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Abstract. This paper describes a generic algorithm for iso-line, iso-strip, iso-surface, and iso-volume
visualization of unstructured 3D meshes, such as finite element models. The four types of visualization are
integrated in the same data representation. Consequently iso-volume contouring is trivially implemented as
a combination of iso-strip and iso-surface patches of surfaces. The algorithm can handle cells of any shape,
even those that result from sectioning off parts of the model with cutting planes. The contoured stress results
of two finite element analysis are shown as examples.
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1 Introduction

Scientific Visualization uses computer graphics tech-
niques to help give scientists an understanding of the
structure (or lack of structure) contained within their
data. This is usually achieved by extracting scientifically
meaningful information from numerical descriptions of
complex phenomena through the use of interactive imag-
ing systems [Elvins (1992)].

Volume visualization is an active area of scientific
visualization and is widely used in the medical field as
well as in geoscience, mechanical engineering, chemistry
and many other scientific and engineering areas. It con-
sists in the process of creating meaningful images from
the volumetric data. Most often the dataset is defined on
a three dimensional grid with one or more scalar values,
and possibly one or more vector values at each gridpoint.

Volume of data are usually treated as either an ar-
ray of volume elements (voxels) or an array of cells.
These two approaches stem from the need to represent
the volume between gridpoints during the rendering pro-
cess. The voxel approach dictates that the area around a
gridpoint has the same value as the gridpoint. The cell
approach views a volume as a collection of hexahedra
whose corners are gridpoints and whose values varies be-

tween gridpoints.
The volumes can be defined on regular or irregular

grids. On a regular grid, all elements are axis-aligned
rectangular prisms. Elements on a structured grid are
non-axis aligned hexahedra (warped bricks). Spherical
and curvilinear grids are examples of structured grids.
An unstructered or irregular grid is made up of polyhe-
dra with no implicit connectivity. Cells can be tetrahe-
dra, hexahedra, prisms, etc. An unstructure mesh is an
unstructured grid in which cell gridpoint connectivity is
provided.

Example of unstructured meshes are finite element
models [Zienkiewicz (1989)]. These models consist of
cells, called finite elements, which have a finite number
of fixed topological shapes. The basic characteristic of fi-
nite element meshes is that the intersection between two
cells is the union of lower dimension cells (faces, edges,
or vertices). Finite elements may also have vertices along
their edges, in the interior of their faces, or even in their
domain interior. Finite element data representation con-
sists of a vertex coordinate list and a table of finite ele-
ment vertex incidence, in which the indices of the ver-
tices of each cell are stored. In general, there is no cell
adjacency information linked to vertices. Finite element
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simulation responses consist of node (vertex) and element
(cell) results. In general, for post-processing purposes,
element results are extrapolated to the element vertices
and these results are then averaged at the common nodes
of adjacent elements. Therefore, it is common to visual-
ize results of a finite element simulation whose response
information is stored at the vertices of the mesh.

The fundamental volume visualization algorithms
can be classified in two categories, direct volume render-
ing (DVR) algorithms and surface fitting (SF) algorithms.
DVR algorithms include approaches such as ray-casting
[Levoy (1988)], integration methods [Elvins (1992)], and
projection methods [Wilhelms (1991)]. These meth-
ods are characterized by mapping elements directly into
screen space without using geometric primitives as an in-
termediate representation. DVR methods are especially
appropriate for creating images from dataset containing
amorphous features like clouds, fluids and gases. One
disadvantage of using DVR methods is that the entire
dataset must be traverse each time an image is rendered.

SF algorithms typically fit (usually planar) surface
primitives such as polygons or patches to constant value
contour surfaces in volumetric datasets. The SF approach
includes contour-connecting [Keppel (1975)], marching
cubes [Lorensen (1987)], marching tetrahedra [Shirley
(1990)], dividing cubes [Cline et al. (1988)], and oth-
ers. SF methods are typically faster than DVR meth-
ods since they only traverse the volume once to extract
surfaces. After extracting the surfaces, renderind hard-
ware and well-known rendering methods can be used to
quickly render the surface primitive each time the user
changes a viewing or lighting parameter. In simulation
where data are stored at the vertices of a regular 3D grid,
allowing for value estimation between gridpoints, this ap-
proach in general exploits data regularity. Those algo-
rithms, however, have no trivial direct implementation for
unstructured mesh models.

This paper describes an algorithm for volume visu-
alization of generic unstructured meshes, such as finite
element models. The algorithm is a SF technique that
integrates four classical contour-connecting techniques –
iso-line, iso-strip (fringes), iso-surface, and iso-volume
contouring [Gallagher (1995)] – in the same procedure.
In this article, the integrated procedure is referred to as
volume contouring. The algorithm may be considered an
extension of an iso-strip contouring algorithm devised by
Thomas Boone [(1989)] for surface finite element mod-
els, although Boone did not described the algorithm in his
work (it was obtained through personal notes).

The article is organized in six sections. Section
2 defines volume contouring visualization and classifies
contour-connecting algorithms. Boone’s iso-strip con-
touring algorithm is described in section 3. Section 4 de-
scribes the iso-surface algorithm for volume contouring.

A 3D finite element example illustrates the versatility of
the presented methodology in section 5. Finally, in sec-
tion 6 the proposed method is discussed and conceptually
compared to other surface fitting methods.

2 Volume contouring visualization

One of the most common tasks in scientific visualiza-
tion is the display of a single variable within a three-
dimensional field. Quantities such as equivalent stress,
temperature, or the estimated error of a solution itself are
generally represented as two or three-dimensional fields
of a single variable.

Contour-oriented techniques have been a very
known way of displaying scalar analysis results across
a surface. They are based on contour lines, which are de-
fined as iso-value lines (iso-lines), or lines representing a
constant value across a surface field.

The basic idea of tracing one closed contour in each
slice of data and then connecting contours in adjacent
slices of data was first suggested by [Keppel (1975)].
Contour connecting is an algorithm of the SF class that
begins by operating on each slice of data individually. Af-
ter the user has specified a threshold value, a close curve
contour at this value is found for each data slice. Advan-
tages of this approach include the simplicity and the great
number of well-known methods.

The surface regions generated between consecutive
iso-lines correspond to ranges of the result values. Iso-
strip contouring is a representation scheme in which these
regions are filled with distinct colors. Gallagher [(1995)]
defines this representation as fringe contouring.

Surface oriented visualization techniques may be
applicable to both 2D and 3D-surface models. When
the analysis is composed purely of surfaces cells, it gen-
erally means that all cells are processed and rendered.
Surface techniques can also be used to visualize results
of a 3D-solid model. For example, the solid boundary
could be treated as a 3D-surface model, and the results
would be visible only on the exterior faces of the model.
Solid models, however, involve polyhedral cells in which
many result vertices may be completely interior to the
model. One requirement unique to the display of a three-
dimensional scalar field is the need to see information
which is not on the exterior visible surfaces of the field.
As a consequence of that, numerous techniques have been
developed in recent years for displaying volume scalar
fields.

The three-dimensional analogy to the iso-lines is the
3D-surface representing the locations of a constant scalar
value inside the simulation model domain. This represen-
tation is called iso-surface contouring.

The implicit bounded volume within the model gen-
erated between two iso-isurfaces and limited by the
model boundary is refer to as an iso-volume [Gallagher
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(1995)]. The iso-volume contouring is a representation
scheme in which each iso-volume is painted with a dis-
tinct color.

3 Iso-strip contouring

This section describes a general surface iso-strip con-
touring algorithm, which was devised by Thomas Boone
[(1989)] and described first by Gattass [(1991)]. This al-
gorithm was extended to be used as a first step in the
present volume contouring: a contour vertex classifica-
tion was added.

The iso-strip contouring algorithm is a face-by-face
algorithm, i.e., it works on one surface facet at a time.
The faces need not have any particular topology, as long
as they are convex polygons with straight edges. The
main limitation of the iso-strip algorithm is that it as-
sumes that each iso-curve of the field being contoured
intercepts a face as a straight line and just once. The
first limitation is also present in the marching cubes and
marching tetrahedra algorithms. In the context of a fi-
nite element analysis, these assumptions are usually con-
sistent with the degree of approximation adopted in the
method. In other words, if an iso-curve has a kink inside
an element or it intercepts more than once an element,
this means that the simulation mesh is not appropriated
for the analysis.

Being a face-by-face procedure, the algorithm does
not exploit any face adjacency information that might
be available in the application data structure. This also
means that there is no consistency check for field val-
ues among the facets. Therefore, if there are inconsistent
vertex values of adjacent facets of the surface model, the
resulting strips might be discontinuous.

The algorithm is described in the sequel through
an example, with no lost of generality. As a surface
facet, consider a quadrilateral polygonABCD, whose ver-
tex field values are shown in Fig. 1. In the example, five
colored strips are used. The number of strips and the strip
limiting response values shown in this figure are just for
the sake of this example. In the proposed algorithm, one
can use any number of strips and any values of field re-
sponses, as long as they are ordered. In Fig. 2, it is shown
a table in which the coordinates of existing (Fig. 1) and
created (Fig. 3) contour vertices are stored according to
their values.

In the algorithm, each polygon edge is processed in-
dependently. First the edge vertices are classified accord-
ing to their values, comparing them with the strip limiting
response values. For example, vertexA is located in the
middle of the first strip and vertexB is located at the limit
between the second and third strips. As a result, a point
along edgeAB, which lies at the limit of the first and sec-
ond strips, must be created. This vertex(E) is shown in
Fig. 3, which has value1.0 . Its coordinates are found by
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Figure 1: Polygon for contouring and limiting contour
values and colors.
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Figure 2: Table of strip polygon vertices.

linear interpolation of the coordinates of verticesA and
B.

Vertex A is stored in the first column of the table
in Fig. 2. VertexE is stored in the first and second
columns. Similarly, vertexB is stored in the second and
third columns. Note that the vertex storage in this table
follows the same order of the vertex traversal along the
polygon boundary.

The same procedure is performed for the remaining
polygon edges. As seen in Fig. 3, verticesF andG are
created along edgeBC, verticesH andI along edgeCD,
and verticesJ and K along edgeDA. The contour ver-
tex table of Fig. 2 is completed in the same order. The
strip contour polygons generated inside polygonABCD
are formed by getting the vertices of each table column.
PolygonsAEK, EBJK, BFIDJ , FGHI, andGCHmay be
immediately recognized in Fig. 3. These polygons have
the same counter-clockwise order of polygonABCD. The
algorithm generates the maximum of one strip polygon
per strip for each given polygon.

A difference from Boone’s original version is that
the presented algorithm stores the contour vertex classifi-
cation in the strip polygon table. As shown in Fig. 2, type
mrepresents a vertex in the middle of a strip, typeb a ver-
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Figure 3: Generated iso-strip polygons.

tex at the bottom of a strip, and typet a vertex at the top
of a strip. This classification is used by the iso-surface
algorithm described in the next section.

Presently, the specification of a generic contour
polygon is performed as shown in the piece of “C” lan-
guage code below. In this example,x i , y i , andz i
are the coordinates of vertexi , andv i its value (v A
= 0.5 , v B = 2.0 , v C = 4.5 , andv D = 2.8 ).
With this API, it is possible to consider polygons with
any number of edges.

BeginFace( );
ContourVertex(x_A, y_A, z_A, v_A);
ContourVertex(x_B, y_B, z_B, v_B);
ContourVertex(x_C, y_C, z_C, v_C);
ContourVertex(x_D, y_D, z_D, v_D);
EndFace( );

4 Iso-volume contouring

The proposed strategy for volume contouring of generic
unstructured meshes involves the creation of iso-strip
polygons on cell boundaries and the generation of iso-
surface polygonal patches inside the cells. This section
describes the algorithm for iso-surface generation, which
is an extension of the iso-strip contouring described in the
previous section.

The cells need not have any specific topology, as
long as they are convex polyhedra with straight edges.
The field values that define the iso-surfaces are specified
at the cell vertices. The algorithm processes each cell at
a time, and there is no consistency check among adjacent
cells. The required input data is a list of faces for each
cell, in which each face is defined by a set of vertices with
field response values. It is assumed that an iso-surface of
a specific value intercepts a cell smoothly and only once.

Consider, for example, the hexahedral cell of Fig. 4.

The first step of the algorithm is the creation of iso-strip
polygons on all faces of the cell boundary. The polygons
of this figure were generated using the same parameters
used in the previous section (the front face is the face
of Fig. 3). One important requirement is that the faces
be given in the same order as looking from outside the
cell. This will make all generated iso-strip polygons be
ordered consistently.

Figure 4: Iso-strip contouring of cell boundary.

The main idea for the generation of a cell iso-surface
polygonal patch, such as the one shown in Fig. 5, is the
observation that it has straight edges that coincide with
iso-lines on the boundary of the cell. These iso-lines are
edges of iso-strip polygons on the cell faces. These edges
are the ones that lie either on the bottom or at the top of a
specific strip.

According to the surface iso-strip procedure de-
scribed in the previous section, the generated iso-strip
polygon vertices are classified as in the middle, at the bot-
tom, or at the top of their strips. This classification is now
used to look for iso-line edges that form the iso-surface
patch. These edges are selected from the top edges of
the iso-strip polygons just below the iso-surface patch
or from the bottom edges of the iso-strip polygons just
above the patch.

Consider a pair of iso-surface patches shown in
Fig. 6. The two patches closes off an iso-volume region
inside the cell between values2.0 and3.0 . The proce-
dure adopted for the generation of the iso-surface patch of
Fig. 5 (with value2.0 ) collects iso-line edges at the bot-
tom of the iso-strip polygons of the corresponding strip.
In Fig. 6, vertices at the bottom of this strip are identified
with typeb. In the collection of iso-line edges, the ver-
tices of each iso-strip polygon are traversed in the order of
creation. Therefore, the collected edges of the iso-surface
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Figure 5: Iso-surface patch in cell.

patch are oriented consistently.
Alternatively, one could traverse iso-line edges at

the top of the strip between values1.0 and2.0 . The
only difference is that the iso-surface patch vertices
would be ordered in the opposite direction.

The “C” language code below illustrates the imple-
mentation of this algorithm for a given cell.

void GenerateIsoSurfacePatch(
strip_index,
location)

{
not_done = GetFirstIsoLineEdge(

strip_index, location,
&first_vertex,
&current_vertex);

if( not_done )
{

InsertVertexInPatch(first_vertex);
}
while( not_done )
{

InsertVertexInPatch(current_vertex);
not_done = GetNextIsoLineEdge(

strip_index, location,
current_vertex,
&current_vertex);

}
}

In this implementation,strip index is an index
to the strip for traversal andlocation is eitherb or t ,
for traversal at the bottom or top edges of the strip. Func-

M b

L b B b

J b

N b

O b

Figure 6: Iso-volume patch.

tion GetFirstIsoLineEdge is responsible for get-
ting the first pair of vertices that lie on the target location
of the target strip. This pair of vertices corresponds to the
first edge on the boundary of the generated iso-surface
patch. The search is performed in the lists of iso-strip
polygons of the faces on the boundary of the cell. Simi-
larly, functionGetNextIsoLineEdge finds the vertex
that follows the current vertex on the patch boundary. Fi-
nally, functionInsertVertexInPatch just inserts a
vertex in the array that stores the patch vertices.

This algorithm requires a local search for iso-line
edge vertices along the faces of the target cell. This
search is otimized due to the following reasons. First, for
each cell face there is in the maximum one iso-strip poly-
gon of the target strip. Second, the edge search in each
polygon is only performed in one direction: it follows
the polygon vertex ordering. Finally, vertex selection is
based on topological information (the vertex classifica-
tion in the strip) and on coordinate comparison (which is
very efficient).

5 Application examples

In this section the results of two 3D finite element models
illustrate the capabilities of the present volume contour-
ing algorithm.

The first example is a simple cantiveler beam with a
row of six brick (hexahedron) finite elements, as shown
in Fig. 7. This figure shows an iso-strip contouring of
longitudinal stresses due to a vertical load applied at the
tip of the beam. The purpose of this simple example is
to characterize the four types of contouring treated by the
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Figure 7: Iso-strip contouring of cantilever beam.

Figure 8: Iso-line contouring of cantilever beam.

algorithm. Figures 8, 9, and 10 show iso-line, iso-
volume, and iso-surface contourings for the same stress
response.

In Fig. 9, every other contour level is displayed
to clarify the iso-volume visualization of the response
levels. Fig. 9 illustrates that iso-volume contouring is
trivially obtained as a combination of iso-strip contour
polygons on the model boundary with iso-surface con-
tour patches.

The second example is the analysis of a curved
cylindrical tube with a square hole, as illustrated in Fig.
11. This 3D finite element model contains 1280 brick
elements and 1700 nodes. The adopted mesh and the
iso-strip contouring of horizontal longitudinal stresses are
shown in Fig. 11. Fig. 12 shows an iso-volume contour-
ing of this model. Some contour levels are not displayed
in this figure.

To demonstrate the capability of the proposed vol-
ume contouring algorithm in handling cells of arbitrary
shape, the curved tube was sectioned at a plane as shown
in Fig. 13. As seen in this figure, the section plane di-
vides some of the hexahedral elements into cells of sev-
eral and random shapes. The resulting iso-volume con-
touring after the sectioning is shown in Fig. 14.

6 Conclusion

As a conclusion, it is interesting to conceptually com-
pare the proposed method with others surface fitting algo-
rithms. The marching cubes algorithm [Lorensen (1987)]
is probably the most popular and efficient SF procedure.
As its name implies, the procedure only considers hexa-

Figure 9: Iso-volume contouring of cantilever beam.

Figure 10: Iso-surface contouring of cantilever beam.

hedral cells. The algorithm examines each cell and de-
termines, from the arrangement of vertex values above
or below a result threshold value, the topology of an iso-
surface passing through this cell. The iso-surface is de-
fined as patches of four or less triangles. These triangles
are then passed to a rendering program that maps them to
image space. There are exactly 256 ways that four or less
triangles can be fit to a cell, and the number of cases can
be reduced to 15 by reflection and rotation.

The marching cubes approach does not regard to
neighbouring elements or the model as a whole, which
can lead sometimes to connect the wrong set of three
points while generating triangles, resulting in false pos-
itive or negative triangles in the iso-surface. One way to
reduce ambiguous point connecting situations is to break
up each cell into five, six or 24 tetrahedra. The marching
tetrahedra algorithm [Shirley (1990)] generates more tri-
angles than the marching cubes, so more processing and
memory are required.

The dividing cubes algorithm [Cline et al. (1988)]
takes advantage of the observation that the size of gen-
erate triangles, when rendered and projected, is often
smaller than the size of a pixel. No intermediate sur-
face primitives are used in the dividing cubes algorithm.
Surface points are rendered into the image buffer using a
standard algorithm such as the Z-buffer or the painter’s
algorithm. Rendering surface points instead of surface
primitive saves a great deal of time.

Alternatively, the present volume contouring pro-
cedure allows iso-line, iso-strip, iso-surface, and iso-
volume visualization of generic unstructured 3D meshes,
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Figure 11: Iso-strip contouring and mesh of curved tube.

Figure 12: Iso-volume contouring of curved tube.

such as finite element models. The algorithm can handle
cells of any shape, even those that result from cutting off
parts of the model through cutplanes. In fact, in the con-
text where the algorithm was first implemented, a generic
finite element post-processor [Celes (1991)], any solid fi-
nite element could be considered and cutplanes can be
specified.

A very important aspect of the proposed algorithm is
that it integrates in the same methodology and data rep-
resentation the four types of visualizations. As a con-
sequence of this iso-volume contouring is trivially im-
plemented as a combination of iso-strip and iso-surface
patches of surfaces.

The proposed method assumes that an iso-surface of
a specific value intercepts a generic cell smoothly (with
no kinks) and only once. As mentioned previously, the
first limitation is also present in the marching cubes and
marching tetrahedra algorithms. The second limitation
certainly restricts the classes of problems that can be vi-

Figure 13: Iso-strip contouring after sectioning.

Figure 14: Iso-volume contouring after sectioning.

sualized. However, as pointed out previously, it is con-
sistent with the usual assumptions of the finite element
method, which is the most popular method that uses un-
structured meshes. One interesting consequence of this
limitation is that the algorithm need not treat the ambi-
guity in point connection present in the marching cubes
algorithm.

One problem with the present iso-surface generation
is that it requires a local search for iso-line edge vertices
along the faces of a cell. Although this search is effi-
cient, certainly the surface fitting algorithm of the march-
ing cubes procedure is more efficient than the present al-
gorithm. The advantage here is that, while the marching
cubes templates require cells of a fixed shape (a hexa-
hedron), the present procedure can generate iso-surface
patches for cells of any shape.

To give an idea of the computational efficiency of
the present algorithm, the CPU time spent to generate the
polygons of the iso-volumes of Fig. 12 was 0.63 segs.
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on a Silicon Graphics Indigo 2 workstation.
Finally, one interesting observation is that the gen-

erated iso-surface patch inside a cell is a generic polygon
in space. If needed, this polygon may be triangulated.
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