventor, achieving the level of extensibility we Journal #254, pp. 26-33, December, 1996,

have described would require an expertise in C++ as

well as “a serious commitment and a reasonable effort doD. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes,

master” [Shekhar and McGinley, 1994]. Computer Graphics, principles and practic&nd
ALICE and several VRML modelers provide editioninC, Addison-Wesley, 1996.

another way to develop interactive 3D environments at@ Gottschalk, M. C. Lin, and D. Manocha, "OBBTree:
good level of abstraction for non-experts, and offera Hierachical Structure for Rapid Interference
better support for creating virtual reality applications. petection”, Computer GraphicsACM SIGGRAPH,
However, as they are not general graphics librariespp 171-180, 1996.

programmers cannot easily use or extend these tOOISFEOIerusﬁIimsch L. H. de Figueiredo, and W. Celes,
create a 3D interface to embed within their own existing;, Y, & 19 T)
Lua an extensible extension language’, Software:

applications. .) i

The Act library combines power and versatility. It Pract|.ce & Exper|enc':,926 (6). pp. 635-652, 199%.
is a useful tool for anyone with a minimum ofJ. Neider, T. Davis, and M. Woo, OpenGL
programming knowledge who wants to create 3DProgramming GuideAddison-Wesley, 1993.

interactive applications, while offering rapid prototyping). K. Ousterhout, Tcl and the Tk toolkit Addison-
in an interpreted language and the capability forwesley, 1994.

extensions to meet any domain-specific need. Act can Pausch, T. Burnette, A.C. Capeheart M. Conway, D
serve as a toolkit for introductory computer graphics(':osgrove’ R DeLiné J burbin R,G.OSSNEHEI’, S.
programming, facilitate the development of interactiveKoga] ,Wl:lite “AIic,e' .Rapid F;rotétyping Syst,em. for

3D educational applications, and to meet a range 0¢/irtual Reality’, |EEE Computer Graphics and
needs for developing OpenGL applications. Applications Ma),/ 1995

Futurework R. Shekhar and B. McGinley, "Open Inventor 2.0",
We still have much to do in improving the efficiency Computer, v. 27, July, pp. 100-102, 1994.

with which scenes are rendered, and in adding features strauss and R. Carey, “An Object-Oriented 3D

to fully cover the OpenGL library. We also plan to useGraphics Toolkit”, Computer Graphics, ACM
the Act framework and Lua to implement a visual 5IGGRAPH, 26 (2), July 1992.

programming environment to create 3D applications. Thompson, “An inside look at the most popular 3D

environments: OpenGL, QuickDraw 3D, and
Acknowledgments Direct3D”, Byte, June 1996.

During the development of this research, the first auth/rpmL 2.0 The Virtual Reality Modeling Language
held a post-doctoral fellowship from the Brazilian Specification, Version 2.0, ISO/IEC CD 14772, 1996.

Council for Scientific and Technological Developmen .
(CNPq). Support for both authors was provided at thse' Wernecke,The Inventor Mentor, Addison-Wesley,

Cornell Program of Computer Graphics through the1994'

National Science Foundation Directorate of Educationdt WerneckeThe Inventor Toolmaker, Addison-Wesley,
Human Resources and the Science and Technolog{®94.

Center for Computer Graphics and Scientific

Visualization (ASC-8920219). Much of the research

was performed on computers generously provided by the

Hewlett Packard Corporation.

