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Abstract. This paper describes a generic algorithm for iso-line, iso-strip, iso-surface, and iso-volume
visualization of unstructured 3D meshes, such as finite element models. The four types of visualization are
integrated in the same data representation. Consequently iso-volume contouring is trivially implemented as
a combination of iso-strip and iso-surface patches of surfaces. The algorithm can handle cells of any shape,
even those that result from sectioning off parts of the model with cutting planes. The contoured stress results
of two finite element analysis are shown as examples.
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1 Introduction tween gridpoints.
The volumes can be defined on regular or irregular

Scientific Visualization uses computer graphics techgrids. On a regular grid, all elements are axis-aligned
niques to help give scientists an understanding of thectangular prisms. Elements on a structured grid are
structure (or lack of Structure) contained within theirnon_axis a|igned hexahedra (Warped bricks)_ Spherica|
data. This is usuaIIy achieved by extracting scientificall)and curvilinear grids are examp|es of structured grids_
meaningful information from numerical descriptions ofan unstructered or irregular grid is made up of polyhe-
complex phenomena through the use of interactive imagra with no implicit connectivity. Cells can be tetrahe-
ing systems [Elvins (1992)]. dra, hexahedra, prisms, etc. An unstructure mesh is an

Volume visualization is an active area of scientificunstructured grid in which cell gridpoint connectivity is
visualization and is widely used in the medical field aprovided.
well as in geoscience, mechanical engineering, chemistry  Example of unstructured meshes are finite element
and many other scientific and engineering areas. It cofodels [Zienkiewicz (1989)]. These models consist of
sists in the process of creating meaningful images fromells, called finite elements, which have a finite number
the volumetric data. Most often the dataset is defined Qh¥ fixed topo|ogica| Shapes_ The basic characteristic of fi-
a three dimensional grid with one or more scalar valuegjte element meshes is that the intersection between two
and possibly one or more vector values at each gridpoirells is the union of lower dimension cells (faces, edges,

Volume of data are usually treated as either an agr vertices). Finite elements may also have vertices along
ray of volume elements (voxels) or an array of cellstheir edges, in the interior of their faces, or even in their
These two approaches stem from the need to represefimain interior. Finite element data representation con-
the volume between gridpoints during the rendering prasists of a vertex coordinate list and a table of finite ele-
cess. The voxel approach dictates that the area arounghant vertex incidence, in which the indices of the ver-
gridpoint has the same value as the gridpoint. The cefces of each cell are stored. In general, there is no cell

approach views a volume as a collection of hexahedggjjacency information linked to vertices. Finite element
whose corners are gridpoints and whose values varies be-
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simulation responses consist of node (vertex) and elemeht3D finite element example illustrates the versatility of
(cell) results. In general, for post-processing purposethe presented methodology in section 5. Finally, in sec-
element results are extrapolated to the element verticésn 6 the proposed method is discussed and conceptually
and these results are then averaged at the common nodempared to other surface fitting methods.

of adjacent elements. Therefore, it is common to visual-

ize results of a finite element simulation whose responsg \/ojume contouring visualization

information is stored at the vertices of the mesh. . o .

The fundamental volume visualization algorithmsOne of the most common tasks in scientific visualiza-
can be classified in two categories, direct volume rendetion is the display of a single variable within a three-
ing (DVR) algorithms and surface fitting (SF) algorithms.d'mens'onal field. Quz_intltles such as equwfaler?t stress,
DVR algorithms include approaches such as ray_castiﬁsmperature, or the estimated error of a s_olut|o_n |tself are
[Levoy (1988)], integration methods [Elvins (1992)], anogener_ally reprgsented as two or three-dimensional fields
projection methods [Wilhelms (1991)]. These meth©f @ single variable. _
ods are characterized by mapping elements directly into  Contour-oriented techniques have been a very
screen space without using geometric primitives as an ifnown way of displaying scalar analysis results across
termediate representation. DVR methods are especiafySurface. They are based on contour lines, which are de-
appropriate for creating images from dataset containirféfed as iso-value lines (|so-l|nes)., or lines representing a
amorphous features like clouds, fluids and gases. Off@nstant value across a surface field. .
disadvantage of using DVR methods is that the entire 1 Ne basic idea of tracing one closed contour in each
dataset must be traverse each time an image is render&tjc® ©f data and then connecting contours in adjacent

SF algorithms typically fit (usually planar) surfaceSlices of data was first suggested by [Keppel (1975)].
primitives such as polygons or patches to constant val(ePntour connecting is an algorithm of the SF class that
contour surfaces in volumetric datasets. The SF approaPR0ins by operating on each slice of data individually. Af-
includes contour-connecting [Keppel (1975)], marchinéer the user has spec_|f|ed a threshold value, :_alclose curve
cubes [Lorensen (1987)], marching tetrahedra [Shme?)ntourat_tms value |s.found for eaph d_at_a slice. Advan-
(1990)], dividing cubes [Cline et al. (1988)], and oth-fages of this approach include the simplicity and the great
ers. SF methods are typically faster than DVR meth?Umber of well-known methods. _
ods since they only traverse the volume once to extract | € surface regions generated between consecutive
surfaces. After extracting the surfaces, renderind haréf0-lines correspond to ranges of the result values. Iso-
ware and well-known rendering methods can be used ﬁgrlp contour[ng isa rep_re;entatlon scheme in which these
quickly render the surface primitive each time the usei€9ions are filled with distinct colors. Gallagher [(1995)]
changes a viewing or lighting parameter. In simulatio§€fines this representation as fringe contouring.
where data are stored at the vertices of a regular 3D grid, Surface oriented visualization techniques may be
allowing for value estimation between gridpoints, this apaPplicable to both 2D and 3D-surface models. When
proach in general exploits data regularity. Those algdh€ analysis is composed purely of surfaces cells, it gen-
rithms, however, have no trivial directimplementation folrally means that all cells are processed and rendered.
unstructured mesh models. Surface techniques can also be used to visualize results

This paper describes an algorithm for volume visy©f @ 3D-solid model. For example, the solid boundary
alization of generic unstructured meshes, such as finif@uld be treated as a 3D-surface model, and the results
element models. The algorithm is a SF technique thé{YOE"d be visible only on the exterior faces of thg model.
integrates four classical contour-connecting techniques=0lid models, however, involve polyhedral cells in which
iso-line, iso-strip (fringes), iso-surface, and iso-volumdnany result vertices may be completely interior to the
contouring [Gallagher (1995)] — in the same proceduréﬂ_Odel- Qne requwement unique to the d|spla3_/ of athr_ee-
In this article, the integrated procedure is referred to ddmensional scalar field is the need to see information
volume contouringThe algorithm may be considered anWhich is not on the exterior visible surface_s of the field.
extension of an iso-strip contouring algorithm devised b{*S & consequence of that, numerous techniques have been
Thomas Boone [(1989)] for surface finite element modd_eveloped in recent years for displaying volume scalar
els, although Boone did not described the algorithm in higelds- _ _ S
work (it was obtained through personal notes). The three-dlmen§|onal analogy to the iso-lines is the

The article is organized in six sections. Sectior?’D'SU_rfaFe repregentm_g the locations ofaconstant scalar
2 defines volume contouring visualization and classifie4|ue inside the simulation model domain. This represen-
contour-connecting algorithms. Boone’s iso-strip cont@tion is called iso-surface contouring.
touring algorithm is described in section 3. Section 4 de-  1h€ implicit bounded volume within the model gen-

scribes the iso-surface algorithm for volume contourinrated between two iso-isurfaces and limited by the
model boundary is refer to as an iso-volume [Gallagher
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(1995)]. The iso-volume contouring is a representatiorco_5) n (2.8)
scheme in which each iso-volume is painted with a dis- . [0.0,1.0)
tinct color.

. [1.0,2.0)
3 Iso-strip contouring . [2.0,3.0)
This section describes a general surface iso-strip con- D [3.0,4.0)
touring algorithm, which was devised by Thomas Boone '
[(1989)] and described first by Gattass [(1991)]. This al- [ ] [4.0,5.0]
gorithm was extended to be used as a first step in th@.0) (4.5)

present volume contouring: a contour vertex classifica-

tion was added. . i . I
. : . . . Figure 1. Polygon for contouring and limiting contour
The iso-strip contouring algorithm is a face-by-face
. ) ; . Vvalues and colors.
algorithm, i.e., it works on one surface facet at a time.
The faces need not have any particular topology, as long
as they are convex polygons with straight edges. Th¢
main limitation of the iso-strip algorithm is that it as-
sumes that each iso-curve of the field being contoureg
intercepts a face as a straight line and just once. Th
first limitation is also present in the marching cubes and
marching tetrahedra algorithms. In the context of a fi-
nite element analysis, these assumptions are usually co
sistent with the degree of approximation adopted in thg
method. In other words, if an iso-curve has a kink inside
an element or it intercepts more than once an elemen
this means that the simulation mesh is not appropriate
for the analysis.
Being a face-by-face procedure, the algorithm does
not exploit any face adjacency information that might Figure 2: Table of strip polygon vertices.
be available in the application data structure. This also
means that there is no consistency check for field val-
ues among the facets. Therefore, if there are inconsistdimtear interpolation of the coordinates of verticksand
vertex values of adjacent facets of the surface model, tig
resulting strips might be discontinuous. Vertex A is stored in the first column of the table
The algorithm is described in the sequel througln Fig. 2. VertexE is stored in the first and second
an example, with no lost of generality. As a surface&olumns. Similarly, verteB is stored in the second and
facet, consider a quadrilateral polyghBCD whose ver- third columns. Note that the vertex storage in this table
tex field values are shown in Fig. 1. In the example, fivéollows the same order of the vertex traversal along the
colored strips are used. The number of strips and the strgmlygon boundary.
limiting response values shown in this figure are just for ~ The same procedure is performed for the remaining
the sake of this example. In the proposed algorithm, orolygon edges. As seen in Fig. 3, vertideand G are
can use any number of strips and any values of field rereated along edgeC, verticesH andl along edgeCD
sponses, as long as they are ordered. In Fig. 2, itis shownd vertices] andK along edgeDA The contour ver-
a table in which the coordinates of existing (Fig. 1) andex table of Fig. 2 is completed in the same order. The
created (Fig. 3) contour vertices are stored according &irip contour polygons generated inside polygdB®CD
their values. are formed by getting the vertices of each table column.
In the algorithm, each polygon edge is processed iRrolygonsAEK EBJK, BFIDJ, FGHI, andGCHmay be
dependently. First the edge vertices are classified accoiitimediately recognized in Fig. 3. These polygons have
ing to their values, comparing them with the strip limitingthe same counter-clockwise order of polygeBCD The
response values. For example, verfeis located in the algorithm generates the maximum of one strip polygon
middle of the first strip and verte&is located at the limit per strip for each given polygon.
between the second and third strips. As a result, a point A difference from Boone’s original version is that
along edge\B, which lies at the limit of the first and sec- the presented algorithm stores the contour vertex classifi-
ond strips, must be created. This ver(E) is shown in cation in the strip polygon table. As shown in Fig. 2, type
Fig. 3, which has valué.0 . Its coordinates are found by mrepresents a vertex in the middle of a strip, tieever-

Vertex
Type
Vertex
Type

AN M > NERE
T1 00 RYEREY

A C O M REE
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The first step of the algorithm is the creation of iso-strip
polygons on all faces of the cell boundary. The polygons
of this figure were generated using the same parameters
used in the previous section (the front face is the face
of Fig. 3). One important requirement is that the faces
be given in the same order as looking from outside the
cell. This will make all generated iso-strip polygons be
ordered consistently.

af B[]

(2.0) (3.0) (4.0) (4.5)

Figure 3: Generated iso-strip polygons.

tex at the bottom of a strip, and typea vertex at the top
of a strip. This classification is used by the iso-surface
algorithm described in the next section.

Presently, the specification of a generic contour
polygon is performed as shown in the piece of “C” lan-
guage code below. In this example,j , y_i , andz.i
are the coordinates of vertéx andv._i its value ¢_A
=05,vB =20,vC = 45,andv.D = 2.8).
With this API, it is possible to consider polygons with
any number of edges.

Figure 4: Iso-strip contouring of cell boundary.

BeginFace( ); The main idea for the generation of a cell iso-surface
ContourVertex(x_A, y_A, z_A, V_A); polygonal patch, such as the one shown in Fig. 5, is the
ContourVertex(x_B, y B, z_B, v_B); observation that it has straight edges that coincide with
ContourVertex(x_C, y C, z_C, v_C); iso-lines on the boundary of the cell. These iso-lines are
ContourVertex(x_D, y D, z_D, v_D); edges of iso-strip polygons on the cell faces. These edges
EndFace( ); are the ones that lie either on the bottom or at the top of a

specific strip.

According to the surface iso-strip procedure de-
scribed in the previous section, the generated iso-strip
The proposed strategy for volume contouring of generipolygon vertices are classified as in the middle, at the bot-
unstructured meshes involves the creation of iso-strifwm, or at the top of their strips. This classification is now
polygons on cell boundaries and the generation of isased to look for iso-line edges that form the iso-surface
surface polygonal patches inside the cells. This sectigrmatch. These edges are selected from the top edges of
describes the algorithm for iso-surface generation, whicte iso-strip polygons just below the iso-surface patch
is an extension of the iso-strip contouring described in ther from the bottom edges of the iso-strip polygons just
previous section. above the patch.

The cells need not have any specific topology, as  Consider a pair of iso-surface patches shown in
long as they are convex polyhedra with straight edgefig. 6. The two patches closes off an iso-volume region
The field values that define the iso-surfaces are specifigtside the cell between valu@0 and3.0 . The proce-
at the cell vertices. The algorithm processes each cell dure adopted for the generation of the iso-surface patch of
atime, and there is no consistency check among adjacdfig. 5 (with value2.0 ) collects iso-line edges at the bot-
cells. The required input data is a list of faces for eactom of the iso-strip polygons of the corresponding strip.
cell, in which each face is defined by a set of vertices witln Fig. 6, vertices at the bottom of this strip are identified
field response values. It is assumed that an iso-surfacewith typeb. In the collection of iso-line edges, the ver-

a specific value intercepts a cell smoothly and only oncéices of each iso-strip polygon are traversed in the order of

Consider, for example, the hexahedral cell of Fig. 4creation. Therefore, the collected edges of the iso-surface

4 Iso-volume contouring
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Figure 6: Iso-volume patch.

Figure 5: Iso-surface patch in cell.

patch are oriented consistently. _ _ _ _ _

Alternatively, one could traverse iso-line edges ation GetFirstisoLineEdge is responsible for get-
the top of the strip between valuéd and2.0 . The ting the first pair of vertices that lie on the target location
only difference is that the iso-surface patch vertice8f the targetstrip. This pair of vertices corresponds to the

would be ordered in the opposite direction. first edge on the boundary of the generated iso-surface
The “C” language code below illustrates the imp|epatch. The search is performed in the lists of iso-strip
mentation of this algorithm for a given cell. polygons of the faces on the boundary of the cell. Simi-
larly, functionGetNextlsoLineEdge  finds the vertex
void GeneratelsoSurfacePatch( that follows the current vertex on the patch boundary. Fi-
strip_index, nally, functioninsertVertexinPatch justinserts a
location) vertex in the array that stores the patch vertices.
{ This algorithm requires a local search for iso-line
not_done = GetFirstisoLineEdge( edge vertices along the faces of the target cell. This
strip_index, location, search is otimized due to the following reasons. First, for
&first_vertex, each cell face there is in the maximum one iso-strip poly-
&current_vertex); gon of the target strip. Second, the edge search in each
if( not_done ) polygon is only performed in one direction: it follows
{ the polygon vertex ordering. Finally, vertex selection is
InsertVertexinPatch(first_vertex); based on topological information (the vertex classifica-
tion in the strip) and on coordinate comparison (which is
while( not_done ) very efficient).
{

InsertVertexIinPatch(current_vertex);

) 5 Application examples
not_done = GetNextlsoLineEdge( PP b

strip_index, location, In this section the results of two 3D finite element models
current vertex, illustrate the capabilities of the present volume contour-
&current_vertex); ing algorithm.
} The first example is a simple cantiveler beam with a
} row of six brick (hexahedron) finite elements, as shown

in Fig. 7. This figure shows an iso-strip contouring of
In this implementationstrip _index is an index longitudinal stresses due to a vertical load applied at the

to the strip for traversal anldcation is eitherb ort, tip of the beam. The purpose of this simple example is
for traversal at the bottom or top edges of the strip. Funde characterize the four types of contouring treated by the
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Figure 7: Iso-strip contouring of cantilever beam. Figure 9: Iso-volume contouring of cantilever beam.

%

Figure 8: Iso-line contouring of cantilever beam.

Figure 10: Iso-surface contouring of cantilever beam.

algorithm. Figures 8, 9, and 10 show iso-line, iso-

volume, and iso-surface contourings for the same streegdrf"l cells. The algorithm examines each cell and de-
response termines, from the arrangement of vertex values above

In Fig. 9, every other contour level is displayedor below a result threshold value, the topology of an iso-
to clarify the iso-volume visualization of the responseurface passing through this cell. The iso-surface is de-
levels. Fig. 9 illustrates that iso-volume contouring igined as patches of four or less triangles. These triangles

trivially obtained as a combination of iso-strip contour®® then passed to a rendering program that maps them to

polygons on the model boundary with iso-surface corfmage space. There are exactly 256 ways that four or less

tour patches triangles can be fit to a cell, and the number of cases can
The second example is the analysis of a curveB® red#ced to t115 by reflection and rr(:tatlon.

cylindrical tube with a square hole, as illustrated in Fig. r-:-be marc Ilng cubes a;]pproag Idoes n?]t Iregarr? tr?

11. This 3D finite element model contains 1280 brick'€!ghbouring elements or the model as a whole, whic

elements and 1700 nodes. The adopted mesh and lead sometimes to connect the wrong set of three

iso-strip contouring of horizontal longitudinal stresses ar_B_O'mS while gene_ratlng tr!angle_s, resulting in false pos-

shown in Fig. 11. Fig. 12 shows an iso-volume contourtive or negative triangles in the iso-surface. One way to

ing of this model. Some contour levels are not displaye'beduce ambiguous point connecting situations is to break
in this figure up each cell into five, six or 24 tetrahedra. The marching

To demonstrate the capability of the proposed VO[getrahedra algorithm [Shirley (1990)] generates more tri-

ume contouring algorithm in handling cells of arbitrary""ngles than the marching cubes, so more processing and

shape, the curved tube was sectioned at a plane as shdWhmO'Y are required. _ _
in Fig. 13. As seen in this figure, the section plane di- 1€ dividing cubes algorithm [Cline et al. (1988)]

vides some of the hexahedral elements into cells of se{ﬁkes advantage of the observation that the size of gen-

eral and random shapes. The resulting iso-volume cofjrate triangles, wr_len rende_red and projected_, is often
touring after the sectioning is shown in Fig. 14. smaller_ than the size of_a plxel_. _I\_lo mtermedlate_ sur-
face primitives are used in the dividing cubes algorithm.
Surface points are rendered into the image buffer using a
standard algorithm such as the Z-buffer or the painter’s
As a conclusion, it is interesting to conceptually comalgorithm. Rendering surface points instead of surface
pare the proposed method with others surface fitting algg@rimitive saves a great deal of time.

rithms. The marching cubes algorithm [Lorensen (1987)]  Alternatively, the present volume contouring pro-
is probably the most popular and efficient SF procedureedure allows iso-line, iso-strip, iso-surface, and iso-
As its name implies, the procedure only considers hex&eolume visualization of generic unstructured 3D meshes,

6 Conclusion
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Figure 11: Iso-strip contouring and mesh of curved tube.  Figure 13: Iso-strip contouring after sectioning.

Figure 12: Iso-volume contouring of curved tube. Figure 14: Iso-volume contouring after sectioning.

such as finite element models. The algorithm can handéeialized. However, as pointed out previously, it is con-
cells of any shape, even those that result from cutting offistent with the usual assumptions of the finite element
parts of the model through cutplanes. In fact, in the cormethod, which is the most popular method that uses un-
text where the algorithm was firstimplemented, a generistructured meshes. One interesting consequence of this
finite element post-processor [Celes (1991)], any solid flimitation is that the algorithm need not treat the ambi-
nite element could be considered and cutplanes can Baity in point connection present in the marching cubes
specified. algorithm.

A very important aspect of the proposed algorithmis ~ One problem with the present iso-surface generation
that it integrates in the same methodology and data refs that it requires a local search for iso-line edge vertices
resentation the four types of visualizations. As a coralong the faces of a cell. Although this search is effi-
sequence of this iso-volume contouring is trivially im-cient, certainly the surface fitting algorithm of the march-
plemented as a combination of iso-strip and iso-surfadag cubes procedure is more efficient than the present al-
patches of surfaces. gorithm. The advantage here is that, while the marching

The proposed method assumes that an iso-surfaceafbes templates require cells of a fixed shape (a hexa-
a specific value intercepts a generic cell smoothly (wittedron), the present procedure can generate iso-surface
no kinks) and only once. As mentioned previously, theatches for cells of any shape.
first limitation is also present in the marching cubes and  To give an idea of the computational efficiency of
marching tetrahedra algorithms. The second limitatiothe present algorithm, the CPU time spent to generate the
certainly restricts the classes of problems that can be \polygons of the iso-volumes of Fig. 12 was 0.63 segs.
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on a Silicon Graphics Indigo 2 workstation. 24,5(1990) 63-70.

Finally, one interesting observation is that the gend. Wilhelms, A. Van Gerder, “A coherent projection ap-
erated iso-surface patch inside a cell is a generic polygon proach for direct volume renderingomputer Graph-
in space. If needed, this polygon may be triangulated.  ics25, 4(1991) 275-284.

O. C. Zienkiewicz, R. L. Taylor. The Finite Element
Method, VWolume 1: Basic Formulation and Linear
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